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The collisions of large nuclei at high energies could pro-
duce metastable vacua which are odd under parity, P, charge
conjugation, C, and/or CP. Using only the three-momenta
of charged pions (or kaons), we show how to construct global
observables which are odd under P, C, and CP, and which
can be measured on an event by event basis. Model depen-
dent estimates of the P-odd observables are on the order of
10−3.

In a previous Letter we proposed a detailed model
in which metastable vacua could arise in hot QCD [1].
These metastable states are related to θ-vacua, and so
are odd under charge conjugation times parity, CP. (For
related studies, especially in supersymmetric theories, see
[2–4].) An obvious question is how the breaking of this
discrete symmetry by a metastable bubble could be mea-
sured in the collisions of large nuclei at high energies. As
the bubble is odd under P and CP, the pions produced
by its decay must also be in a state which is odd under
these symmetries. In [1] we proposed measuring, on an
event by event basis, a global variable which is odd under
P.

In this article we do two things. Using only the mo-
menta of charged pions in an event, we construct global
observables which are odd under the discrete symmetries
of P, C, and/or CP. Our discussion is general, inde-
pendent of whatever detailed mechanism might produce
nonzero values for these variables. For the collisions of
nuclei with equal atomic number, as the initial state is
even under P, the observation of a P-odd final state must
be due to parity violation, such as by a P-odd bubble.
Based upon our specific model [1], we then give a rough
estimate of the magnitude of the P-odd and CP-odd
effects; we find that the asymmetries can be relatively
large, at least ∼ 10−3.

At high energy, nucleus-nucleus collisions produce
many pions, on the order of ∼ 1000 per unit rapidity
at RHIC energies. Experimentally, it is probably easiest
to detect charged pions and their three-momenta. (All
of our comments apply equally well to charged kaons.)
Thus we are led to consider constructing observables only
from the three-momenta of π+’s, ~p+, and π−’s, ~p−. As
vectors, under parity the three-momenta transform as

P : ~p+ → −~p+ , ~p− → −~p− . (1)

Charge conjugation switches π+ and π−,

C : ~p+ ↔ ~p−. (2)

It is a theorem that any P-odd invariant formed from
three-vectors can be represented as a sum of terms, each
of which involves one antisymmetric epsilon tensor [5].
The variable which we proposed previously is of this type
[1]:

J =
∑
π+,π−

(p̂+ × p̂−) · ẑ . (3)

In order to form J we have introduced an arbitrary, fixed
vector of unit norm, ẑ. If ẑ → −ẑ under parity, then J is
odd under P. In J we use the unit vectors p̂± = ~p±/|~p±|
so that it is a pure, dimensionless number. The variable
J is separately odd under P and C, and so is even under
CP.

The variable J is closely analogous to “handedness”,
originally introduced to study spin dependent effects in
jet fragmentation [6]. There the axis ẑ is usually defined
by the thrust of the jet, with p̂+ and p̂− representing the
directions of pions formed in the fragmentation of the
jet. Correlations between the handedness of different jets
produced in a given event are sensitive to CP-violating
effects [7].

It is not difficult to construct other invariants with
different transformation properties. We introduce ~k± as

~k± =
∑
π+

~p+ ±
∑
π−

~p− , k̂± = ~k±/k± , (4)

and then form

K± =
∑
π+,π−

(p̂+ × p̂−) · k̂± . (5)

The variables K± are P-odd; K+ is C-odd, and so CP-
even, while K− is C-even, and so CP-odd. The vector ~k+

measures the net flow of the charged pion momentum,
while ~k− measures the net flow of charge from pions.

We can also form

L =
∑
π+,π−

(p̂+ × p̂−) · ẑ
(
p2

+ − p2
−

p2
+ + p2

−

)
. (6)
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The variable L isP-odd, C-even, and CP-odd. It does not
require a net flow of momentum or charge to be nonzero,
although as for J, we do need to introduce an arbitrary
unit vector ẑ.

Similar to L, we can form [10]

M =
∑
π+,π−

(
p2

+ − p2
−

p2
+ + p2

−

)
. (7)

This variable is P-even, C-odd, and so CP-odd.
Besides using the vectors ~k±, another way of avoiding

the introduction of an arbitrary unit vector ẑ is to use
ordered pairs of pion momenta [8,9]; this procedure is
also used in the studies of spin-dependent effects in jet
fragmentation [6,7]. For any given pair of like sign pi-
ons, let ~p ′+ denote the π+ with largest momentum, so
|~p ′+| > |~p+|. This ordering is done in the frame in which
the observable is measured. Then we can form a triple
product as

T± =
∑
π+,π−

(p̂+ × p̂−) · (p̂ ′+ ± p̂ ′−) , |~p ′±| > |~p±| (8)

The variables T± are P-odd; T+ is C-odd and CP-even,
while T− is C-even and CP-odd. Besides the variables
T±, one can clearly construct other P- and C-odd ob-
servables from triplets, or higher numbers, of pions.

The metastable P-odd bubbles of ref. [1] were derived
within the context of a nonlinear sigma model, with a
U(3) matrix U , U†U = 1. The metastable vacua are sta-
tionary points with respect to the nonlinear sigma model
action, including the terms with two derivatives, a mass
term, and an anomaly term [11]:

L = f2
π

{
1
2
tr
(
∂µU

†∂µU
)

+ c tr
(
M(U + U†)

)
−a(tr ln U − θ)2

}
, (9)

where fπ = 93MeV is the pion decay constant, and θ
is the θ-parameter. In QCD, θ ≤ 10−9; we retain θ for
now, because it helps illuminate the nature of the P-
odd bubbles. M is the mass matrix for current quark
masses, M = diag(m1, m2, m3), and c is a constant.
In this paper we only need the ratios of these quanti-
ties: taking m1 = mu, m2 = md, m3 = ms, for the
up, down, and strange quark masses, respectively, we
take mu/md ≈ 1/2 and mu/ms ≈ 1/36. The anomaly
term is proportional to the topological susceptibility,
a ∼

∫
d4x 〈Q(x)Q(0)〉, where Q is the topological charge

density, Q = g2/(32π2)tr(GµνG̃µν) [11]. At zero temper-
ature, a is large, and the η′ meson is heavy, m2

η′ ∼ a.
We are interested in stationary points of the effective

lagrangian, L. In our previous work [1], for simplicity we
assumed that the stationary point is constant in space
and time, so that only the mass and anomaly terms enter
into the equations of motion. By a global chiral rotation,

a constant U field can be rotated into a diagonal matrix.
With Uij = exp(iφi) δij, the effective potential becomes

V (φi) = f2
π

(
−c
∑
i

mi cos(φi) +
a

2
(
∑
i

φi − θ)2

)
,

(10)

At a stationary point, the φi’s satisfy

c mi sin(φi) = a(φ1 + φ2 + φ3 − θ) . (11)

We are interested in solutions for which the φi 6= 0. It
is clear from the stationary point condition that nonzero
values of φ1 +φ2 +φ3 act like having a system with θ 6= 0.
With this insight, we set θ = 0 henceforth.

As the anomaly term in (10) arises from tr lnU ,
∑
i φi

is defined to be periodic modulo 2π. Consequently, when
the anomaly term vanishes, a = 0, then any φi equal to a
multiple of 2π is a solution, but by periodicity these are
all equivalent to the trivial solution, φi = 0. When a 6= 0,
however, Witten observed [12] that there may be nontriv-
ial solutions, in which some φi are near a multiple of 2π.
These are not equivalent to the trivial vacuum, and repre-
sent the spontaneous breaking of P and CP symmetries,
in exactly the same way as θ 6= 0 violates CP symmetry.
These solutions only arise when a is sufficiently small.
Based upon an analysis in the limit of a large number
of colors, we suggested that near the phase transition, a
becomes much smaller than its value at zero temperature
[1]. In a mean field type of analysis, with Td the temper-
ature of the deconfining transition, and t = (Td − T )/Td
the reduced temperature, we found that c(T ) ∼ 1/t1/2

and a(T ) ∼ t, so that the relevant ratio, a/c, scales as
a(T )/c(T ) ∼ t3/2. With the parameters of our model, we
find that P-odd bubbles appear once a/c is ∼ 1% of its
value at zero temperature. As a/c → 0, these solutions
satisfy φ1 ≈ 2π − φu, φ2 ≈ −φd, and φ3 ≈ −φs, where
muφu ≈ mdφd ≈ msφs. For example, in our model, P-
odd bubbles first appear when a/c < (a/c)cr ∼ .24. At
this point, φu ≈ 1.8, φd ≈ .5, and φs ≈ .03. We stress
that this is only the stationary point with minimal ac-
tion; for arbitrary integers n = ±1,±2 . . ., there exist
other stationary points with φ1 ≈ 2nπ, and φ2 ≈ φ3 ≈ 0,
with energy densities which grow like ∼ n2.

In terms of the underlying gluonic fields, the P-odd
bubbles arise from fluctuations in the topological charge
density, GµνG̃µν. It is easy to understand how a region in
which GµνG̃µν 6= 0 can produce a P-odd effect. Consider
the propagation of a quark anti-quark pair through a re-
gioin in which GµνG̃µν 6= 0; in terms of the color electric,
~E, and color magnetic, ~B, fields, GµνG̃µν ∼ ~E · ~B. If ~E
and ~B both lie along the ẑ direction, then a quark is bent
one way, the anti-quark the other, so that (~pq×~pq)·ẑ 6= 0,
where ~pq and ~pq are the three-momenta of the quark and
anti-quark, respectively. While physically intuitive, this
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picture does not allow us to directly relate this bend-
ing in the momenta of the quark and anti-quark to an
asymmetry for charged pions.

To do so, we again resort to using an effective la-
grangian. It is known that the effects of the axial
anomaly show up in the effective lagrangians of Gold-
stone bosons in two [11–14], and only two [15], ways.
One is through the anomaly term [11,12], ∼ a, which
we have already included. Besides that, however, the
axial anomaly also manifests itself in the interactions of
Goldstone bosons through the Wess-Zumino-Witten term
[13,14]. This term is nonzero only when the fields are
time dependent, which is why we could ignore it in dis-
cussing the static properties of P-odd bubbles. It cannot
be ignored, however, in computing the dynamical proper-
ties, and in particular the decay, of P-odd bubbles. The
Wess-Zumino-Witten term is manifestly chirally symmet-
ric when written as an integral over five dimensions,

Swzw = −i 1
80π2

∫
d5x εαβγδσ tr (RαRβRγRδRσ) , (12)

Rα = U†∂αU , but reduces to a boundary term in four
space-time dimensions. For U = exp(iu), when ∂αu� 1,

Swzw ≈
2

5π2

∫
d4x εαβγδ tr (u ∂αu ∂βu ∂γu ∂δu) . (13)

As discussed by Witten [14], the coefficient of the Wess-
Zumino-Witten term is fixed by topological considera-
tions, and is proportional to the number of colors, which
equals three.

In a collision, we envision that the trivial vacuum heats
up, a P-odd bubble forms, and then decays as the vac-
uum cools. Since this represents bubble formation and
decay, there is no net change in any topological num-
ber. Therefore, it is possible for a given event to contain
an excess of bubbles over anti-bubbles (or vice versa),
and thus to manifest true parity violation on an event by
event basis.

To estimate the magnitude of the Wess-Zumino-
Witten term for a P-odd bubble, and to understand its
effect on pion production, in (13) we can take three u’s
to be condensate fields, u ∼ φu,d,s, and two to be charged
pion fields, u ∼ π±/fπ . Suppose that the P-odd bubble
is of size R, with unit normal r̂ to the surface, and lasts
for some period of time. Because of the antisymmetric
tensor in (13), all three components of the condensate
field must enter. Schematically, we obtain

Swzw ≈
2

5π2

∫
dt

∫
d3r φu ∂rφd ∂0φs (~pπ+ × ~pπ−) · r̂

(14)

The time integral is
∫
dt ∂0φs ∼ δφs = φs, since φs = 0

in the normal vacuum. Similarly, the spatial integral is∫
d3r ∂rφd (~pπ+×~pπ−)·r̂ ∼

∫
dΩ
∫
R2dr ∂rφd (~pπ+×~pπ− )·

r̂ ∼
∫
dΩR2φd (~pπ+ × ~pπ−) · r̂, where

∫
dΩ represents an

integral over the direction of the normal, r̂. Further, as
the average momentum within the condensate is of order
pπ ∼ 1/R, the size of the bubble drops out as well. We
thus obtain a final result which is independent of the size
of the bubble, its lifetime, and its width:

Swzw ≈
2φuφdφs

5π2

∫
dΩ (p̂π+ × p̂π−) · r̂ (15)

We stress that it is only the decay of the P-odd bubble
which produces an effect, since the Wess-Zumino-Witten
term vanishes for a static field. Also, note that there
is only an observable asymmetry when φs 6= 0; this is
because in the absence of external gauge fields, there is
only a Wess-Zumino-Witten term for three, and not for
two, flavors. Within this model, Swzw is of similar form
for two charged kaons.

Using our previous estimates for the φ’s, φu ∼ φd ∼
1 and φs ∼ 10−2, we obtain an effect of order ∼
10−3. At the point where the P-odd bubble first ap-
pears, (a/c)cr, one can estimate that the energy density
within the bubble, relative to the ordinary vacuum, is
∼ 25n2MeV/fm3, where n is the winding number of
the bubble, n = 1, 2, 3... For a bubble ∼ 5fm in radius,
there are about ∼ 100n2 pions produced in the decay
of the bubble. If a fraction of the produced pions are
observed within a given kinematical window, and we as-
sume that all observed pions come from a portion of the
total bubble, then we recover the variable J, introduced
before in (3), and find an estimate of J ∼ 10−3. More-
over, we find a natural interpretation of the direction ẑ,
which was needed to define J, as the normal to the bub-
ble’s surface. One might wonder if the effect is diluted
by the necessity to average over uncorrelated pairs. This
does not happen, however, because the pion field within
the bubble is a classical field, so that all charged pions
are affected similarly.

Naively, one might expect that J would average to
zero over a single bubble. As the bubble is topological,
though, the direction in which charged pions are swept
is correlated with the sign of the condensate, so that a
single P-odd bubble can produce an effect in J ∼ 10−3.
Thus it is possible to distinguish between events in which
bubbles are produced, and those in which bubbles are
not, by measuring J.

At first it may seem surprising that our P-odd, C-even,
and CP-odd bubble produces a signal in J, which by
previous analysis is P-odd, C-odd, and CP-even. The
Wess-Zumino-Witten term is even under parity, which is
P0(−1)NB , where P0 is the operation of space reflection,
and NB counts the number of Goldstone bosons [14]. By
scattering off a P-odd bubble, we bring in an odd number
of condensate fields, J ∼ φuφdφs, (15), and so change the
(apparent) quantum numbers to be P-odd and CP-even.
This is only apparent, as scattering off an anti-bubble
will give the opposite sign of J.

3



We expect that bubbles will generate signals for the
other variables presented of similar magnitude. For ex-
ample, a single bubble will induce a net flow of pion
charge, and so contribute to K− ∼ 10−3, (5). Through
coherent scattering in a bubble, we would also expect
the variables K+, L, and T± to develop signals ∼ 10−3.
Further, hot gauge theories can also exhibit metastable
states which are P-even and C-odd [16]; these generate
signals for M [10].

The idea of exciting metastable vacua in hadronic reac-
tions is an old one [17], as is the idea that a collective pion
field can produce large fluctuations in heavy ion collisions
on an event by event basis [18]. We wish to emphasize
that there are certain topologically nontrivial configura-
tions of pion fields which produce signals that are odd
under the discrete symmetries of P, C, and/or CP. Any
observation of such violation of these discrete symme-
tries would be, prima facie, evidence of novel physics.
Whatever credence one ascribes to our detailed dynam-
ical model, the observables which we propose herein are
possible to measure [19], and we strongly encourage our
experimental colleagues to do so.
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