

Y2004 FTPC Calibration

Some results from München.

STAR FTPC Review

7-19-2004

STAR FTPC Group

- Volker Eckardt (MPI)
- Alexei Lebedev (BNL)
- Markus Oldenburg (LBL)
- Joern Putschke (MPI)
- Janet Seyboth (MPI)
- Peter Seyboth (MPI)
- Frank Simon (MPI)
- Brijesh Srivastava (Purdue)
- Terry Tarnowsky (Purdue)

- Thanks to:
- Michael DePhillips
- Lidia Didenko
- Eric Hjort
- Jerome Lauret
- Jeff Porter
- For invaluable technical support!

FTPCs at STAR

FTPCs at STAR

	Volume	
	inner radius	7.73 cm
STAR - FTPC	outer radius	30.05 cm
	chamber length	120 cm (z = 150 - 270 cm)
	acceptance	$\eta = 2.5 - 4.0 \ (\theta = 2^{\circ} - 9^{\circ})$
	Field properties	
	drift cathode voltage	10-15 kV
	drift electrical field	240-1400 V/cm (radial, \perp beam)
	Sclenoid magnetic field	0.5 T (beam)
	Gas properties	
	gas mixture	Ar(50%)-CO ₂ (50%)
	drift velocity	0.3-2.0 cm/µs
	trans. Diffusion DT	100-130 µ m/√cm
FOIL WINDOW	long. Diffusion DL	100-130 μ m/√cm
	Lorentz angle	4 deg.

Y2004 Calibration

- Steps:
 - Consider internal detector geometry:
 - Inner cathode correction.
 - Utilize information from raw clusters:
 - Position of radial step:
 - » t₀
 - » temperature corrections
 - Gain tables.
 - Information from tracking:
 - x-, y-vertex offset wrt TPC.
 - Laser calibration:
 - » drift velocity, Δt_0
 - » E x B corrections

- FTPC laser system used to determine changes in:
 - Gas composition \rightarrow drift velocity
 - t₀
 - E x B correction

Colors represent: (Expected – Reconstructed) radial position.

-0.1 -0.2

-0.3

-0.4

Results for FTPC W, Straight Lasers, Laser Sector 1, B = -1.

Results for FTPC W, Straight Lasers, Laser Sector 2, B = 0.2 0.

t₀ and drift velocity look correct within measurable limits!

No change in gas composition.

FTPC W, Inclined Lasers, Lsec 1, B = -1

Shows no change in drift velocity or E x B corrections!

Inner Cathode Correction

- Correction corresponding to small mechanical offset of FTPC inner cathode wrt pad plane.
- This shift manifests as an oscillatory structure in the time position of the chargestep.

<u>ra r</u>

STAR Inner Cathode Correction

- Can correct for the cathode offset.
- With more statistics can make the correction more precise (thanks to pad and time information now included in StEvent).

07/19/04

Terence Tarnowsky STAR FTPC Group over

t₀ and Radial Step

• The useable inner volume of the FTPC begins at a radial distance of $\sim 7.75 \pm .05$

t₀ and Radial Step

- Can use position of radial step as a check on t_0 .
- Increasing t₀ will move radial step to smaller radial position, and vice-versa.
- However, temperature measurements are also important for accurate reconstruction.

FTPC Temperatures

The relative difference between West & East is due to the temperature differences.

Temperature Jump

FTPC Temperatures

- Will this impact 200 GeV production?
 - The first ~25 days are fine.
 - Studies underway to determine offsets for remainder of run.
 - One offset value may work for data beyond day 25, but before day 67.* (*See next slide.)
 - Will require multiple offsets.

Gain Tables

- Required to mask dead/noisy pads.
- Important for proper efficiency studies.

- New gain table needed for every major change in detector state
 - Change in the number of dead or noisy pads.

Since FTPC utilizes radial drifting, losses could impact phi acceptance.

Day 88

- Reconstructed vertex position from FTPC tracks differs slightly from main TPC vertex.
 - Shift due to small rotation of FTPC about mounting points.
 - Correction must be calculated every time FTPC is removed and replaced (or if TPC vertex changes).

The mean of a Gaussian fit to the x,y projection of the FTPC vertex position is the offset value.

- For 200 GeV production:
 - The values will be rapidly determined as soon as inner cathode correction is fixed.
 - Another test pass will be needed to check the offset values.

Conclusions/To Do

- FTPC will be <u>ready for physics production</u>.
 - Temperature problems will not effect track counting and centrality selection.
 - Detector efficiency changes during the run due to electronics losses.
 - Effect on momentum resolution?
 - Improve inner cathode correction?
 - » Small effect once initial correction in place.
 - Lasers verify no change in gas composition (drift velocity) and E x B corrections.
 - Additional detector tuning is possible in the long term, especially for central events.
 - » Answer why # of hits on track decreases with increasing multiplicity.

BACKUP

FTPC W, Inclined Lasers, Lsec 1, B = -1

Shows no change in drift velocity or E x B corrections!

07/19/04

• Were the corrections reversed? (West ⇔East?)

Inner Cathode, Uncorrected

Terence Tarnowsky STAR FTPC Group

oue

- Exchanged West ⇔ East
 - New values: West = -0.06, East = -0.07

Inner Cathode Correction, 2004, 995 events from run 5020030

Inner Cathode Correction, 2004, 995 events from run 5020030

Inner Cathode Correction

• Compare to old values:

• West = -0.07, East = -0.06

Inner Cathode Correction, 2002-2003, 995 events from run 5020030

Inner Cathode Correction, 2002-03, 995 events from run 5020030

• Conclusion: Little difference between the two corrections!

Inner Cathode Correction, 2004, 995 events from run 5020030

Inner Cathode Correction, 2002-03, 995 events from run 5020030

07/19/04

Terence Tarnowsky STAR FTPC Group 29

07/19/04

- Why is there such a large variation in the new data?
- Generate plot of

FTPC Temperatures

- Before day 025:
 - 6 body temperature readings/FTPC available to calculate average temperature.

- ~Day 025 and beyond:
 - Several body temperature sensors went bad.
 - Temporary fix:

- Using 3 body temp sensors per FTPC and a hard-coded offset to correct the reconstructed radial step position.
- This offset needs to be added to the database.

Temperature Jump

- On 3/7 there was an unexplained increase in the cooling water temperature and a corresponding jump in average FTPC body temperatures (~2-3 °C).
- The temperatures remained at this elevated level for the remainder of the run.

Gain Tables

- Run gain table program on pulser files:
 - Produce gain factors for all channels.
- Run noise finder program on data (daq) files:
 - Flags out channels with charge sum above certain threshold.
 - Writes final gain table which is then converted into database useable form.

- Generate plot of x,y position of FTPC E and W vertex wrt TPC vertex from several thousand events.
- Project x,y onto 1-D distribution.
- The mean of a Gaussian fit is the offset value.
- <u>BOTH</u> offsets for 'x' must be reversed in sign before being used:
 - This is due to the way the FTPC coordinate system is set up.

Purdue & the FTPC

• We have taken over the responsibility of the calibration of the FTPC for physics running.

• Y2004 calibration is a collaborative MPI/Purdue effort.

Purdue & FTPC

- Our current capabilities allow us to maintain the detector in a physics useable state for the foreseeable future.
 - As good or better than Y2003 FTPC calibration.
 - This includes handling all the previously mentioned calibration steps (inner cathode, laser, t₀, etc).
- Given current funding and manpower, we do not foresee being able to mount a concerted program to greatly enhance FTPC capabilities in areas such as:
 - Momentum resolution
 - Improved tracking

Future FTPC Physics

• Purdue's interest in the FTPC focuses primarily on the study of the "Quark-Gluon String Fusion" model.

> M.A.Braun and C.Pajares Nucl. Phys. B390,542(1993).

• There is strong interest in charged particle FTPC tracking from the PMD group and their study of disoriented chiral condensate (DCC).

F/B Correlations: Motivation

- The study of correlations among particles produced in different rapidity regions helps to understand the mechanisms of particle production.
- Many experiments show strong positive short-range correlations→clustering of particles over ~1 unit of rapidity.
- Short range correlations dominate at central rapidity. Longer range correlations observed in h-h collisions only at high energies.
- Long range correlations stronger in h-A and A-A than in h-h scattering at the same energy.

String Fusion Model

- Hadronization of color strings stretched between projectile and target particle describes multiparticle production in high energy collisions.
- # of strings increases with increasing energy and # of participating nuclei.
 - Expectation that the interaction between strings becomes essential.
- At RHIC, high energy nuclear ion collisions may produce a Quark-Gluon Plasma (QGP).
 - Interaction between strings will make the system evolve toward a QGP state.

Correlation between forward and backward multiplicities (n_f, n_b) of produced charged particles is:

 $< n_{b} >_{n_{f}} = a + b n_{f}$

Constant coefficients a, b are determined by minimizing $<[n_b - (a + b n_f)]^2>$ (Linear Regression)

$$b = \frac{\langle \mathbf{n}_{f} \mathbf{n}_{b} \rangle - \langle \mathbf{n}_{f} \rangle \langle \mathbf{n}_{b} \rangle}{\langle \mathbf{n}_{f} \rangle^{2} \rangle - \langle \mathbf{n}_{f} \rangle^{2}} = \text{Correlation Strength}$$

Parameter

Measurements of Slope

Measured at ISR, UA5, and E-735 energies in pp and $p\overline{p}$ collisions.

At STAR:

- -2.5 M minbias pp events @ $\sqrt{s} = 200 \text{ GeV}.$
 - -|z| = 25 cm
 - $|\eta| < 1.3$
 - -0 < dca < 3
 - # fit points > 25

Correlation strength increases with energy.

STAR data follows the established trend.

SFM @ 200 GeV

SFM @ 200 GeV

Correlation strength versus $\Delta \eta$ for 200 GeV p-p, Au-Au, and SFM.

