Vertex Reconstruction for High Luminosity pp Running at STAR

- STAR-Spin luminosity requirements
- Method of the vertex reconstruction
- Application to the pileup rejection

Jan Balewski, IUCF for STAR Collaboration

BNL, April 8, 2000 ALICE/STAR Meeting

Spin Structure of the proton:

• $\Delta G(x)$ in	\overrightarrow{p} : direct e	xtractio	on for $x_{g} \in [0.01]$, 0.3]
$via \overrightarrow{p} + \overrightarrow{p} -$	$\rightarrow \gamma + jet + \Sigma$	K @	$\sqrt{s} = 200 \text{ GeV} +$	- 500 GeV

]	Enhanced Luminosity				
\sqrt{s} (GeV)	σ _{NDIF} (mb)	$L/10^{32}$ (cm ⁻² s ⁻¹)	# inter /bunch (nondifr.)	total rate (MHz)	Trigger Level 0 (Hz)	Level 3 (Hz)
p+p 200	32	0.8	0.27	3	≤ 4	4
p+p 500	36	2.0	0.87	8	≤ 60	15
TPC readout time		40µs	leads to pileup of tracks			

- Level 0 : hard photon in EMC
 - "high tower" (tower $E_T > 5 \text{ GeV}$)
 - "trigger tower" ($E_T > 10 \text{ GeV}$ in (**Dh**, **Df**)=(0.2, 0.2) patch)
- Level 1 : g isolation cut
 - limit for surrounding patches
- <u>Level 3 : online pileup filter</u>

Events Piled up in the TPC

Example of 2 Piled up Events

Jan Balewski, IUCF BNL, April 8, 2000 ALICE / STAR Meeting

p+p event (p_T >10 GeV) @ 200 GeV

Color coding :

- green $p_T < 500 \text{ MeV/c}$
- blue $p_T \in [0.5, 1] \text{ GeV/c}$
- red $p_T > 1 \text{ GeV/c}$

The same p+p event + 1 pileup <u>10µs</u> earlier (*black*)

Piled up Tracks Reconstructed in TPC Jan Balewski, IUCF BNL, April 8, 2000 ALICE / STAR Meeting

p+p @ 200 GeV, 0.27 inter/bunch

- p+p event (~ 30 tracks) screened by: 735 bunch crossings (~ 3000 tr.) during 40µs of the TPC readout time
- EMC records only hits (~ 20 from the trigger event
- the pileup events are displaced along the beam axis (± 200 cm)

250 cm

Z-axis

0

-250 cm

Goal: Identify vertex position (Z_V) for the trigger event

Method:

•reconstruct all (~3000) tracks in TPC

•preselect (4 ± 3) tracks from the trigger event:

- # TPC clusters >20 (of 45)
- $R_{XY}^{DCA} < 1.3 \text{ cm}$ (primary track)
- $|Z^{DCA}| < 15 \text{ cm}$ (diamond size)
- track matched with EMC (~20) towers

•find maximum of the likelihood(Z_v) defined as: $ln L(Z_v) \equiv \sum_{i} \frac{(Z_i^{DCA} - Z_v)^2}{s(\eta_i)^2},$ truncated at $|Z_i^{DCA} - Z_v| > 2\sigma_i$

(numbers refer to p+p @ 200 GeV, 0.27 inter/bunch)

Vertex Finder - Performance at $\sqrt{s}=200 \text{ GeV}$ Jan Balewski, IUCF BNL, April 8, 2000 ALICE / STAR Meeting

Tested with $p+p @200 \ GeV, h_{a}\hat{I} [1.0, 1.3]$

Tested with $p+p @200 \ GeV$, $h_a \hat{I} [1.0, 1.3]$

Impact on Reconstruction of Partons Kinematics

Jan Balewski, IUCF BNL, April 8, 2000 ALICE / STAR Meeting

