

Au + Au physics topics with the μVertex detector

Kai Schweda Lawrence Berkeley National Laboratory

People: F. Bieser, R. Gareus, M. Oldenburg, F. Retiere, H.G. Ritter, K.S, H. Wieman, N.Xu M. Calderon, J. Lauret, M. Potekhin, Z. Chajecki, M. Miller, C. Pruneau, A. Rose

1

Outline

Introduction / Motivation Multi-strange hadron spectra and partonic collectivity Open charm to probe thermalization \Box Simulations of the μ Vertex detector Summary

Motivation

Quark Gluon Plasma:

Deconfined and thermalized state of quarks and gluons

Equilibration:

- hadron yields

□ Partonic Collectivity:

- Spectra of multi-strange baryons

□ Thermalization:

- heavy charm quark
- (thermal photons, di-leptons)

J.C. Collins and M.J. Perry, Phys. Rev. Lett. 34 (1975) 1353.

MIT, Nov 7 - 8, 2003

Pressure, Flow, ...

Thermodynamic identity σ - entropyp - pressureU - energyV - volume $\tau = k_B T$, thermal energy per dof

In A+A collisions, interactions among constituents and density distribution lead to: pressure gradient \Rightarrow collective flow

number of degrees of freedom (dof) Equation of State (EOS) cumulative – *partonic* + *hadronic*

 \Leftrightarrow

 \Leftrightarrow

 \Leftrightarrow

Transverse Radial Flow

$$\frac{dN}{m_T dm_T} \propto \int_0^R r dr m_T K_1 \left(\frac{m_T \cosh \rho}{T_{fo}}\right) I_0 \left(\frac{p_T \sinh \rho}{T_{fo}}\right)$$
$$\rho = \tanh^{-1} \beta_r \qquad \beta_r = \beta_s \left(\frac{r}{R}\right)^{\alpha} \qquad \alpha = 0.5, 1, 2$$

- T_{fo}: temperature parameter
- β : collective flow velocity

□ In more central collisions, m_t distributions become more convex \Rightarrow collective flow !

MIT, Nov 7 - 8, 2003

Kinetic Freeze-out

Data: STAR preliminary Au+Au@200GeV: Nucl. Phys. A715, 129c(2003). *A. Baran, W. Broniowski and W. Florkowski; nucl-th/0305075

CCCCC

Elliptic Flow, v₂

crcccc

Quark Coalescence

Exp. data consistent with quark coalescence scenario Partonic collectivity at **RHIC!** Pentaquark* θ^+ (uudds), n=5 ? $\theta_{c}(uudd\bar{c}), c\tau > 100\mu m$?

Z. Lin et al., Phys. Rev. Lett., 89, 202302 (2002)
R. Fries et al., nucl-th/0306027
D. Molnar and S.A. Voloshin, PRL 91, 092301 (2003)

*LEPS: Phys. Rev. Lett. 91, 012002-1 (2003)

MIT, Nov 7 - 8, 2003

Summary(i)

 $\hfill\square$ Spectra and v_2 of multi-strange hadrons

→ Partonic Collectivity at RHIC !

- yields: hadro-chemistry with heavy flavor (c,b)
- spectra and v₂ of open charm
- energy loss of heavy flavor quarks

Charm Yields

- No thermal creation of c or b quarks; m(c) = 1.1GeV >> T
- c and b quarks interact with lighter quarks → thermal recombination ?
 - D_s⁺ yield very sensitive !
 - J/ψ: suppression vs recombination ?

	Pythia	Au-Au	
	p-p 200 GeV	Thermal*	
D ⁺ /D ⁰	0.33	0.455	
D _s ⁺ /D ⁰	0.20	0.393	
Λ_{c}^{+}/D^{0}	0.14	0.173	
J/ψ/D ⁰	0.0003	0.0004	
		No	
		suppression	

* A.Andronic, P.Braun-Munzinger, K.Redlich, J.Stachel, nucl-th/030306.

(Indirect) Charming Spectra

□ single e- spectra

- D \rightarrow e- + nX
- B \rightarrow e- + nX
- d + Au: Electron spectrum is consistent with the D meson spectrum
- Au + Au: Electron spectrum is suppressed

 Heavy flavor energy loss(?) in heavy-ion collisions
 Need direct

measurement !

Au+Au data: PHENIX, K. Adcox et al., Phys. Rev. Lett. 88 (2002) 192303.

CCCCC

Does Charm Flow ?

Calculations: F. Retiere, LBNL

Elliptic Flow of Charm – v_2

□ Finite v_2 of D-mesons signals thermalization ! □ Remove electron background from $\pi^0 \rightarrow \gamma \rightarrow e^+e^-$ conversion → measure thermal di-lepton spectra !

MC calculations: Xin Dong, USTC/LBNL

Heavy-Quark Energy Loss

- Heavy(H) quarks suffer smaller energy loss than light(L) quarks
 - Dead cone effect
 - QCD analog Ter-Mikayelian effect; nucl-th/0305062
- D/π ratio sensitive to color charge
- Differential study of energy loss

Yu.L. Dokshitzer and D.E. Kharzeev. Phys. Lett. B519 (2001) 199.

Summary(ii)

probe thermalization at RHIC with

- yields: hadro-chemistry with heavy flavor (c,b)
- spectra and v₂ of open charm
- energy loss of heavy flavor quarks

Simulations

Background Suppression

Reconstruct Charm

System	N events for 3 σ D ⁰ signal	N events for 3 σ D ⁰ signal p _T > 2 GeV/c	N events for 3 σ D⁺ s signal
TPC+SVT	12.6 M	59 M	500 M (K ⁰ _s + K ⁺)
	(Evan Finch)		(Jeff Porter)
TPC+SVT+TOF	2.6 M	23 M	?
TPC+SVT+μVertex	0.1 M	0.6 M	50 M (φ+π+)
TPC+SVT+µVertex+TOF	10 K	?	5 Μ (φ + π +)

Uncertainty in N events: ±30%

Summary(iii)

❑ Spectra and v₂ of multi-strange hadrons
 → Partonic Collectivity at RHIC !

 $\hfill\square$ Measure centrality dependence of spectra and v_2 of

 ϕ , Ξ , Ω , ..., D^0 , D_s , Λ_c , J/ψ , (θ^+)

- quantify partonic collectivity

probe thermalization

Discover QGP !

 \Box thermal photons + di-leptons \rightarrow plasma temperature