
Draft Draft Draft Draft Draft Draft Draft Drat Draft Draft Draft Draft Draft Draft

AMS Extensions
Version 2.0

Andrew Hanushevsky
Stanford Linear Accelerator Center

7/15/98

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

ii

Acknowledgements

Urs Bertschinger, Objectivity Inc.
for co-designing the initial oofs() interface and modifying AMS v4 to use it.

Karl Quackenbush, Objectivity Inc.
for suggested improvements and modifying AMS v5 to use it.

Marcin Nowak, CERN
for invaluable debugging assistance and helpful modifications.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

iii

1 Introduction ..5
1.1 Acronyms ..6
1.2 Definitions ...6
1.3 Limits .. 7
1.4 Data Types...7
1.5 Data Structures ..7
1.6 Server-Side oofs Interface Definition ...9
1.7 Client-Side Security Interface Definition..11
1.8 Client-Side Opaque Information Interface Definition...11
2.1 oofsGetFileSystem()..13

2.1.1 oofs_close() ...14
2.1.2 oofs_closedir() ..15
2.1.3 oofs_exists() ..16
2.1.4 oofs_getmode() ...17
2.1.5 oofs_getsize() ..18
2.1.6 oofs_open() ...19
2.1.7 oofs_opendir() ..21
2.1.8 oofs_read()..22
2.1.9 oofs_readdir()...23
2.1.10 oofs_remove()...24
2.1.11 oofs_rename()...25
2.1.12 oofs_set()...27
2.1.13 oofs_sync()..29
2.1.14 oofs_truncate() ...30
2.1.15 oofs_write()...31

3 Generic Authentication Protocol...33
3.1 Application Steps in GAP ...34
3.2 OCSK Steps in GAP ...35
3.3 AMS Steps in GAP ...35

3.4.1 oofs_Register_Security() ...37
3.4.1.1 *CreateSec() ..38
3.4.1.2 *DeleteSec() ..39
3.4.1.3 *GetCred_D()..41
3.4.1.4 *GetCred_M() ...43
3.4.1.5 *AuthCred()...45
3.4.1.6 *Crypt() ...47
3.4.1.7 *FreeBuff()..49

4 Opaque Information Protocol..51
4.1 Application Steps in OIP...51
4.2 OCSK Steps in OIP ...52
4.3 AMS Steps in OIP ...52

4.3.1 oofs_set_info() ..53
5 Defer Request Protocol ...55

5.1 AMS Steps in DRP..55
5.2 OCSK Steps in DRP..56

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

iv

6 Request Redirection Protocol ...57
6.1 AMS Steps in RRP..59
6.2 OCSK Steps in RRP..60

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

5

1 Introduction

This document describes Advanced Multithreaded Server (AMS) extensions
providing:

• a general file system interface, oofs(),
• authentication through a Generic Authentication Protocol (GAP),
• client-initiated transfer of opaque information through an Opaque

Information Protocol (OIP),
• variable request timeout through a Defer Request Protocol (DRP), and
• dynamic load balancing through a Request Redirection Protocol (RRP).

The relationships between these components are shown in the following figure.

Major changes occur in the AMS. Prior to the changes, the AMS was distributed
as a single module. The new AMS is distributed as two linkable components:

• the core AMS functions, and
• the generic file system interfaced via an oofs() interface.

These two components are then linked to two site selectable components:
• a target file system (e.g., Unix, HPSS, Veritas, etc.), and
• a complimentary security service that provides client authentication.

A functional AMS is built by linking the appropriate four components. The
default AMS is normally distributed as an executable module linked to use the
native Unix File System (UFS) and a null security service.

The client-side components are relatively straightforward. The Objectivity Kernel
internally handles DRP and RRP. Client-supplied programs to transmit
authentication and opaque information via registered callback functions
implicitly use the GAP and OIP components. Hence, the Kernel is distributed as
a single linkable component, as before.

Objectivity Client
Application

Security
System

Objectivity
Kernel

AMS

Generic
File System

Target
File System

Security
System

AMS
Protocol
+DRP
+GAP
+OIP
+RRP

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

6

1.1 Acronyms

AMS Advanced Multithreaded Server
AMSC Advanced Multithreaded Server Collective
DRP Defer Request Protocol
GAP Generic Authentication Protocol
OCSK Objectivity Client-Side Kernel
OOFS Object Oriented File System
OIP Opaque Information Protocol
RRP Request Redirect Protocol

1.2 Definitions

// Parameter to the oofs_Open() function to set access mode
#define OOFS_S_IRWXU 0000700 // Owner: read, write, execute perm
#define OOFS_S_IRUSR 0000400 // Owner: read permission
#define OOFS_S_IWUSR 0000200 // Owner: write permission
#define OOFS_S_IXUSR 0000100 // Owner: execute/search permission
#define OOFS_S_IRWXG 0000070 // Group: read, write, execute perm
#define OOFS_S_IRGRP 0000040 // Group: read permission
#define OOFS_S_IWGRP 0000020 // Group: write permission
#define OOFS_S_IXGRP 0000010 // Group: execute/search permission
#define OOFS_S_IRWXO 0000007 // Other: read, write, execute perm
#define OOFS_S_IROTH 0000004 // Other: read permission
#define OOFS_S_IWOTH 0000002 // Other: write permission
#define OOFS_S_IXOTH 0000001 // Other: execute/search permission

// Parameter to the oofs_Open() function to set access type
#define OOFS_O_RDONLY 0 // open read/only
#define OOFS_O_WRONLY 1 // open write/only
#define OOFS_O_RDWR 2 // open read/write
#define OOFS_O_CREAT 0x100 // open creating the file

// Parameter to the oofs_set_info() function to describe handling
#define OOFS_SOI_ALWAYS 0 // keep resending information
#define OOFS_SOI_ONCE 1 // send information only once

// Valid return values from oofs() that return an integer
#define OOFS_OK 0 // Return code -> All is well
#define OOFS_ERROR -1 // Return code -> Error occurred
#define OOFS_READDIR_LAST –2 // Return code -> No more entries

// Direction of encryption (i.e., seal or unseal)
#define OOFS_Seal 0 // Encrypt buffer
#define OOFS_UnSeal 1 // Decrypt buffer

// Current version of the oofs() interfaces
#define OOFS_FILE_SYSTEM_DESC_VERSION 1
#define OOFS_SEC_SYSTEM_DESC_VERSION 1

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

7

1.3 Limits

// Longest filename returned by interface (including trailing null)
#define OOFS_MAX_FILE_NAME_LEN (1024+1)

// Longest error message string returned (including trailing null)
#define OOFS_MAX_ERROR_LEN (255+1)

// Maximum number of bytes of opaque information that can be set
#define OOFS_MAX_INFO_LEN 4096

1.4 Data Types

typedef char oofsFileNameBuf[OOFS_MAX_FILE_NAME_LEN];
typedef char oofsErrorBuf[OOFS_MAX_ERROR_LEN];

typedef ooInt32 oofsFileCreateMode;
typedef void *oofsFileDesc;
typedef ooInt32 oofsFileOpenMode;
typedef void *oofsReadDirDesc;
typedef int oofsStatus;
typedef ooInt32 oofsXferSize;
typedef void *oofsSecHandle

1.5 Data Structures

struct oofsFileOffset // 64-bit file offset
{

ooUInt32 high_offset;
ooUInt32 low_offset;

};

struct oofsCredStruct // Server/Client Credentials
{

ooUInt32 cred_len;
char *cred_data;

);

struct oofsErrorStruct // Error information structure
{

ooUInt32 code;
oofsErrorBuf message;

};

struct oofsInfoStruct // Server/Client Information
{

ooUInt32 info_len;
char *info_data;

};

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

9

1.6 Server-Side oofs Interface Definition

struct oofsFileSystemDesc // The oofs() interface definition
{

int version; // OOFS_FILE_SYSTEM_DESC_VERSION

oofsFileDesc (*open)(const char *FileName, // FD-type
oofsFileOpenMode,
oofsFileCreateMode,
oofsInfoStruct &,
oofsCredStruct &,
oofsErrorStruct &);

int (*close)(oofsFileDesc,
oofsCredStruct &,
oofsErrorStruct &);

oofsXferSize (*read)(oofsFileDesc,
oofsFileOffset,
char *buffer,
oofsXferSize buffer_size,
oofsCredStruct &,
oofsErrorStruct &);

oofsXferSize (*write)(oofsFileDesc,
oofsCredStruct &,
oofsFileOffset,
const char *buffer,
oofsXferSize buffer_size,
oofsCredStruct &,
oofsErrorStruct &);

int (*sync)(oofsFileDesc ,
oofsCredStruct &,
oofsErrorStruct &);

int (*truncate)(oofsFileDesc,
oofsFileOffset,
oofsCredStruct &,
oofsErrorStruct &);

int (*getsize)(oofsFileDesc,
oofsFileOffset &,
oofsCredStruct &,
oofsErrorStruct &);

int (*getmode)(oofsFileDesc,
oofsFileCreateMode &,
oofsCredStruct &,
oofsErrorStruct &);

int (*remove)(const char *FileName, // Misc
oofsCredStruct &,
oofsErrorStruct &);

int (*rename)(const char *FileName1,
oofsCredStruct &,
const char *FileName2,
oofsErrorStruct &);

int (*exists)(const char *FileName,
int &exists_flag,
oofsCredStruct &,
oofsErrorStruct &);

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

10

oofsReadDirDesc (*opendir)(const char *DirectoryPath, // Dir
oofsCredStruct &,
oofsErrorStruct &);

int (*readdir)(oofsReadDirDesc ,
oofsFileNameBuf &,
oofsCredStruct &,
oofsErrorStruct &);

int (*closedir)(oofsReadDirDesc ,
oofsCredStruct &,
oofsErrorStruct &);

void (*destruct)(); // Called at exit. Set to 0 -> no destruct

};

oofsFileSystemDesc *oofsGetFileSystem(); // Init & return -> FSDesc

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

11

1.7 Client-Side Security Interface Definition

struct oofsSecRoutinesDesc // Authentication information
{

int version; //<- OOFS_SEC_SYSTEM_DESC_VERSION

// Routines for client authentication
oofsSecHandle (*CreateSec)(const ooHandle(ooDDObj) &,

 oofsErrorStruct &);
oofsCredStruct *(*GetCred_D)(oofsSecHandle,

 const char *buffer,
 oofsXferSize buffer_size,
 oofsErrorStruct &);

oofsCredStruct *(*GetCred_M)(oofsSecHandle,
 oofsErrorStruct &);

oofsStatus (*DeleteSec)(ofsSecHandle,
 oofsErrorStruct &);

// Routines for server authentication
oofsStatus (*AuthCred)(oofsSecHandle,

oofsCredStruct &,
const char *buffer,
oofsXferSize buffer_size,
oofsErrorStruct &);

// Routine to handle data encryption and decryption
oofsStatus (*Crypt)(oofsSecHandle,

 const ooInt direction,
 const char *in_buffer,
 oofsXferSize in_buffer_size,
 char **out_buffer,
 oofsXferSize *out_buffer_size,
 oofsErrorStruct &);

void (*FreeBuff)(char *out_buffer);
};

// Routine to register the client-supplied security system
oofsStatus oofs_Register_Security(oofsSecRoutinesDesc *Sec_List);

1.8 Client-Side Opaque Information Interface Definition

oofsStatus oofs_set_info(oofsInfoStruct &,const ooInt flags);

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

13

2.1 oofsGetFileSystem()

oofsFileSystemDesc *oofsGetFileSystem(); // In

Function
Provide the filesystem interface definition.

Parameters
None.

Success
A non-null pointer to the oofsSecRoutinesDesc structure is returned.

Failure
A NULL (i.e., 0) pointer is returned.

Notes
1) The oofsGetFileSystem() routine is part of the of the filesystem definition

and must be supplied by the underlying filesystem interface. It is called by
the AMS to instantiate the filesystem interface.

2) The oofsGetFileSystem() routine is a constructor function and should
perform any required initialization.

3) The filesystem interfaces are defined in subsequent sections.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

14

2.1.1 oofs_close()

int oofs_close(oofsFileDesc fd, // In
oofsCredStruct &cred, // In
oofsErrorStruct &einfo) // Out

Function
Closes an open file.

Parameters
fd

is the filehandle returned by oofs_open() associated with the file to be
closed.

cred
are the credentials authenticating the remote caller. A null pointer or zero-
length credentials indicate that no credentials were supplied.

einfo
is the error information structure used when an error occurs.

Success
Zero (0) is returned.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

15

2.1.2 oofs_closedir()

int oofs_closedir(oofsFileDesc fd, // In
oofsCredStruct &cred, // In
oofsErrorStruct &einfo) // Out

Function
Closes an open directory.

Parameters
fd

is the filehandle returned by oofs_opendir() associated with the directory
to be closed.

cred
are the credentials authenticating the remote caller. .A null pointer or
zero-length credentials indicate that no credentials were supplied.

einfo
is the error information structure used when an error occurs.

Success
Zero (0) is returned.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

16

2.1.3 oofs_exists()

int oofs_close(const char *path, // In
int &exists_flag, // Out
oofsCredStruct &cred, // In
oofsErrorStruct &einfo) // Out

Function
Determine whether a path or file exists.

Parameters
path

is the fully qualified name of the file to be tested for existence.

exists_flag
is the address of the variable to hold the status of the test. When a success
indication is returned, exists_flag will have one of the following values:
0 the file was not found but the path exists, or
1 the file was found.

cred
are the credentials authenticating the remote caller. A null pointer or zero-
length credentials indicate that no credentials were supplied.

einfo
is the error information structure used when an error occurs.

Success
Zero (0) is returned with exists_flag set.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

17

2.1.4 oofs_getmode()

int oofs_getmode(oofsFileDesc fd, // In
oofsFileCreateMode &mode, // Out
oofsCredStruct &cred, // In
oofsErrorStruct &einfo) // Out

Function
Return a file’s creation mode.

Parameters
fd

is the filehandle returned by oofs_open() associated with the file whose
creation mode is to be returned.

mode
is a pointer to a variable that is to hold the file’s creation mode (i.e., read-
write-execute permission bits). The creation mode is returned in POSIX
format and only upon success. The returned value may not be meaningful
if the file is protected by an access control list.

cred
are the credentials authenticating the remote caller. A null pointer or zero-
length credentials indicate that no credentials were supplied.

einfo
is the error information structure used when an error occurs.

Success
Zero (0) is returned with mode set.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

18

2.1.5 oofs_getsize()

int oofs_getsize(oofsFileDesc fd, // In
oofsFileOffset &flen, // Out
oofsCredStruct &cred, // In
oofsErrorStruct &einfo) // Out

Function
Return a file’s current size.

Parameters
fd

is the filehandle returned by oofs_open() associated with the file whose
length is to be returned.

flen
is a pointer to a variable to hold the file’s current size. The size is returned
only upon success.

cred
are the credentials authenticating the remote caller. A null pointer or zero-
length credentials indicate that no credentials were supplied.

einfo
is the error information structure used when an error occurs.

Success
Zero (0) is returned with flen set.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

19

2.1.6 oofs_open()

oofsFileDesc oofs_open(const char *filename, // In
oofsFileOpenMode open_mode, // In
oofsFileCreateMode create_mode // In
oofsInfoStruct &info, // In
oofsCredStruct &cred, // In
oofsErrorStruct &einfo) // Out

Function
Open a file; optionally creating it.

Parameters
filename

is the name of the file that is to be opened. Typically, a fully qualified path
is given.

open_mode
indicates how the file is to be opened (i.e., read, write, or update). If
open_mode indicate that the file is to be created, the file is also opened in
update mode. The following are valid mode values:
OOFS_O_RDONLY - open file for reading
OOFS_O_WRONLY - open the file for writing
OOFS_O_RDWR - open the file for reading and writing (i.e., update)
OOFS_O_CREAT - create the file and open with OOFS_O_RDWR

create_mode
holds the access mode bits to be assigned to the file when open_mode
indicates that the file is to be created. The mode must be specified in
POSIX format (.e.g., 744 corresponds to rwx--r—mode).

info
is a pointer to a structure describing opaque information that may be of
use during the operation. Opaque information is only meaningful to
oofs() routines and is passed with modification from the client. A null
pointer or a zero length opaque information indicate that opaque
information was not supplied.

cred
are the credentials authenticating the remote caller. A null pointer or zero-
length credentials indicate that no credentials were supplied.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

20

einfo
is the error information structure used when an error occurs.

Success
A non-null filehandle is returned. The filehandle is to be used for
subsequent file operations.

Failure
Null (0) is returned and einfo.code contains the actual error code while
einfo.message contains an optional null terminated string describing the
nature of the error.

Notes
1) If the file already exists and OOFS_O_CREAT is specified, an error is

returned.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

21

2.1.7 oofs_opendir()

oofsReadDirDesc oofs_opendir(const char *dirname, // In
oofsCredStruct &cred, // In
oofsErrorStruct &einfo) // Out

Function
Open a directory for reading.

Parameters
dirname

is the name of the directory that is to be opened. Typically, a fully
qualified path is given.

cred
are the credentials authenticating the remote caller. A null pointer or zero-
length credentials indicate that no credentials were supplied.

einfo
is the error information structure used when an error occurs.

Success
A non-null dirhandle is returned. The dirhandle is to be used for
subsequent directory operations.

Failure
Null (0) is returned and einfo.code contains the actual error code while
einfo.message contains an optional null terminated string describing the
nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

22

2.1.8 oofs_read()

oofsXferSize oofs_read(oofsFileDesc fd, // In
oofsFileOffset offset, // In
char *buffer, // Out
oofs XferSize buffer_size, // In
oofsCredStruct &cred, // In
ofsErrorStruct &einfo) // Out

Function
Read zero or more bytes from an open file.

Parameters
fd

is the filehandle returned by oofs_open() associated with the file to be
read.

offset
is the absolute offset, origin 0, into the file where the read is to begin.

buffer
is a pointer to a buffer that is to hold the contents of the file after the read
completes

buffer_size
is the size of the actual buffer. No more than the specified number of bytes
are actually read from the file.

cred
are the credentials authenticating the remote caller. A null pointer or zero-
length credentials indicate that no credentials were supplied.

einfo
is the error information structure used when an error occurs.

Success
The actual number of bytes that were read.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

23

2.1.9 oofs_readdir()

int oofs_readdir(oofsFileDesc fd, // In
oofsFileNameBuf &buffer, // Out
oofsCredStruct &cred, // In
oofsErrorStruct &einfo) // Out

Function
Read the next entry in an open directory.

Parameters
fd

is the filehandle returned by oofs_opendir() associated with the directory
to be read.

buffer
is a pointer to the buffer that is to hold the null-terminated contents of the
next entry in the directory. The buffer must be large enough to hold the
longest possible entry plus one for the ending null character (i.e.,
OOFS_MAX_FILE_NAME_LEN). The buffer is set only upon success (see the
notes).

cred
are the credentials authenticating the remote caller. A null pointer or zero-
length credentials indicate that no credentials were supplied.

einfo
is the error information structure used when an error occurs.

Success
Zero (0) is returned.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

Notes
1) When no more directory entries are left, OOFS_READDIR_LAST (a non-

zero value) is returned.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

24

2.1.10 oofs_remove()

int oofs_remove(const char *filename, // In
oofsCredStruct &cred, // In
oofsErrorStruct &einfo) // Out

Function
Remove a file.

Parameters
filename

is the filename of the file to be removed. Normally, a fully qualified path
is specified. Asterisks are not allowed in the filename.

cred
are the credentials authenticating the remote caller. A null pointer or zero-
length credentials indicate that no credentials were supplied.

einfo
is the error information structure used when an error occurs.

Success
Zero (0) is returned.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

25

2.1.11 oofs_rename()

int oofs_rename(const char *old_filename, // In
const char *new_filename, // In
oofsCredStruct &cred, // In
oofsErrorStruct &einfo) // Out

Function
Rename a file.

Parameters
old_filename

is the existing name of a file. Normally, a fully qualified path is specified.

new_filename
is the name that the file is to have. It must be different from old_filename.

cred
are the credentials authenticating the remote caller. A null pointer or zero-
length credentials indicate that no credentials were supplied.

einfo
is the error information structure used when an error occurs.

Success
Zero (0) is returned.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

27

2.1.12 oofs_set()

int oofs_set(oofsFileDesc fd, // In
const char *options, // In
oofsErrorStruct &einfo) // Out

Function
Set oofs() options for a file or for the system..

Parameters
fd

is the file descriptor returned by oofs_open() or oofs_opendir() to which
the options are to apply. If fd is null, then the options apply globally and
affect all future file descriptors.

options
is a null terminated string of single letter, space-separated, option letters.
Valid letters are:
l - log data transfer statistics into SYSLOG when oofs_close() or

oofs_closedir() is called.
p - print data transfer statistics on STDERR when oofs_close() or

oofs_closedir() is called.
t - race execution on STDERR.

Each letter may be optionally preceded by a plus (the default) to turn on
the option or a minus, to turn off the option.

einfo
is the error information structure used when an error occurs.

Success
Zero (0) is returned.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

28

Notes
1) The oofs_set() interface is not part of the AMS-defined set of interfaces. It

is provided to enable externally linked programs additional control over
the interface for debugging and performance monitoring purposes.

2) Default options can be provided on a global level when the following
environmental variables are set to a value of one (1):
oofs_STATLOG - log data transfer statistics into SYSLOG when

oofs_close() or oofs_closedir() is called.
oofs_STATLOG - print data transfer statistics on STDERR when

oofs_close() or oofs_closedir() is called.
oofs_TRACE - trace execution on STDERR

3) Setting global options (i.e., when fd is null) is not a thread-safe operation.
Global option must be set by a single or interlocking threads.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

29

2.1.13 oofs_sync()

int oofs_sync(oofsFileDesc fd, // In
oofsCredStruct &cred, // In
oofsErrorStruct &einfo) // Out

Function
Verify that all data is committed to permanent media.

Parameters
fd

is the filehandle returned by oofs_open() associated with the file to be
synchronized.

cred
are the credentials authenticating the remote caller. A null pointer or zero-
length credentials indicate that no credentials were supplied.

einfo
is the error information structure used when an error occurs.

Success
Zero (0) is returned.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

30

2.1.14 oofs_truncate()

int oofs_truncate(oofsFileDesc fd, // In
oofsFileOffset file_size, // In
oofsCredStruct &cred, // In
oofsErrorStruct &einfo) // Out

Function
Set the size of a file.

Parameters
fd

is the filehandle returned by oofs_open() associated with the file whose
size is to be changed.

file_size
is the new size of the file. If the new size is smaller than the current size,
the file is reduced in size and the excess bytes are discarded. If the new
size if greater than the current size, the file is extended to the new size
with binary zeroes.

cred
are the credentials authenticating the remote caller. A null pointer or zero-
length credentials indicate that no credentials were supplied.

einfo
is the error information structure used when an error occurs.

Success
Zero (0) is returned.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

31

2.1.15 oofs_write()

oofsXferSize oofs_write(oofsFileDesc fd, // In
oofsFileOffset offset, // In
const char *buffer, // In
oofs XferSize buffer_size, // In
oofsCredStruct &cred, // In
ofsErrorStruct &einfo) // Out

Function
Write zero or more bytes into an open file.

Parameters
fd

is the filehandle returned by oofs_open() associated with the file to be
written.

offset
is the absolute offset, origin 0, into the file where the write is to begin.

buffer
is a pointer to a buffer that is to hold the data to be written into the file.

buffer_size
is the size of the actual buffer. No more than the specified number of bytes
are actually written to the file.

cred
are the credentials authenticating the remote caller. A null pointer or zero-
length credentials indicate that no credentials were supplied.

einfo
is the error information structure used when an error occurs.

Success
The actual number of bytes that were written.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code while
einfo.message contains an optional null terminated string describing the
nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

32

Notes
1) Indication of errors may be delayed until some future operation on the

file.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

33

3 Generic Authentication Protocol

Generic Authentication Protocol (GAP) allows security information (e.g.,
credentials) to be transparently transferred from an Objectivity AMS client to the
AMS server using a generic mechanism that can be easily modified to use site-
specific security. GAP is supported only for AMS mediated connections and is
suitable for private-key mechanisms such as Kerberos and Windows NT, and
public-key mechanisms such as PGP1. It consists of eight site-replaceable client-
side functions and a new client-side interface.

The following general steps comprise GAP:
• the installation makes available a set of security modules that can be used

by an application to retrieve authentication credentials,
• the modules are linked with an application program,
• the application program registers these modules with the OCSK using the

oofs_Register_Security() interface (1),
• prior to each AMS request, the OCSK calls the registered modules to

retrieve authentication credentials (2),
• the credentials are sent by the OCSK to AMS (3),
• the AMS forwards the credentials to the oofs() interface (4),
• the oofs() interface decodes the credentials using an installation supplied

mechanism (5), and
• the oofs() routines use the credentials to control access to the database (6).

The following diagram shows the basic sequence, numbered as above.

1 GAP does not currently support challenge/response security protocols even though the
interfaces to support such protocols can be provided.

Objectivity Client
Application

Security
System

Objectivity
Kernel

AMS

oofs() layer

Target
File System

Security
System

Request
+

Credentials

1

2

3
6

4

5

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

34

3.1 Application Steps in GAP

1. The application program must initialize the oofsSecRoutinesDesc structure.

2. The application program must then call oofs_Register_Security() prior to
opening any federated databases. Any unneeded routines may have their
address in the vector set to zero. An example follows.

Struct oofsSecRoutinesDesc oofsSecRoutines =
{OOFS_SEC_SYSTEM_DESC_VERSION,
my_CreateSec,
0, // No need for a data GetCred
my_GetCred,
my_DeleteSec,
0, // AuthCred not supported
0, // Encryption not supported,
0 // So no need for FreeBuff
};

if (oofs_RegisterSecurity(oofsSecRoutines)) Fatal_Error();

3. Once the routines have been registered, the OCSK will call the routines
whenever needed in support of GAP.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

35

3.2 OCSK Steps in GAP

1. The OCSK calls the supplied routines in support of GAP. The following table
indicates when each routine is called. Shaded cells indicate interfaces and
functions that are currently not supported.

CreateSec Called whenever a database is opened.
GetCred_D Called to obtain credentials for a data operation.
GetCred_M Called to obtain credentials for a meta-data operation.
DeleteSec Called whenever a database is closed.
AuthCred Called to authenticate server supplied credentials.
Crypt Called to encrypt and decrypt a data stream.
FreeBuff Called to release an encryption buffer.

2. The call to each routine is made in a timely manner and as close as possible to
the time information is transmitted to the AMS. This is because certain
security protocols place small lifetimes (approximately 15 seconds) on the
credentials and large delays between obtaining the credentials and
transmitting them may cause the credentials to become obsolete. A lengthy
retransmission delay usually requires that new credentials be obtained.

3.3 AMS Steps in GAP

1. Upon receipt of a request, the AMS determines if a credentials structure was
passed.

2. If none was passed. AMS either initializes the credentials structure with
credentials.cred_len and credentials.cred_data both set to zero or passes a
null pointer instead of a pointer to a structure.

3. If credentials were passed, AMS recreates the credentials structure as it
existed at the OSCK after the *GetCred_D() or *GetCred_M() call.

4. A pointer to the credentials structure, which may be null, is passed to the
appropriate oofs() routine.

5. After the AMS completes all oofs() calls, it can free the credentials structure
in the appropriate way.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

37

3.4.1 oofs_Register_Security()

oofsStatus oofs_Register_Security(oofsSecRoutines *Sec_List); // In

Function
Register security callback functions.

Parameters
Sec_List

is the list of routines to be used to provide security. Supplying a NULL
address for the routine indicates unused routines.

Success
Zero is returned.

Failure
A negative one (-1) is returned.

Notes
4) The oofs_Register_Security() routine is part of the OCSK. It must be

called by the application, prior to opening a federated database, in order
to register the security interface.

5) The security interfaces are defined in subsequent sections.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

38

3.4.1.1 *CreateSec()

oofsSecHandle (*CreateSec)(const ooHandle(ooDDObj) &odH, // In
 oofsErrorStruct &einfo); // Out

Function
Create a security context for a database.

Parameters
odH

is the database handle that would have been returned by
ooRefHandle(ooDBObj)::open().

einfo
is the error information structure used when an error occurs.

Success
A non-zero opaque handle to the security context is returned.

Failure
A NULL (i.e., zero) pointer is returned and einfo.code contains the actual
error code while einfo.message contains an optional null terminated
string describing the nature of the error.

Notes
6) A zero for *CreateSec() in the oofsSecRoutinesDesc structure suppresses

the call to this routine. A null context handle is then used for all
subsequent database calls that require the associated security handle.

7) *CreateSec() is called whenever ooRefHandle(ooDBObj)::open() is
effectively called to open a database.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

39

3.4.1.2 *DeleteSec()

oofsStatus (*DeleteSec)(oofsSecHandle secHandle, // In
 oofsErrorStruct &einfo); // Out

Function
Delete a security context for a database.

Parameters
secHandle

is the handle returned by *CreateSec() for the database corresponding to
the one that now being closed.

einfo
is the error information structure used when an error occurs.

Success
Zero (0) is returned.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

Notes
1) A zero for *DeleteSec() in the oofsSecRoutinesDesc structure suppresses

the call to this routine.
2) *DeleteSec()is called whenever ooRefHandle(ooDBObj)::close() is

effectively called to close a database.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

41

3.4.1.3 *GetCred_D()

oofsCredStruct *(*GetCred_D)(oofsSecHandle secHandle, // In
 const char *buffer, // In
 oofsXferSize buffer_size, // In
 oofsErrorStruct &einfo); // Out

Function
Obtain credentials for a data operation.

Parameters
secHandle

is the handle returned by *CreateSec() for the database corresponding to
the one that now requires data operation credentials.

buffer
points to the buffer holding the data that will be sent to the AMS. If no
data is being sent or if data is being read from the AMS, the pointer is
null.

buffer_size
contains the number of valid bytes in the buffer. If no data is being sent or
if data is being read from the AMS, the value is zero.

einfo
is the error information structure used when an error occurs.

Success
A non-zero pointer to a credentials structure is returned. The data in the
structure is sent to the AMS along with the request.

Failure
A NULL (i.e., zero) pointer is returned and einfo.code contains the actual
error code while einfo.message contains an optional null terminated
string describing the nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

42

Notes
1) A zero for *GetCred_D() in the oofsSecRoutinesDesc structure

suppresses the call to this routine. Null credentials are then used for the
data operation.

2) *GetCred_D() is called for the following AMS data operations:

oofs_read()
oofs_readdir()

oofs_sync()
oofs_truncate())

oofs_write()

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

43

3.4.1.4 *GetCred_M()

oofsCredStruct *(*GetCred_M)(oofsSecHandle secHandle, // In
 oofsErrorStruct &einfo); // Out

Function
Obtain credentials for a meta-data operation.

Parameters
secHandle

is the handle returned by *CreateSec() for the database corresponding to
the one that now requires meta-data operation credentials.

einfo
is the error information structure used when an error occurs.

Success
A non-zero pointer to a credentials structure is returned. The data in the
structure is sent to the AMS.

Failure
A NULL (i.e., zero) pointer is returned and einfo.code contains the actual
error code while einfo.message contains an optional null terminated
string describing the nature of the error.

Notes
1) A zero for *GetCredOp() in the oofsSecRoutinesDesc structure

suppresses the call to this routine. Null credentials are context are then
used for the meta-data operation.

2) *GetCredOp() is called for the following AMS meta-data operations:

oofs_close()
oofs_closedir()
oofs_exists()

oofs_getsize()
oofs_getmode()
oofs_open()

oofs_opendir()
oofs_remove()
oofs_rename()

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

45

3.4.1.5 *AuthCred()

oofsStatus (*AuthCred)(oofsSecHandle secHandle, // In
 oofsCredStruct &server_cred, // In
 const char *buffer, // In
 oofsXferSize buffer_size, // In
 oofsErrorStruct &einfo); // Out

Function
Create a security context for a database.

Parameters
secHandle

is the handle returned by *CreateSec() for the database associated with
the server interaction.

server_cred
are the credentials sent by the server.

buffer
points to the buffer holding the data that will be sent to the AMS. If no
data is being sent or if data is being read from the AMS, the pointer is
null.

buffer_size
contains the number of valid bytes in the buffer. If no data is being sent or
if data is being read from the AMS, the value is zero.

einfo
is the error information structure used when an error occurs.

Success
Zero (0) is returned.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

46

Notes
1) A zero for *AuthCred() in the oofsSecRoutinesDesc structure suppresses

the call to this routine
2) *AuthCred() is not currently supported and will not be called if it is

supplied.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

47

3.4.1.6 *Crypt()

oofsStatus (*Crypt)(oofsSecHandle secHandle, // In
const ooInt direction, // In
const char *buffer, // In
oofsXferSize buffer_size, // In
char **out_buffer, // Out
oofsXferSize *out_buffsize, // Out
oofsErrorStruct &einfo); // Out

Function
Encrypt or decrypt a data buffer.

Parameters
secHandle

is the handle returned by *CreateSec() for the database associated with
the data buffer.

direction
describes the operation to be performed:
OOFS_Seal - encrypt the data in the buffer
OOFS_UnSeal - decrypt the data in the buffer

buffer
a pointer to a buffer that holds data either to be sent or received from an
AMS. If OOFS_Seal is set, the buffer holds the data that will be sent to
the AMS. If OOFS_UnSeal is set, the buffer holds the data that was
received from the AMS.

buffer_size
contains the number of valid bytes in the buffer

out_buffer
upon success return, will hold a pointer to a buffer containing encrypted
or decrypted data, depending on direction.

outbuff_size
contains the number of valid bytes in the out_buffer

einfo
is the error information structure used when an error occurs.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

48

Success
Zero (0) is returned.

Failure
OOFS_ERROR is returned and einfo.code contains the actual error code
while einfo.message contains an optional null terminated string
describing the nature of the error.

Notes
1) *Crypt() is called with oofs_Seal whenever data is sent to the AMS.

This allows all networked data to be encrypted.
2) *Crypt() is called with oofs_UnSeal whenever encrypted data is

received from the AMS.
3) The out_buffer must be released by a call to *FreeBuff().
4) A zero for *AuthCred() in the oofsSecRoutinesDesc structure suppresses

the call to this routine
5) *Crypt() is not currently supported and will not be called if it is supplied.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

49

3.4.1.7 *FreeBuff()

void (*FreeBuff)(char *buffer); // In

Function
Release a buffer allocated by *Crypt().

Parameters
buffer

points to the buffer that is to be released.

Success
n/a

Failure
n/a

Notes
1. A zero for *FreeBuff() in the oofsSecRoutinesDesc structure suppresses

the call to this routine. This is not recommended if *Crypt() is defined.
2. *FreeBuff() is not currently supported and will not be called if it is

supplied.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

51

4 Opaque Information Protocol

Opaque Information Protocol (OIP) allows arbitrary information (e.g.,
performance hints) to be transparently transferred from an Objectivity AMS
client to the AMS server. OIP is supported only for AMS mediated connections.
It consists of one new client-side function, oofs_set_info(). Opaque information
is sent to the oofs_open() function on the AMS side.

4.1 Application Steps in OIP

1. The application program must initialize a character array2 with information
appropriate to the AMS-side filesystem being used, along with an
oofsInfoStruct structure (i.e., a pointer to the character array must be set in
the oofsInfoStruct structure along with the effective length of the array).

2. The application program must then call oofs_set_info(), passing it
oofsInfoStruct, prior to opening the database(s) associated with the
information. The application has an option of associated a single
(OOFS_SOI_ONCE) database open with the information or all subsequent
opens (OOFS_SOI_ALWAYS), using the flags (i.e., second) parameter. An
example follows.

char info[256];
struct oofsInfoStruct InfoStruct;
•
• // Fill in the info array, as needed
•
InfoStruct.info_len = sizeof(info);
InfoStruct.indo_data = info;
if (oofs_set_info(InfoStruct, OOFS_SOI_ONCE))
 Fatal_Error();
•
• // Open objectivity database, sending it the info.
•

2 Any kind o structure may be used. However, since the information is considered as opaque by the OCSK,
it is treated as a character array.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

52

3. Information set by oofs_set_info() is used only for the first explicit database
open when OOFS_SOI_ONCE is passed. Otherwise, the same information is
used for all subsequent database opens.

4. The information is considered current until replaced by a another call to
oofs_set_info() (i.e., the supplied information is copied to an internal buffer).
Any number of calls may be made to oofs_set_info() with information not
exceeding OOFS_MAX_INFO_LEN bytes.

4.2 OCSK Steps in OIP

1. Opaque information is only support for open operations, regardless of cause.

2. Prior to sending an open() request to AMS, OCSK checks to see if any
oofs_set_info() information exists (i.e., an oofsInfoStruct exists and has a
length is greater than zero with a non-null pointer to a character string).

3. If opaque information exists, the length and data are marshaled as (int), and
(char), respectively, on to the AMS protocol stream in a suitable way.

4. Opaque information is passed to the AMS on any request that would result in
an AMS oofs_open() call, regardless of the reasons for that call.

5. If OOFS_SOI_ONCE is associated with the opaque information, the
information is discarded after it has been sent (i.e., it is only sent once).
Otherwise, an internal copy is maintained for subsequent transmission.

4.3 AMS Steps in OIP

1. Upon receipt of a request, the AMS determines if oofs_set_info() information
was passed.

2. If any was passed, it recreates an oofsInfoStruct structure with that
information and passes it to the requested oofs_open() call(s) using the fourth
parameter. Otherwise, a null pointer is passed as the fourth parameter.

3. Opaque information is passed to every oofs_open() initiated by the incoming
request.

4. After the AMS completes all oofs_open() calls, it discards the information.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

53

4.3.1 oofs_set_info()

oofsStatus oofs_set_info(oofsInfoStruct &InfoStruct, // In
 const ooInt flags);, // In

Function
Set opaque information for subsequent transmission to the AMS.

Parameters
InfoStruct

is a reference to the structure that contains the length of and pointer to the
opaque information. If either the pointer is NULL, InfoStruct.info_len
contains zero, or InfoStruct.info_data is NULL, the current opaque
information, if any, is discarded and no information is subsequently sent.

flags
indicates how the opaque information is to be handled:
OOFS_SOI_ALWAYS - always send the information on subsequent open

requests.
OOFS_SOI_ONCE - send the information on the subsequent open

request and discard the information afterwards
(i.e., only send it once).

Success
Zero is returned.

Failure
A negative one (-1) is returned.

Notes
1) The oofs_set_info() routine is part of the OCSK. It must be called by the

application in order to establish the information that is to be sent.
2) The oofs_set_info() routine may be called at any time. A new invocation

simply replaces opaque information established by the previous call, if any.
3) Opaque information is only supplied to the AMS-side oofs_open() routine.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

55

5 Defer Request Protocol

Defer Request Protocol (DRP) allows an AMS server to control the timeout of a
client’s request. It is included as part of the AMS/OCSK protocol to allow the use
of hierarchical filesystems with highly variable latencies (e.g., microseconds to
several minutes).

5.1 AMS Steps in DRP

1. At the end of any failing oofs() operation, the oofsErrorStruct parameter
contains the reason for the failure, represented as an error code and an
optional ASCII character string. Failure indication is defined by each oofs()
function as follows:

Function
Failure
Return Function

Failure
Return

oofs_close() -1 oofs_read() -1

oofs_closedir() -1 oofs_readdir() -1

oofs_exists() -1 oofs_remove() -1

oofs_getmode() -1 oofs_rename() -1

oofs_getsize() -1 oofs_sync() -1

oofs_open() 0 oofs_truncate() -1

oofs_opendir() 0 oofs_write() -1

2 If the oofsErrorStruct.code is zero and the text string in
oofsErrorStruct.message starts with the string “!wait”, then the function is
requesting that the client retry the operation after a certain amount of time.
The number of seconds to wait follows !wait, separated by a single space. For
example:

!wait 300

indicates that the client should wait 300 seconds then reissue the same request
to the same AMS.

3. The server uses this information to provide the appropriate indication to the
client. The client must retry the request on the same AMS after waiting the
specified number of seconds.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

56

5.2 OCSK Steps in DRP

1. The OCSK must be prepared to receive a retry request following any
interaction with the AMS. Therefore, all data sent to the AMS must be kept
until an actual indication of success or failure is received.

2. Should a retry request be received, the OCSK must wait the specified number
of seconds and then send the same request to the same AMS.

3. The OCSK should treat the retry request as an error if any of the following
occurs:
a) The number of seconds is less than 1.
b) The number of seconds is greater than 9999.
c) The number of seconds is not a whole number.

4. Retry errors are to be treated as AMS errors and standard error recovery
procedures are to be applied.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

57

6 Request Redirection Protocol

Request Redirection Protocol (RRP) allows cooperating AMS’s to perform
dynamic load balancing using a simple redirection scheme. A group of
cooperating AMS’s, or an AMS Collective (AMSC), is logically treated as a
single AMS by the client. There is one distinguished member of the collective
and all database catalogue information is tied to the distinguished member (i.e.,
server). This minimizes the administrative impact on client operations and
database descriptions. Therefore, a client need not know the composition of the
collective and, indeed, that composition is free to change at any time without
impacting any database operations that the client may perform.

The following figure illustrates an AMS collective and a simple redirection
interaction.

Redirection allows an AMS to direct a client to a more suitable AMS for
processing the client’s request. Because the server redirects the request, it is
possible to implement a highly flexible and scalable dynamic load-balancing
scheme than would otherwise be possible by other mechanisms. For instance, the
database load may be balanced using one or more of the following criteria,
among others:

• Number of clients,
• Available real memory,
• Available disk space,
• Network link performance, and
• Service level agreements.

RRP also allows the AMS to dynamically replicate databases on demand. For
instance, should a databases become highly used, the AMS could replicate the
database at one or more other sites and redirect clients to other copies. Once the
database becomes less heavily used, the extra copies can be eliminated to save
space.

Objectivity Client
Application

Objectivity Kernel

Distinguished AMSAMS RRP

AMS-3AMS-2Final Request

AMS Collective

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

58

Dynamic load balancing does not alter any current multi-AMS protocols such as
the Data Replication Option (DRO) or the Fault Tolerant Option (FTO). This is
because the collective is defined outside the scope of such protocols.
Furthermore, each AMSC member is effectively interchangeable in the context of
the collective. Nevertheless, it is possible to implement collectives in ways that
render DRO and FTO unusable.

The collective is responsible for providing update synchronization should any
AMSC members allow write operations. Should a client wish to update a
database and a modifiable database replica exists outside of the collective, it is
the application’s responsibility to explicitly indicate that write operations will
occur before performing any transactions against the database.

Redirection of requests is only supported for operations against a closed
database (i.e., operations that use a filename instead of a filehandle). This
includes the open() and opendir() requests.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

59

6.1 AMS Steps in RRP

1. At the end of any failing oofs() operation that takes a filename as an
argument, the oofsErrorStruct parameter contains the reason for the failure,
represented as an error code and an optional ASCII character string. Failure
indication is defined by each applicable oofs() function as follows:

Function
Failure
Return Function

Failure
Return

oofs_exists() -1 oofs_remove() -1

oofs_open() 0 oofs_rename() -1

oofs_opendir() 0

2 If the oofsErrorStruct.code is zero and the text string in
oofsErrorStruct.message starts with the string “!try”, then the function is
requesting that the client retry the operation at another AMS. The location of
the alternate AMS follows !try, separated by a single space, and is either the
DNS name or the IP address of the alternate AMS. For example:

!try abh.slac.stanford.edu

indicates that the client should reissue the same request to the AMS located on
host “abh.slac.stanford.edu”.

3. The server may use this information to provide the appropriate indication to
the client or may simply pass the error text-string to the client for resolution.
The mechanism actually used is immaterial as long as the redirection occurs.

AMS Extensions V 2.0 Andrew Hanushevsky
07/27/98

60

6.2 OCSK Steps in RRP

1. The OCSK must be prepared to receive a redirect request following any
interaction with the AMS. Therefore, all data sent to the AMS must be kept
until an actual indication of success or failure is received.

2. Should a redirect request be received, the OCSK must send the same request
to the specified AMS.

3. The OCSK should treat the redirect request as an error if any of the following
occurs:
a) The redirect specifies the same AMS.
b) More than 255 consecutive redirect requests have been received.

 c) The specified AMS does not exist or refuses a connection.

4. Redirection errors are to be treated as AMS errors and standard error
recovery procedures are to be applied.

