Setting up STAR software and environment at a remote site

Petr Chaloupka

Nuclear Physics Institute Academy of Sciences of the Czech Republic

STAR collaboration meeting, Hefei, China

03/01/07

Outline

Remote vs local work discussion

Setup of local STAR framework

Local MySQL mirror

Summary

Working remotely-pros

Available sites:			
RCAS		PDSF	
16 interactive nodes		8 interactive nodes:	pdsf.nersc.gov, pc260[2-9].nersc.gov
403 computing nodes, 1002 CPUs		275 computing nodes:	pc[0902 – 2834].nersc.gov
disk space	225TB	disk space:	135 TB
HPSS storage	7PB		
scheduler	LSF,Condor	scheduler	SGE

Advantages:

- large number of possibly used nodes
- hardware taken care of
- software kept up to date
- all data are in the place and accessible via catalog
- available scheduler
- great for big batch jobs

Working remotely-cons

- hard for interactive work
 - vi, emacs -nw
- Internet connection from outside often not very good
- Often overloaded
 - takes time for scheduled jobs to start running
 - impossible to run quickly high priority jobs even if they are small
- Small available user disk space
- Need to transfer results to local computer slow graphics over ssh
- Inconvenient for continuous editing and rerunning

Working locally

Can we use our local computing power for....?

Use STAR libraries

Code development - edit and compile STAR code

Running StChain, root4star, staf ...

Working with different version ...old, new, dev.

If so, what do we need in terms of:

Hardware equipment

Time and complication to set up

Level of maintenance

What are the options

Options for local computing

Local editing:

editing scrips and code locally over AFS compile and run on RCAS comfortable, simple **NOT really local computing**

STAR libraries over AFS:

root4star and STAR libraries are accessible over AFS code runs on local machine compilation of your own code only this options is possible to use at PDSF

True local copy of STAR software:

local copy of STAR sources everything is locally compiled independent of RCAS This is what I will talk about as local computing.

To begin with

Two main things necessary for a remote site:

access to STAR libraries and software

- usually via AFS
- can by bypassed by logging to reas by ssh – ugly, not recommended
- \cdot CVS to access code in the repository

set \$CVSR00T to /afs/rhic.bnl.gov/star/packages/repository must use the same local username as for AFS

setup STAR environment on the local computer

· Set up environment variables during login

AFS

Distributed file system over TCP/IP, based on client/server model.

Sharing of files over the Internet.

- Provides security- authentication and Access Control List.
- · Caching less vulnerable to Internet problems.
- · All STAR files in RHIC cell: /afs/rhic.bnl.gov

When setting up the site.

- Free software from www.openafs.org
- All that is needed is the **AFS client only**.
- · AFS module is loaded into Linux kernel.
- File /usr/vice/etc/ThisCell has to contain rhic.bnl.gov.
- In file /usr/vice/etc/CellServDB is list of available AFS cell servers. This list has to contain the rhic.bnl.gov cell. If RHIC servers change this file has to be updated! It can be copied from any rcas machine.
- Configure your cache in /usr/vice/etc/cacheinfo. This influences the performance.
- Make sure your AFS can see through your firewall.

Environment setup

The login environment is set by login scripts .login, .cshrc

They can be downloaded from RCAS:

cp /afs/rhic.bnl.gov/star/group/templates/cshrc ~/.cshrc

cp /afs/rhic.bnl.gov/star/group/templates/login ~/.login

It's preferable to make own copy of group directory

Check out from CVS: cvs co group Make your \$GROUP_DIR point to it's new location.

It's possible, now, to freely change the system variables if needed. How is described later... The most important variables:

AFS_RHIC : top rhic directory path [default = /afs/rhic.bnl.gov]
OPTSTAR : Base directory for updates of /usr/XXX or /usr/local/XXX [default = either /opt/star if exists or \$XOPTSTAR]. The entire tree \$XOPTSTAR may be installed on your local cluster.
STAR_SYS : architecture (i386_linux2, sun4x_56, i386_sl302 ...)

More informations at: www.star.bnl.gov/STAR/comp/train/tut/EnvSetup.html

Running with AFS libraries

If the environment setup is done according to the previous slide the result will be \$AFS_RHIC set to /afs/rhic.bnl.gov. The STAR code will be accessible via AFS.

the good:

Code runs on your computer

Very simple Can be done on a single computer No need for maintenance

the bad:

Loads libraries over AFS – only for the first time then it's cached,

Slow if the Internet connection not fast enough.

Doomed if AFS is down.

System must be perfectly compatible with RCAS supported distribution!

-The system has to have proper AFS sysname in /etc/sysconfig/afs .

-No guarantee that code compiled on reas will run on your computer.

What is the "local installation"

STAR software, which is normally in shared AFS directory /afs/rhic.bnl.gov/star is copied on local disk: /localSTAR – for example.

STAR environment

Using local copy of STAR login and setup scripts: /localSTAR/star/group Evironment variables are altered during login to point to local installation: \$AFS_RHIC points to /localSTAR

Physical copy of STAR software on local disk

This includes:

root libraries:	/localSTAR/star/ROOT
STAR libs:	<pre>/localSTAR/star/packages/SL*/dev,/pro</pre>
Optional libraries:	/localSTAR/opt

All code is compiled locally

Hardware requirements

Based on the experience from setup done in Prague.

Full local setup – not worth doing on one computer.

Cluster of computers with the same system installation.

Prague (example):

part of "Golias" computing center – mainly used by Alice and Atlas
advantage – low hardware maintenance
disadvantage – almost no choice over installed software

4x double Opteron 244, 2GB RAM shared NFS disk space on the farm only one nod with AFS software 100 Mbit/s connection outside

full local compilation is a must

From our experience: 8 CPUs on a farm that can be used any time is worth the installation.

Installation - prelude

Where to install - on a shared disk only one installation for the whole cluster

a) make local AFS server – NOT recommended advantage – users can use afs clients to access their code and disadvantaged could be quite unstable, not worth the trouble

 b) on NFS disk - preferred stable easier for maintenance usually available on most of the clusters

Installation can be done from one computer with access to AFS and distributed to the whole cluster via NFS.

Installation – dir structure

example: we decide to make the local setup into /localSTAR

create following structure of subdirectories - this is where the source code goes: /localSTAR/opt/star

/localSTAR/star/packages

/group this will be your GROUP_DIR /ROOT

Setup the basic users environment

- just like when running over AFS

cp /afs/rhic.bnl.gov/star/group/templates/cshrc ~/.cshrc

cp /afs/rhic.bnl.gov/star/group/templates/login ~/.login

Set GROUP_PATH

Go to ~/.login and ~/.cshrc and change GROUP_DIR to setenv GROUP_DIR "/localSTAR/group"

apply the changes

source .login

Installation – setup scripts

Now retrieve the your own **copy of the \$GROUP_DIR from CVS**: don't forget to set \$CVSROOT to /afs/rhic.bnl.gov/star/packages/repository cd /localSTAR/star/; cvs co group

In \$GROUP_DIR two scripts are made especially for remote sites to put their pre and post initialization code into:

```
site_pre_setup.csh , site_post_setup.csh
```

therefore:

```
cd $GROUP_DIR; touch site_pre_setup.csh
echo "setenv CVSROOT /afs/rhic.bnl.gov/star/packages/repository"
> site_pre_setup.csh
echo "setenv AFS_RHIC /localSTAR" >> site_pre_setup.csh
```

Now the environment is set. When you log back next time you should have the CVS set for reas repository and main STAR path pointing to your local disk.

Now it's time to load the libraries

Libraries

Load from RCAS **sources of libraries** into corresponding local directories /afs/rhic.bnl.gov/star/packages/dev ...new .. pro ...whichever you need

CERNIib needs to be installed

for example into /localCERN
edit \$GROUP_DIR/site_pre_setup.csh
add line: setenv CERN /localCERN

Install additional necessary software:

read informations at
/afs/rhic.bnl.gov/star/common/AAREADME

You need all of this to successfully compile STAR code!

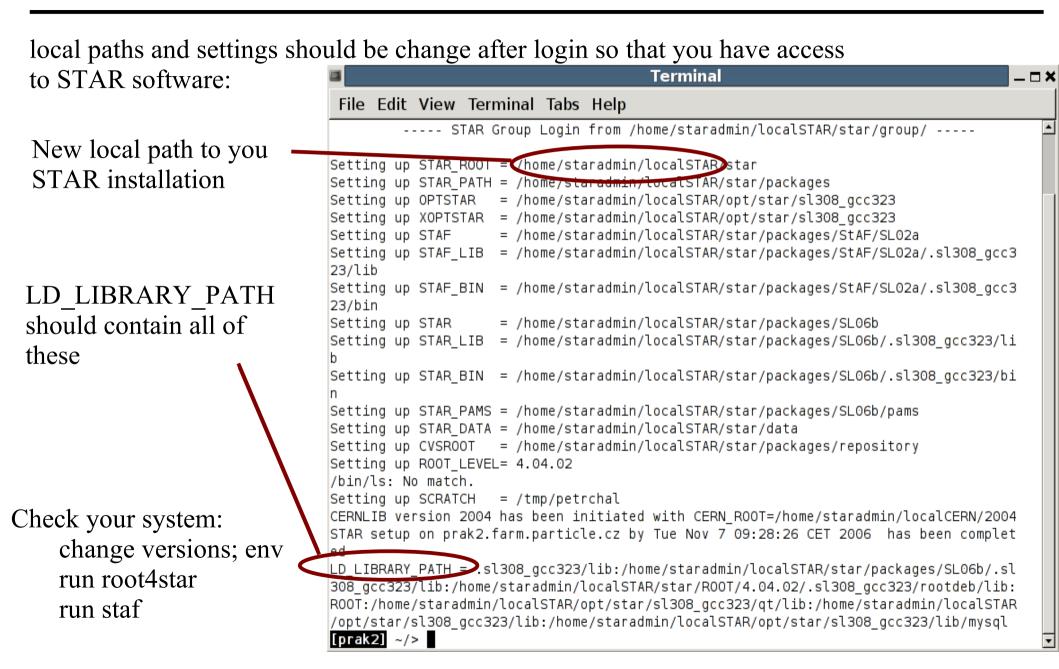
Now it's time to compile......

Compilation

ROOT libraries

Need to be downloaded from CVS and compiled

Just follow info at http://www.star.bnl.gov/STAR/comp/root/building_root.html and install ROOT version that are need for your version of libraries – see rcas login message for a list of ROOT versions you may need to modify or download from rcas \$ROOT/"version"/etc/system.rootrc


Compile the STAR libraries

starver "version"
cd \$STAR
cons

do this for all versions

DONE!!

DONE – check it

local MySQL database

Why to have a local databese?

Connecting and downloading from database far away takes large fraction of time when running short sessions.

Little comparison: Script to simulate 5 SVT events \rightarrow

With remote database more than 10 minutes.

With local database about 2 minutes.

runing code multiple times: no caching – the data are tranfered every time по сил орнона винега тоога отт тегр

```
◐▫×◙◙ㅋ४∞®Q◙®?
```

{ //making 5 simulated SVT events
LoadLibraries();

StChain *chain = new StChain("myMainChain");

// GEANT maker

```
St_geant_Maker *geantMk = new St_geant_Maker("geant");
char* MainFile = "data/cf1197_05_5940evts.fzd";
geantMk->SetInputFile(MainFile);
```

//_____ // DB maker

```
dbaseMk = new St_db_Maker("db","MySQL:StarDb");
dbaseMk-> SetDateTime(20021115,000000);
```

```
/_____
/________
```

Π

```
// SVT Db maker
svtDbMk = new StSvtDbMaker("svtDb");
```

```
// Simulation Maker
simMkr = new StSvtSimulationMaker("SvtSimu");
```

```
Int_t iInit = chain->Init();
if (iInit) chain->Fatal(iInit,"on init");
```

```
//
// Event loop - 5 events
//
nevent=5;
int istat=0,i=1;
EventLoop: if (i <= nevents && istat!=2)
{
    chain->Clear();
    int to be in >Vthe(i);
}
```

```
istat=chain->Make(i);
```

```
goto EventLoop;
}
chain->Finish();
```


Contact M. DePhillips – person in charge of databases

MySQL - software under GNU GPL license

Get correct version from www.mysql.com - must be the same version as in BNL.

Or get it from your distribution package if available

Note when installing:

The server must be running as slave to the BNL server

=> automatic data update.

Has to be set to use GMT time.

To check status: log into mysql database and type "show slave status"

Server lookup

~/dbServers.xml contains the address of your new local server. the original bnl server can be used as a second in the list If local server is down, programs will automatically access other servers.

Database heartbeat

functionality of the slave mirror can be checked at: http://online.star.bnl.gov/admin/slave.php

look at the database list – you can use any of the mirrors in your list ~/dbServers.xml

Host	Server ID	Last Good Date	Last Good Bin Position	File	Ver.
rhic23.physics.wayne.edu	131183316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.14
se51-52.jinr.ru	880563316	2005-11-2 10:00:03	10726223	robinson-bin.000050	4.1.14
pdsfdb08.nersc.gov	128552431	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.14
db01.star.bnl.gov	880483316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.14
db02.star.bnl.gov	880493316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.14
db03.star.bnl.gov	880503316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.14
db04.star.bnl.gov	880513316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.14
db05.star.bnl.gov	880523316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.14
db06.star.bnl.gov	880533316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.14
db07.star.bnl.gov	880543316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.14
stardb.ujf.cas.cz	880583316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.0.18
stars.if.usp.br	880573316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.0.20
star1.lns.mit.edu	880553316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.21
rhilxs.ph.bham.ac.uk	880633316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.22
stardb.tamu.edu	880623316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.19
db08.star.bnl.gov	880613316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.20
rhig.physics.yale.edu	880603316	2006-11-7 10:10:04	461887491	robinson-bin.000056	4.1.12

Where to go for help and informations

Main SOFI and help page

www.star.bnl.gov/STAR/comp/sofi/ software infrastructure
 .../STAR/comp/train/ trainings and tutorials

Hypernews and mailing list

http://www.star.bnl.gov/central/lists/

Offsite facilities hypernews

- the best source for asking questions and problem solving

http://www.star.bnl.gov/HyperNews-star/get/offsites.html

Environment setup

http://www.star.bnl.gov/STAR/comp/train/tut/EnvSetup.html

ROOT libraries compilation – very useful

http://www.star.bnl.gov/STAR/comp/root/building_root.html

Database informations

http://www.star.bnl.gov/STAR/comp/db/

Conclusions

Installation of the STAR software framework is possible on local computer cluster within a week-time; including local database mirror. Hardest part (in my opinion) being the ../star/opt libraries.

pros

- Local computers can be comfortably used for computing within STAR software frame work.
- Quickly accessible database with almost no required maintenance.
- Significant increase in work speed and efficiency.
- Insensitivity to Internet speed and quality fluctuations.

cons

- Higher maintenance
- Libraries may not be completely up to date.
- Need of updating can be automatized using cron.
- Need to transfer data to the local storage