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1. Introduction

A recent publication [1] raises the interesting hypothesis that in high energy heavy
ion collisions, such as at RHIC there can be violations of parity (P) and time re-
versal (T) at the level of the strong interaction. Since that publication there have
been additional discussions at the RIKEN BNL theory center and further work by
Kharzeev [2] and Gyulassy [3].

Stimulated by these ideas, we have begun to explore the possible ways in which
such e�ects could be studied using the STAR detector at RHIC. The present note
is a progress report on these studies. We �nd that, at least as far as statistics is
concerned, the STAR program can �nd the P, T violating e�ects predicted by the
above considerations. The all important questions of experimental systematic errors
remain to be analyzed although we believe, based on past related experience, that
they will not turn out to be a \show stopper". The present report deals only with
these statistical aspects, although future work will soon be done to address these
experimental systematic errors. A number of Star collaborators have also expressed
interest in these studies and one of these, Jim Thomas, has established a STAR
Parity mailing list [4] and a WEB page for a STAR Parity discussion group [5].

An important aspect of the e�ects hypothesized is that they originate through a
spontaneous symmetry breaking mechanism. This can result in the e�ects ran-
domly varying from event to event resulting in an apparent lack of violation when
the \results" are summed over a large number of events. This aspect will be ex-
plained in some detail in the succeeding sections. This feature has the consequence
that the usual methods for detecting such a violation would fail to show an e�ect.
For example a parity odd operator would still have a zero expectation value when
evaluated for a large sample of events.

Not surprisingly, the parameters which do add, with the same sign, from event to
event are second order in the violation. In the past, to our knowledge, such param-
eters have never been experimentally studied. This raises the interesting possibility
that such P,T violating e�ects may have already occured in high energy collisions
e.g. at CDF, LEP or SLD. One purpose of the present note is to encourage the
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experimenters at these facilities to examine their existing data for such phenomena.

We have examined three di�erent variables as signatures of the e�ects. In the
sections below we present our studies of these three variables. Of these, only one,
the Gyulassy \twist tensor", appears to be useful, at least for the initial studies. In
the later sections of this report we focus mainly on the twist tensor but also add
our analyses of the other parameters for completeness.

In evaluating the size of the e�ects and the necessary sample size, we have utilized
a model of the e�ect which attempts to make realistic estimates of the combinatoric
dilution and the \observability" of the violation. This model is described in the
next section.
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2. The Simulation Model

The theory [1] predicts that a domain is formed in the collision volume which has

a �nite value of < ~E � ~B >, where the �elds are chromodynamic �elds. Such an
expectation value manifestly violates P and T. In an event, the violation shows
up via the e�ects these �elds have on the trajectories of (colored) quarks passing
through the domain. E�ects can also occur if pions pass through the domain walls
[2]. Kharzeev [2] has estimated these e�ects by estimating the impulse the �elds

would impart to a quark traversing the domain. He �nds the chromo ~E �eld would
yield an impulse of 30 MeV/c for a quark crossing the diameter of the domain. The

chromo ~B �eld would give a transverse impulse of the same value to a (relativistic)
quark traversing the diameter of the domain perpendicularly to the chromomagnetic
�eld.

These impulse values are minimum estimates and Kharzeev estimates that the actual
e�ects will lie between these and values with four times greater impulse.

The �nite chromo ~E � ~B arises in the theory when the collision volume undergoes
the phase transition to the hadronic from the partonic state. In each event, the
domain may be formed di�erently so that, for example, the chromo ~E points in a
di�erent random direction. However, a key point is that whatever the direction of
the chromo ~E, the direction of the chromo ~B is in the same direction.

In our simulation model, we place a spherical domain containing an electromagnetic
~E and electromagnetic ~B, parallel to one another but otherwise randomly oriented
in each event. We locate the domain with its center randomly chosen inside the
interaction volume but constrained so that the domain lies completely within the
interaction volume.

We choose the interaction volume to be spherical with a radius of 5 Fermi and
we choose the domain to have a radius of 2 Fermi. Particles are then generated
with a uniform distribution throughout the interaction volume. The particles are
generated either exactly as HIJING predicts or in a similar but simpler fashion which
will be detailed below. The particles are tracked through the interaction volume.
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If they traverse the domain, the impulses they receive from the ~E and ~B �elds are
calculated from the Lorentz force they experience taking the geometric e�ects into
account (track length in the domain, orientation with respect to the �elds). The

magnitudes of the electromagnetic ~E and ~B are chosen to give the same impulse to
a charge 1 particle as the chromo �elds would have given to a quark.

The choice of a 5 Fermi radius is meant to be a \typical" value for central RHIC
collisions. The choice of 2 Fermi for the domain radius comes from discussions with
theoretical colleagues who felt that if the domains are formed at all they will at least
have this size.

As noted above, the kinematic parameters of the generated particles are chosen
according to two di�erent schemes which are enumerated below. For both schemes,
the particle kinematic parameters after the initial choice are \smeared" to represent
experimental resolution. We smear the x; y, and z momentum components (without
correlation) in a Gaussian fashion with standard deviations �px=p = �py=p =
�pz=p = :02. In addition, because of the acceptance limitations of the STAR
detector we generate particles inside a limited range of y and pt. These are slightly
di�erent for the two types and are listed below.

For both schemes, after the tracks are generated and smeared the �nal accepted
transverse momentum must be greater than 250 MeV and the space angle must be
greater than 22�.

1. In the �rst scheme we just take the HIJING generated particles for zero im-
pact parameter. Because of technical considerations (mostly disk space), this
approach is limited (for the present time) to a sample size of 40,000 events.
For the particles saved, before smearing, we limit the sample to pt > 150MeV
and space angle � > 15�. To \simulate" the loss of e�ciency for identifying
tracks which are nearly parallel, we also require a minimum opening angle
(space) of greater than 10 mr, �open > 10 mr.

For reference, some of the characteristics of the HIJING events are shown in
�gure 2.1. For simplicity, just the de
ections due to the imbedded magnetic
�eld are shown. The histogram describes the de
ections in the P,T violating
domain for those particles that cross the domain. All particles which do not
cross the domain have zero de
ection and are not plotted. In the full sim-
ulations, of course, the vector sum of the magnetic and electric impulses is
properly calculated and the de
ections calculated accordingly.

2. In the \fast" simulation studies we generate� 1000 positive pions and � 1000
negative pions, each chosen independently with rapidity and transverse mo-
mentum values selected so as to reproduce the rapidity and transverse momen-
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Figure 2.1: The four panels show for the HIJING events: the number of positive
and negative tracks per event (dashed line for negative), the number of pairs per
event, the de
ection for particles passing through the P,T violating domain due to
the \imbedded" magnetic �eld for a domain with 3� the minimum de
ection [2],
and the distribution of path lengths through the P,T violating domain (in units of
the maximum path length 2R).
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tum spectrum predicted by HIJING for all pions. We assume that the rapidity
and transverse momentum are uncorrelated here so y and pt are chosen inde-
pendently. Here the saved particles before smearing must have pt > 250MeV
and y between �1:6. This makes a small error in that it neglects particles
with pt below 250 MeV which after smearing would have pt > 250MeV . The
e�ect is, however, negligible and this procedure is convenient. Here also we
require a minimum opening angle of 10 mr, �open > 10 mr.

We show some characteristics of the events generated with this approach,
�gure 2.2.
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Figure 2.2: The four panels show for the fast simulation events (\arti�cial" events):
the number of positive and negative tracks per event, the number of pairs per
event, the de
ection due the the \imbedded" magnetic �eld for a domain with 3�
the minimum de
ection [2], and the distribution of path lengths through the CP
violating domain (in units of the maximum path length, 2R).
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3. The Twist Tensor

Gyulassy [3] has proposed a variable, the twist tensor. We use a somewhat di�erent
normalization of the tensor (which does not change its transformation properties)
and has the advantage of limiting the maximum magnitude to unity. Speci�cally,
we de�ne Tij via:

Ti;j = (
1

Npairs

)
X
pairs

~P+ � ~P� � n̂i

j ~P+ j j ~P� j
( ~P+ � ~P�) � n̂j

j ~P+ � ~P� j
(3.1)

In (3.1) ~P+ and ~P� refer to the momenta of the positively and negatively charged
particles and n̂i refers to the unit vector along the x, y, or z axis (axes labeled by i,
j). In all of the following we use the convention that the z axis is along the beam
direction.

Gyulassy [3] points out that

TR(Ti;j) = Txx + Tyy + Tzz = 0 (3.2)

From which
Tzz = �(Txx + Tyy) (3.3)

The components of Ti;j are odd under the parity transformation (P) and even under
charge conjugation (C) and thus are odd under T (given the TCP theorem). Their
average values can be thought of as measures of the correlation between the hand-
edness bias induced by the magnetic �eld and the charge-momentum bias induced
by the electric �eld. Thus the e�ect of the P,T violation should have the same sign
on a given component of Ti;j in each event since the sign of the e�ect depends on

the relative orientation of ~E and ~B, which is always the same.

Furthermore, if P and T are conserved in the interaction, we would expect the
average value of any component of Ti;j to be zero when averaged over a large number
of events.
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In addition, if there is azimuthal symmetry around the beam direction, Txy and Tyx

must have the same average value.

This is veri�ed for our simulation in the case of the fast simulation but for an unkown
reason (at present) it is not quite true for the HIJING generated events.

3.1 HIJING Results

The next series of �gures show the results for the HIJING events. Figure 3.1 shows
the distrubutions for the 9 elements of Ti;j for 1000 HIJING events.

Figure 3.2 shows the distributions in the average values of the elements of Ti;j for
an ensemble of 400 subsamples, each of 100 events. In other words, Ti;j is averaged
over all the pairs in a subsample of 100 events, and these subsample averages are
histogrammed. In this �gure, the value of the parity violating �elds are chosen to
give a de
ection of 3� the minimum de
ection [2].

From �gure 3.2 we see that the relation 3.3 is satis�ed. We also see statistically
signi�cant P,T violation in the mean value of the Tzz distribution (and of course in
the Txx and Tyy distributions, given 3.3.

To see how the e�ects depend on the values of the P, T violating ~E and ~B �elds we
show �gure 3.3 which is the same as �gure 3.2 except that the P,T violating �elds
are set to zero.

Here we see that all elements of Ti;j except Tx;y and Ty;x suitably average to zero, as
they should. Furthermore, for azimuthal symmetry around the beam axis (which is
assumed in HIJING) the x and y directions are equivalent so Tx;y should equal Ty;x.
The fact that a nonzero mean for Tx;y obtains and that the distributions of Tx;y and
Ty;x are not the same is not understood at this time. It would seem to be a bug in
HIJING (or in the way we are using it!).

In any case, the e�ect does properly vanish for the diagonal elements. As we shall see,
in the fast simulation study this discrepancy does not occur and the P,T violating
e�ects are similar for the diagonal elements.

For the present we assume that the Tx;y and Ty;x results are not correct with the
HIJING events, but that the diagonal elements are good measures of the size of the
e�ect we could expect.

Figure 3.4 shows a summary of the results for the diagonal elements.

From �gure 3.4 we see that a statistically signi�cant observation of the minimum
e�ect could just about be made with 40,000 events (assuming HIJING). The mini-
mum e�ect shifts the peak by about half its standard deviation. An additional test
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Figure 3.1: The distribution of the elements of Ti;j for 1000 HIJING events.
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Figure 3.2: The distributions of the Ti;j averaged over subsamples of 100 events.
Here the P,T violating �elds are chosen to give de
ections of 3� the minimum
expected deviation.
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Figure 3.3: The distributions of the Ti;j averaged over subsamples of 100 events.
Here the P,T violating �elds are chosen to be zero.

16



Figure 3.4: The average values of the diagonal elements of Ti;j for various factors of
the minimum P,T violating �elds (in terms of the minimum value). The horizontal
line shows the standard deviation of the width of the distribution of averages of
1000 event subsamples, calculated for a total sample of 40,000 events. The vertical
lines on the points indicate the standard deviations of the averages.
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for the correctness of the measurement will be the check of equation 3.3.

However, the Txx and Tyy components also contain additional information on the
P,T violation. The diagonal components of Ti;j have some correlation so to study the
statistical advantage of using all three, we have plotted the quantity Txx+Tyy�Tzz.
This is shown in �gure 3.5.

From �gure 3.5 we see that the e�ect is substantial. Statistically, the P,T violation
shows up at more than 4 standard devistions from zero.

From �gures 3.4 and 3.5 we conclude that statistically, an event sample of 40,000
central events has a signi�cant ability to test the theory of reference [1]. The size
of the e�ect would be around 10�5 in terms of the average values of relevant twist
tensor components.

3.2 Fast Simulation Results

We have studied the twist tensor behavior for the events generated by our fast
simulation (as described above in section 2). The next series of �gures are the
analogues of the ones shown in the previous section. With the fast simulation we
can analyze much larger event samples. However, to compare with the HIJING
results we show here results calculated with the same number of events (40,000)
as we had for the HIJING studies. As can be seen from the plots, this number is
actually su�cient to establish the statistical requirements of the measurement. The
larger samples calculated agree with the conclusions drawn from the 40,000 event
summaries.

Figure 3.6 shows the distribution of the nine components of Ti;j for 1000 fast simu-
lation events (so-called arti�cial events).

Figure 3.7 shows the distribution of the average values of the components of Ti;j for
subsamples of 100 events. The total number of events is 40,000. For this �gure the
magnitude of the P,T violating �elds has been taken to be 3� the minimum value.

As we did for the HIJING events, we test the simulation by calculating the average
values of Ti;j for the case with no P,T violating �elds. These results are shown in
�gure 3.8.

We see that for these fast simulation events for zero P,T violating �elds, each com-
ponent of Ti;j has a zero average value (within statistics for the calculation). This
supports the hypothesis that there is some error in the HIJING simulation which
shows nonzero < Tx;y > and < Ty;x >.

The e�ect of the P,T violating �elds is somewhat smaller for the fast simulation
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Figure 3.5: The average values of the sum Txx + Tyy � Tzz for various factors of
the P,T violating �elds (in terms of the minimum value). The horizontal line shows
the width of the distribution of averages for 1000 event subsamples, calculated for
a total sample of 40,000 events. The vertical lines indicate the standard deviations
of the averages.
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Figure 3.6: The distribution of the nine components of Ti;j for 1000 fast simulation
events.
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Figure 3.7: The distribution of the averages of the components of Ti;j for 100 event
subsamples of the fast simulation events. The total number of events is 40,000. The
P,T violating �elds are 3� the minimum value.
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Figure 3.8: The distributions of the Ti;j averaged over subsamples of 100 events,
with the P,T violating �elds set to zero. The total number of events is 40,000.
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events as compared to the HIJING events (for the diagonal components). The
e�ect is summarized in �gure 3.9 which shows the average values of the diagonal
components of Ti;j for subsamples of 1000 events, for a total number of 40,000 events,
for di�erent magnitudes of the P,T violating �elds.

Comparing �gure 3.9 with �gure 3.4 we see that the e�ect of the P,T violating �elds
are somewhat less in the case of the fast simulation events. The minimum value of
the �elds produces e�ects in Tzz which are about half of the width and about 2.5
standard deviations from zero. The combination of components Txx+ Tyy �Tzz can
be expected to show a larger e�ect, as was the case for the HIJING events. Figure
3.10 shows the result for this variable for the fast simulation events.
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Figure 3.9: The average values of the diagonal elements of Ti;j for various factors of
the P,T violating �elds (in terms of the minimum value). The horizontal line shows
the standard deviation of the width of the distribution of averages of 1000 event
subsamples, calculated for a total sample of 40,000 events. The vertical lines on the
points indicate the standard deviations of the averages.
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Figure 3.10: The average values of the sum Txx + Tyy � Tzz for various factors of
the P, T violating �elds (interms of the minimum value). The horizontal line shows
the width of the distribution of averages for 1000 event subsamples, calculated for
a total sample of 40,000 events. The vertical lines indicate the standard deviations
of the averages.
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4. Summary, Twist Tensor Studies

The di�erence between the fast simulation and HIJING can be viewed as typical of
the sensitivity of the measurement to the details of the events that will be produced
in central RHIC collisions. We conclude that samples of 40,000 events are close to
what is required from a statistical point of view. We also conclude that e�ects in the
twist tensor components can be expected at the few �10�6 to 10�5 level. From this
we can conclude that the experimental biases which can create a fake e�ect must
be controlled at the 10�6 level or better (in the components of the twist tensor).

In a future note we will analyze the question of experimental biases which could
create a fake e�ect.
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5. Kharzeev \Triple Product"

Reference [1] proposes the variable J , de�ned via:

J = (
1

Npairs

)
X
pairs

~p+ � ~p�
j ~p+jj ~p�j � �̂ (5.1)

In equation (5.1) �̂ is a unit vector in either the x, y, or z direction. As can be seen,
J is odd under P but even under C (charge conjugation). If the initial state were
an eigenstate of C, the fact that C is conserved (as it is in the theory hypothesized
in [1]) would lead to the vanishing of J even if P were violated in the interaction.
However, the initial state is not an eigenstate of C and J can show e�ects of the P
violation of [1].

In equation (5.1) the sum extends of all pairs in a given event. We will later extend
the de�nition to include the sum over all pairs in a given size subsample of events.
But until further notice, we take the sum over all pairs in a given event.

The symmetries of the interaction are important in using the variable J . Because we
assume a collision between identical heavy ions, all particle kinematic distributions
must be for/aft symmetric. That is, if � is the space angle of a particle with respect
to one of the beams and dN

d�d�
is the number of a given particle type per unit space

angle � per unit azimuthal angle �, then

dN

d�d�
(�; �) =

dN

d�d�
(� � �; �) (5.2)

Furthermore, we asume that the beam ions are either spinless or unpolarized. There-
fore there will be azimuthal assymettry around the beam axis (which in this note
we always take to be the z axis).

dN

d�d�
(�; �) =

1

2�

dN

d�d�
(�) (5.3)
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These two symmetries lead to the vanishing of J , if it is simply calculated as de�ned.
We now demonstrate this and show how to modify the calculation of J to avoid this
cancellation.

Let us take the case of �̂ = x̂ and an e�ective ~B �eld also in the x̂ direction. Other
cases are treated in an exactly similar fashion.

Let the component of ~p+ in the y; z plane be At and the component of ~p� in the y; z
plane be Bt. Let the projected angle of ~p+ in the y; z plane be �+ and the projected
angle of ~p� be ��.

The e�ect of the (P violating) e�ective ~B �eld will be to rotate the projections of
~p+ and ~p� in the y; z plane by amounts we designate as �+ and �� respectively.
Here we have taken �+ and �� to both be positive quantities. The proper directions
of rotation will be taken into account by appropriately adding or subtracting the
magnitudes. Of course, it doesn't matter. Any convention, consistently used would
su�ce. That is, if the positive and negative particles are produced at �+ and ��,
they will be observed (after passing through the P violating �eld domain) at

�0+ = �+ + �+

and
�0
�
= �� � ��

Consider one (arbitrary) choice of At and Bt. The value of J which will be observed,
which we call J 0, will be given in terms of the original production angles �+, ��, and
the rotations �+ and �� by:

J 0 = AtBtsin(�+ � �� + �+ + ��)

The mean value of J 0 is obtained by integrating J 0 multiplied by the probability of
producing the positive particle at �+, P (�+) , times the probability of producing the
negative particle at ��, P (��).

< J 0 >=
Z
AtBtsin(�+ � �� + �+ + ��)P (�+)P (��)d�+d�� (5.4)

We assume that the positive and negative particles are produced in an uncorrelated
fashion. Although this may not (indeed, will not) be strictly true, the large particle
production at RHIC means that it is almost true. If we have an e�ect which van-
ishes when the positive and negative particles are uncorrelated, the e�ect is almost
certainly too small to be visible.
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Now the for/aft symmetry and the azimuthal symmetry tells us that the distribution
of particles will satisfy: in the y; z plane, i.e.

dN

d�+
(�+) =

dN

d�+
(� + �+)

Because dN

d�+
(�+) is modulo 2�, it follows that

dN

d�+
(�+) =

dN

d�+
(�+ � �)

A similar relation obviously holds for dN

d�
�

(��) as well.

Remembering that the probability P (�+) is proportional to dN

d�+
(�+), we see that

each contribution to the integral in (5.4) at �+ � �� + �+ + �� is matched by an
equal in magnitude but opposite sign contribution from �+��+ ��+ �++ ��. The
integral thus vanishes. A similar analysis holds for ��, so we conclude:

To see the e�ects of the P violating ~B �eld we need to change the sign of the triple
product whenever �+ and �� are of opposite sign.

In the simulations which will be described next this has been done. As will be seen
the simulations verify the above analysis.

These simulations were all done with the (so called) fast simulation events. This
was necessary to obtain adequate statistics. The tracks were generated as explained
in section 2. However, there are two ways we have used the tracks to make pairs.
In the �rst of these, the uncorrelated type, we just pair each positive track with a
single negative track, with random association. No track appears in more than one
pair. The number of pairs is equal to the number of tracks of whichever sign had
the least number of tracks.

The second method, so called correlated sample, proceeded as follows. A positive
track is chosen randomly, then a negative \mate" is chosen at random from the set
of generated negative tracks. This process is repeated for a total of 10 times the
number of positive tracks. However, the resulting pair is discarded if any track in
the pair has appeared three times in previously chosen pairs. As it happens, this
restriction eliminates only a small fraction of the pairs, so nearly 10,000 pairs are
generated in a typical \correlated" event.

At this point we extend the de�nition of J to include all pairs created in a subsample
of a given number of events.

The statistic which we use to describe the behaviour of J , is the fraction of J values
which are positive. If P were conseved, the expectation value of J would be zero
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and there would be as many positive triple products as negative. We consider the
fraction of positive triple products minus 0.5. If the individual triple products are
statistically independent, and P is not violated, the number of positive values of J
should have mean of 1=2 the total number of products and a standard deviation
of
p
Npq, where N is the total number of events and p and q are the probabilities

of positive and negative values respectively. The mean value of this statistic for
a subsample of Nsub events should thus be distributed with a standard deviationp
Nsubpq. Of course for no P violation p = q = 0:5.

For pairs which are correlated, the standard deviation (often denoted as \width"
here) can be di�erent.

Figure 5.1 shows, for uncorrelated pairs, the distribution of the fraction of J values
which are positive less 0:5 in 10 event subsamples, for two cases. The �rst, has no P
violating ~B �eld and the second has the standard \minimum" value (as de�ned in
section 2) always pointing in the x̂ direction. Although this latter case is unphysical,
as the �eld would point in a random direction in each event, this type of plot is useful
in understanding the behaviour. In �gure 5.1 there are 106 events in the uncorrelated
sample and 60; 000 events in the correlated sample.

We see that the means of the three variants of J are all zero when there is no �eld.
When the minimum �eld is present (always in the x̂ direction), Jx shows a non zero
mean value while Jy and Jz do not. This is just what would be expected from the
de�nition of J and the direction chosen for the �eld. It should be noted that if we
had not reversed the sign of J whenever �+ and �� had opposite signs, even the
Jx distribution would have been centered at zero in agreement with the analysis
presented above.

Now we consider the more realistic case where the P violating �eld points in a
random direction in each event. Since on the average the �eld points equally in all
directions, we would not expect a shift in the mean value of J . That is, in an overall
average sense there is no P violation. However, the fact that in each event the values
of the triple products are slightly shifted by the P violating �eld means that the
width of the J distributions might show an e�ect. There are two di�culties with
this measure of P violation. The �rst, as we shall see, is that the e�ect on the width
is rather miniscule. This is due to the fact that for each event, the contribution to
the width from the P violating �eld adds in quadrature with the statistical width
(
p
Npq).

The second is that we do not know, a priori, what the width should be in the absence
of P violation.

The size of the e�ect is illustrated by �gure 5.2 which shows the distributions of the
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Figure 5.1: The distribution of the fraction of J values in 10 event subsamples, for
uncorrelated pairs, which are positive. The left hand plot for no P violating �eld
and the right hand plot for a �eld of 3� the minimum value (see section 2) always
pointing in the x̂ direction.
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fraction of J values, for 1000 event subsamples, which are positive. Results with
uncorrelated and correlated pairs are shown. To amplify the e�ect, the value of the
P violating �eld has been chosen as 3� the minimum value.

As expected, the distributions all peak at zero. The widths of the correlated and
uncorrelated samples are rather similar despite the fact that there are about 10�
more pairs per event in the correlated sample.

Finally, using our model of the phenomenon we have calculated the e�ect on the
width of varying the strength of the P violating �eld. By comparing the width with
zero �eld with the width with, say, the minimum �eld, we can estimate the size of
the in
uence on the width caused by the P violating �eld. The results are shown
in �gure 5.3. Figure 5.3 shows, for both correlated and uncorrelated samples, the
width calculated with varying values of the P violating �eld.

For the uncorrelated sample 106 events were used and for the correlated sample
200 � 103 events were used. There are of course, approximately 10� as many pairs
per event in the correlated sample as in the uncorrelated one. Figure 5.3 shows
the width of the distribution of the fraction of J (with x̂, ŷ, and ẑ) for a 1000
event subsample which are positive. The horizontal lines show the expected width,
assuming the individual triple products are statistically independent.

For the uncorrelated sample there is essentially no e�ect at a level detectable with
106 events. The width, as expected, is in agreement with the theoretical value.
For the correlated sample, there is a slight dependence, not quite signi�cant at the
200�103 level. The width is considerably larger than expected from the statistically
independent assumption. This is reasonable since many of the pairs in the correlated
sample share a common track and hence are not statistically independent. Of course,
to simulate the e�ect which might be observed, the direction of the �eld is chosen
randomly for each event.
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Figure 5.2: The distribution of J values for 1000 event subsamples for the case in
which the P violating �eld is 3� the minimum value and is randomly oriented in
each event. The left plots show the results for uncorrelated pairs and the right plots
for correlated pairs. The direction of the �eld is chosen randomly in each event.
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Figure 5.3: The values of the width of the distribution of the fraction of J values
which are positive as a function of the P,T violating �eld. The three types of J
are shown as indicated on the �gure. Both correlated and uncorrelated samples
are shown. The horizontal lines show the expected widths if the individual triple
products were statistically independent. Of course, the direction of the P violating
�eld is chosen randomly in each event.
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6. Summary of The Kharzeev \ Triple Product"

Parameter

The results of the previous section show that the Kharzeev triple product parameters
are not promising parameters for the study of the possible P, T violating e�ects.
This is because the �eld points in a di�erent direction in each event so the only way
to use a large sample of events is to seek e�ects on the widths of J distributions.
This in turn has the serious di�culty that, at least at the start of RHIC studies, we
have no way of estimating what the widths should be in the absence of P,T violating
e�ects. Furthermore, the e�ects on the width appears to be rather minor.
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7. JJ Parameter

In an attempt to �nd a parameter which is additive from event to event, we have
examined a parameter we call JJ . In a given event there is a greater probability
that an individual triple product will have given sign. Thus for the pairs in a single
event we are more likely to �nd ++ or �� than we are to �nd +� or �+.
This led us to de�ne the parameter JJ de�ned as follows:

JJ = (
1

Ndoublets

)
X
i;j

(
~p+ � ~p�
j ~p+jj ~p�j � �̂)i(

~p+ � ~p�
j ~p+jj ~p�j � �̂)j (7.1)

In equation (7.1) theNdoublets refers to the number of pairs of pairs used in calculating
the parameter JJ. The choices are made in two di�erent ways which will be explained
below.

The parameter JJ is additive but it has the disadvantage that it is not a P odd
parameter so it may have a nonzero value even if P is not violated. However, it may
be possible to estimate what JJ would be if P were not violated, so it might turn
out to be a useful parameter and we study it with our simulation.

For all of these studies we use the fast simulation events. In the so-called uncorre-
lated choice, we take the pairs generated in the uncorrelated fashion as explained in
section 2 (no pair contains a track which occurs in any other pair, i.e. pairs have no
tracks in common). For these pairs we form pair doublets with no doublet having
a pair which occurs in any other doublet. So if we had 1000 positive tracks and
1000 negative tracks, we would form 1000 uncorrelated pairs. Of these we would
then form 500 uncorrelated pair doublets. These doublets are then used to form
the JJ parameter for the event or for a subsample of such events. The Ndoublets is
the number of doublets used, either the number in the event or the number in the
subample of events as the case may be.

In the so-called correlated sample we start with the correlated pairs (as discussed
in section 2). Then in a random fashion we try to form a number of pair doublets
of 10� the number of pairs but exclude duplicate doublets. We thus typically form
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somewhat fewer than 105 such doublets per event. These doublets are then used to
form the JJ parameter for the event or for the subsample of events.

As we did for the Kharzeev triple product, we use as a statistic, the fraction of JJ
which are positive minus 0.5. Since JJ is not P odd this can have a nonzero mean
for a subsample. Although of course, for the uncorrelated sample it should have a
zero mean.

Figure 7.1 shows the distribution of this statistic for 1000 event subsamples for the
correlated and uncorrelated cases for the P violating �eld taken at 3� the minimum
value. The �eld is, of course, chosen to be in a random direction in each event.

Figure 7.2 shows the mean values of the fraction of positive JJ (minus 0.5) as a
function of the magnitude of the P violating �eld for 1000 event subsamples. For
the oncorrelated case a total of 106 events were used and for the correlated case
200 � 103 events were used.

We can see that the e�ect is very small. In the uncorrelated case, the e�ect is not
visible with 106 events. For the correlated case the mean value is shifted from zero
but as seen from �gure 7.2 it is mostly due to the correlations between the particles
in the event and only slightly due to the P violating �eld. This is shown by the
small value of the shift of the parameter with the magnitude of the P violating �eld.
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Figure 7.1: The distribution of the fraction of JJ which are positive minus 0.5,
for 1000 event subsamples, for the correlated and uncorrelated cases (see text for
further explanation) The direction of the P violating �eld is chosen randomly in
each event.
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Figure 7.2: The mean value of the fraction of positive JJ (minus 0.5) , for 1000
event subsamples, as a function of the magnitude of the P violating �eld for the
correlated and uncorrelated cases. The direction of the P violating �eld is chosen
randomly in each event.
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8. Summary of the JJ Parameter Studies

Unfortunately, we conclude that the JJ parameter, like the Kharzeev triple product
parameter, is not a promising parameter to use for the search for P, T violating
e�ects in the RHIC collisions.
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