

Y2004 FTPC Calibration

Some results from München.

STAR FTPC Review

7-19-2004

STAR FTPC Group

- Volker Eckardt (MPI)
- Alexei Lebedev (BNL)
- Markus Oldenburg (LBL)
- Joern Putschke (MPI)
- Janet Seyboth (MPI)
- Peter Seyboth (MPI)
- Frank Simon (MPI)
- Brijesh Srivastava (Purdue)
- Terry Tarnowsky (Purdue)
- Thanks to:
- Michael DePhillips
- Lidia Didenko
- Eric Hjort
- Jerome Lauret
- Jeff Porter

………

For invaluable technical support!

FTPCs at STAR

FTPCs at STAR

Y2004 Calibration

- Steps:
	- Consider internal detector geometry:
		- Inner cathode correction.
	- Utilize information from raw clusters:
		- Position of radial step:
			- $\rightarrow t_0$
			- » temperature corrections
		- Gain tables.
	- Information from tracking:
		- x-, y-vertex offset wrt TPC.
		- Laser calibration:
			- \rightarrow drift velocity, Δt_0
			- » E x B corrections

- FTPC laser system used to determine changes in:
	- Gas composition \rightarrow drift velocity
	- t_0
	- E x B correction

Colors represent: (Expected – Reconstructed) radial position.

Results for FTPC W, Straight Lasers, \sim Laser Sector 2, B = $\int_{-0.2}^{0} 0.$

t₀ and drift velocity look correct within measurable limits!

No change in gas composition.

FTPC W, Inclined Lasers, Lsec 1, $B = -1$

Shows no change in drift velocity or E x B corrections!

-
- Correction corresponding to small mechanical offset of FTPC inner cathode wrt pad plane.
- This shift manifests as an oscillatory structure in the time position of the chargestep.

- Can correct for the cathode offset.
- With more statistics can make the correction more precise (thanks to pad and time information now included in StEvent).

07/19/04 Terence Tarnowsky STAR FTPC Group $o^{\alpha e}$

t₀ and Radial Step

• The useable inner volume of the FTPC begins at a radial distance of \sim 7.75 \pm .05

t₀ and Radial Step

- Can use position of radial step as a check on t_{0} .
- Increasing t_0 will move radial step to smaller radial position, and vice-versa.
- However, temperature measurements are also important for accurate reconstruction.

FTPC Temperatures

The relative difference between West & East is due to the temperature differences.

Temperature Jump

FTPC Temperatures

- Will this impact 200 GeV production?
	- The first \sim 25 days are fine.
	- Studies underway to determine offsets for remainder of run.
		- One offset value may work for data beyond day 25, but before day 67.* (*See next slide.)
		- Will require multiple offsets.

Gain Tables

- Required to mask dead/noisy pads.
- Important for proper efficiency studies.

- New gain table needed for every major change in detector state
	- Change in the number of dead or noisy pads.

Since FTPC utilizes radial drifting, losses could impact phi acceptance.

- Reconstructed vertex position from FTPC tracks differs slightly from main TPC vertex.
	- Shift due to small rotation of FTPC about mounting points.
	- Correction must be calculated every time FTPC is removed and replaced (or if TPC vertex changes).

The mean of a Gaussian fit to the x,y projection of the FTPC vertex position is the offset value.

07/19/04 Terence Tarnowsky STAR FTPC Group

- For 200 GeV production:
	- The values will be rapidly determined as soon as inner cathode correction is fixed.
	- Another test pass will be needed to check the offset values.

Conclusions/To Do

- FTPC will be **ready for physics production.**
	- Temperature problems will not effect track counting and centrality selection.
		- Detector efficiency changes during the run due to electronics losses.
		- Effect on momentum resolution?
	- Improve inner cathode correction?
		- » Small effect once initial correction in place.
	- Lasers verify no change in gas composition (drift velocity) and E x B corrections.
	- Additional detector tuning is possible in the long term, especially for central events.
		- » Answer why # of hits on track decreases with increasing multiplicity.

BACKUP

FTPC W, Inclined Lasers, Lsec 1, $B = -1$

Shows no change in drift velocity or E x B corrections!

• Were the corrections reversed? (West \Leftrightarrow East?)

Inner Cathode, Uncorrected

• Exchanged West \Leftrightarrow East

• New values: West = -0.06 , East = -0.07

time step (mean+sigma gausfit) per hardsec Hf 82.11/30 187.4 ± 0.3022 p₀ 190 189.5 189 188.5 188 187.5 187 186.5 186 185.5 185 E 10 $\overline{20}$ $\overline{30}$ $\overline{40}$ 50 60

Inner Cathode Correction, 2004, 995 events from run 5020030

Inner Cathode Correction, 2004, 995 events from run 5020030

Inner Cathode Correction

• Compare to old values:

• West = -0.07 , East = -0.06

71.85 / 30 **Hf** time step (mean+sigma gausfit) per hardsec 187.4 ± 0.2827 p₀ 190 189.5 189 188.5 188 187.5 187 186.5 186 185.5 185 $_{0}^{+}$ $\overline{40}$ $\overline{50}$ 10 20 30 60

Inner Cathode Correction, 2002-2003, 995 events from run 5020030

Inner Cathode Correction. 2002-03. 995 events from run 5020030

• Conclusion: Little difference between the two corrections!

Inner Cathode Correction, 2004, 995 events from run 5020030

Inner Cathode Correction. 2002-03. 995 events from run 5020030

- Why is there such a large variation in the new data?
- Generate plot of

FTPC Temperatures

- Before day 025:
	- 6 body temperature readings/FTPC available to calculate average temperature.

- \sim Day 025 and beyond:
	- Several body temperature sensors went bad.
	- Temporary fix:

- Using 3 body temp sensors per FTPC and a hard-coded offset to correct the reconstructed radial step position.
- This offset needs to be added to the database.

Temperature Jump

- On 3/7 there was an unexplained increase in the cooling water temperature and a corresponding jump in average FTPC body temperatures $(\sim 2-3$ °C).
- The temperatures remained at this elevated level for the remainder of the run.

Gain Tables

- Run gain table program on pulser files:
	- Produce gain factors for all channels.
- Run noise finder program on data (daq) files:
	- Flags out channels with charge sum above certain threshold.
	- Writes final gain table which is then converted into database useable form.

- Generate plot of x,y position of FTPC E and W vertex wrt TPC vertex from several thousand events.
- Project x,y onto 1-D distribution.
- The mean of a Gaussian fit is the offset value.
- BOTH offsets for 'x' must be reversed in sign before being used:
	- This is due to the way the FTPC coordinate system is set up.

Purdue & the FTPC

• We have taken over the responsibility of the calibration of the FTPC for physics running.

• Y2004 calibration is a collaborative MPI/Purdue effort.

Purdue & FTPC

- Our current capabilities allow us to maintain the detector in a physics useable state for the foreseeable future.
	- As good or better than Y2003 FTPC calibration.
	- This includes handling all the previously mentioned calibration steps (inner cathode, laser, t_0 , etc).
- Given current funding and manpower, we do not foresee being able to mount a concerted program to greatly enhance FTPC capabilities in areas such as:
	- Momentum resolution
	- Improved tracking

Future FTPC Physics

• Purdue's interest in the FTPC focuses primarily on the study of the "Quark-Gluon String Fusion" model.

> M.A.Braun and C.Pajares Nucl. Phys. B390,542(1993).

• There is strong interest in charged particle FTPC tracking from the PMD group and their study of disoriented chiral condensate (DCC).

F/B Correlations: Motivation

- The study of correlations among particles produced in different rapidity regions helps to understand the mechanisms of particle production.
- Many experiments show strong positive short-range correlations \rightarrow clustering of particles over \sim 1 unit of rapidity.
- Short range correlations dominate at central rapidity. Longer range correlations observed in h-h collisions only at high energies.
- Long range correlations stronger in h-A and A-A than in hh scattering at the same energy.

String Fusion Model

- Hadronization of color strings stretched between projectile and target particle describes multiparticle production in high energy collisions.
- # of strings increases with increasing energy and # of participating nuclei.
	- Expectation that the interaction between strings becomes essential.
- At RHIC, high energy nuclear ion collisions may produce a Quark-Gluon Plasma (QGP).
	- Interaction between strings will make the system evolve toward a QGP state.

Correlation between forward and backward multiplicities (n_f, n_b) of produced charged particles is:

 $m_b >_{n_f} = a + b n_f$

Constant coefficients a, b are determined by minimizing \leq [n_b – (a + b n_f)]² $>$ (Linear Regression)

$$
b = \frac{\langle n_f n_b \rangle - \langle n_f \rangle \langle n_b \rangle}{\langle n_f^2 \rangle - \langle n_f \rangle^2} = \frac{\text{Correlation Strength}}{\text{Correlation strength}}
$$

Parameter

Measurements of Slope

Measured at ISR, UA5, and E-735 energies in pp and pp collisions.

At STAR:

- -2.5 M minbias pp events ω \sqrt{s} = 200 GeV.
	- $|z| = 25$ cm
	- $-|n|$ < 1.3
	- $-0 < dea < 3$
	- $-$ # fit points $>$ 25

Correlation strength increases with energy.

STAR data follows the established trend.

SFM @ 200 GeV

SFM @ 200 GeV

Correlation strength versus $\Delta \eta$ for 200 GeV p-p, Au-Au, and SFM.

