BNL
 DOE
 

star focus: Observation of the antimatter helium-4 nucleus
Sciffentists have discovered the heaviest antimatter nucleus: antihelium-4, which contains two antiprotons and two antineutrons. The new discovery is described in the Vol. 473 of Nature.














<dE/dx> versus p/|Z| for negatively charged particles (left) and positively charged particles (right). The black curves show the expected values for each species. The lower edges of the colored bands correspond to the HLT’s online calculation of 3σ below the <dE/dx> band center for 3He.
































The top two panels show the <dE/dx> in units of multiples of σdE/dx, nσdE/dx , of negatively charged particles (first panel) and positively charged particles (second panel) as a function of mass measured by the TOF system. The masses of 3He (3He) and 4He (4He) are indicated by the vertical lines at 2.81 GeV/c2 and 3.73 GeV/c2, respectively. The horizontal line marks the position of zero deviation from the expected value of <dE/dx> (nσdE/dx = 0) for 4He (4He). The rectangular boxes highlight areas for 4He (4He) selections : −2 < nσdE/dx < 3 and 3.35 GeV/c2 < mass < 4.04 GeV/c2 (corresponding to a ±3σ window in mass). The bottom panel shows a projection of entries in the upper two panels onto the mass axis for particles in the window of −2 < σdE/dx < 3. The combined measurements of energy loss and the time of flight allow a clean identification to be made in a sample of 0.5 × 1012 tracks from 109 Au+Au collisions.
























Differential invariant yields as a function of baryon number B, evaluated at pT /|B| = 0.875 GeV/c, in central 200 GeV Au+Au collisions. Yields for (anti)tritons (3H and 3H) lie close to the positions for 3He and 3He, but are not included here because of poorer identification of (anti)tritons. The lines represent fits with the exponential formula ∝ e−r|B| for positive and negative particles separately, where r is the production reduction factor. Analysis details of yields other than 4He (4He) have been presented elsewhere. Errors are statistical only. Systematic errors are smaller than the symbol size, and are not plotted.


High-energy nuclear collisions create an energy density similar to that of the universe microseconds after the Big Bang. In both cases, matter and antimatter are formed with comparable abundance. Thus, a high energy accelerator of heavy nuclei is an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He),which known as the anti-α (α), has not been observed before. Although the α particle was identified a century ago by Rutherford and is present in cosmic radiation at the 10% level. The STAR Collaboration report the observation of the antimatter helium-4 nucleus, the heaviest observed antinucleus. In total 18 4He counts were detected in 109 recorded Au+Au collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of 4He in cosmic radiation.


webmaster Last modified: Dec 25 2011 23:38.
privacy & security