
November 4, 1994

STAR Trigger-DAQ Interface
Specification
Version 1.0

M. Botlo, H., Crawford, Leo Greiner, M. LeVine, V. Lindenstruth, C. McParland

1

Sign-Off Page

The STAR management and group leaders agree to the definition of the interface between the
STAR trigger system and data acquisition system as defined in this document. Further changes
require the written agreement of all involved parties.

Jay Marx

Richard Jared

Henry Crawford

Michael LeVine

Change Log

November 4, 94 First version accepted

2

1 Introduction

The interface between DAQ and Trigger depends on the architecture which is sketched in
figure 1. All detectors send raw data to their individual DAQ front-end boards. One important
aspect of the design is that, due to the space and accessibility constraints of a collider detector, all
intelligent components of the DAQ readout chain were moved into the counting house. Conse-
quently the raw data is sent with unidirectional high speed fiber optic links from the detector to the
counting house. Trigger actions are signalled to the DAQ front-end systems by state machines on
the readout boards of the various detectors using special command words passed from the front-
end electronics through these fiber links.

The requirements for the various components shown in figure 1 are listed together with a brief
justification in chapter 2. Chapter 3 defines the implementation and handshake mechanism of the
shared memory interface between Trigger and DAQ (dark block in figure 1).

3

Trigger
TCU L1 L2

DAQ
trig

g
e

r, a
b

o
rt

DAQ detector busies

busy, special trigger request

FPGA
tree trigger/clr

clear

TPC SVT EMC XTPC TOF

Front
End

Front
End

Front
End

Front
End

Front
End

Figure 1: An over all view of the STAR detector, Trigger and DAQ systems. There are
other systems like Slow Control and Experiment control that interface with these systems
as well. They have been omitted for simplicity. The interface between Trigger and DAQ
mainly consists of a shared memory and the DAQ-detector busy signals.

2 Requirements

2.1 DAQ detector busies

Requirement:
DAQ produces for each detector system an individual busy signal. The logical OR of this
signal with the busy of the given detectors front-end electronics busy forms the detector
busy used by the Trigger system.

Justification:
STAR does not have a common dead time. Triggers may involve only one particular de-
tector (like EMC) or a coincidence of several detectors. The DAQ front-end systems
implement elasticity buffers that may store a variable number of events. Consequently
DAQ front-end boards associated with one particular detector produce a summary busy
signal indicating that all internal buffers are filled. The logical OR of these busy signals is
the DAQ detector busy which is produced by DAQ and sent to the trigger system as one
signal as indicated in figure 1. Another busy signal produced by the detector front-end
electronics indicates for example that the given detector electronics is busy digitizing an
event. Consequently the trigger system would receive two busy inputs per detector. One for
the readout boards on the detector and one for the DAQ front-end in the counting house.

Note:
Since all DAQ front-end boards have their individual detector busies it is possible to read
out fast detectors like the EMC while other STAR systems like the TPC are busy. Conse-
quently no additional global DAQ busy is needed for flow control purposes. If for example
no data could be read out due to a tape problem the DAQ event builders would simply stop
reading out the front-end systems. These systems would assert their busies when their
buffers are full preventing any further triggers and consequent data overruns.

4

2.2 DAQ notification

Requirement:
DAQ is notified by Trigger only if a given event will not be cleared by L1 or L2.

Justification:
Due to this rule L1 and L2 clears are completely transparent to the DAQ system. No
mechanism is required to forward any L1 or L2 aborts to DAQ. This requirement greatly
reduces the complexity of the interface between Trigger and DAQ. Its sole functional re-
quirement is to supply DAQ with information about the currently available events for
readout.

Note:
The delayed notification of DAQ does not impose any performance burdens since each
detector that needs to run at higher rates than the TPC can buffer its TPC related data.
It was stated before that the detector readout boards forward clears to the DAQ front-end
boards as special commands. However this does not involve DAQ in a logical sense since
the receiving state machines on the front-end boards will be able to perform that clear
without any processor intervention.

5

2.3 Event Descriptor

Requirement:
Supply event description of all (L2 accepted) active events. The following words are re-
quired in the event descriptor:
❶ Bunch Crossing Number (64 bits)

The 64 bit bunch crossing number uniquely identifies the time throughout the life-
time of the experiment. Its upper bits are slowly changing and can be derived from
the absolute system time.

❷ Trigger Command (16 bits)
This bit field defines which detectors were involved in the given event and have to
be read out by DAQ.

❸ Trigger Word (16 bits)
This word defines the cause for firing a trigger. It specifies the kind of the given
event like for example high multiplicity, minimum bias scale down event, pedestal
event.

❹ Trigger Type (4 bits)
This word is also forwarded to the front-end electronics and from there to the DAQ
front-end. It defines 16 different DAQ actions related to that event.

❺ Trigger Token (12 bits)
The trigger token is uniquely linked to an event until it is processed by DAQ. Trig-
ger will not use a given trigger token until token has been returned by DAQ.

Justification:
The trigger system is the only instance within STAR that has complete knowledge about
any event. DAQ needs to know which detectors were involved and need to be read out.

6

2.4 Trigger detectors raw data - Trigger history

Requirement:
Supply the complete raw data of the trigger detectors for readout by DAQ including a
detector specific pre- and post history. The pre- and post history is limited to 10 bunch
crossings for events in coincidence with either the TPC or SVT and 1 bunch crossing for
events which involved only fast detectors like EMC or TOF.

Justification:
The raw data of the trigger detectors that caused the given event to be triggered needs to be
in the data stream. The trigger detector data of the Npre previous and Npost later events is
required to determine pile-up. Npre and Npost are configuration constants and depend on the
detectors involved. The number of pre and post history events required for the TPC de-
pends on the single track vertex position resolution (1cm). Given the drift velocity of the
TPC of about 4cm/µs this corresponds to 250 ns or three bunch crossings. Correspondingly
the upper limit of 10 as specified is very generous.

Note:
The complete raw data of all trigger detectors is a fixed length data block of 2048 bytes
length.

2.5 Trigger summary data

Requirement:
Supply Trigger summary data of the trigger detectors for further use within L3. The size of
this data structure is limited to 512 bytes maximum.

Justification:
Results of the L0, L1 and L2 analysis are needed within L3. For example the vertex posi-
tion is needed by the SVT L3 analysis. The vertex position will be derived from the VPD
raw data during the L0 analysis within the trigger system. Correspondingly the results can
be made available to requesting L3 processors.
The size of the summary data block needs to be limited in order not to overburden the DAQ
network bandwidth.

7

2.6 Maximum accepted trigger rate

Requirement:
The maximum L2 accepted trigger rate is limited to 1000/sec.

Justification:
Limiting the L2 accepted trigger rate simplifies the DAQ event builder design.

Note:
The highest TPC and SVT trigger rate is 100Hz. However this allows detectors like EMC
and TOF to run about an order of magnitude faster if they do not require a coincidence with
the TPC.

2.7 Notify DAQ about new events

Requirement:
Support asynchronous notification mechanism to DAQ in case of availability of more
events.

Justification:
The DAQ implementation may require the trigger system to interrupt DAQ upon avail-
ability of new events.

2.8 Notify Trigger upon readout completion

Requirement:
Inform Trigger when trigger token is no longer needed and all related data structures in
Trigger-DAQ interface are readout.

Justification:
Trigger needs to know when a given event is read out. At that point the trigger token that
was associated to the given event is free and can be issued again. All shared data structures
linked to the built event are free, too, after the event was completely built.

8

2.9 Trigger Token

Requirement:
Supply a unique 12 bit trigger token to all detectors and DAQ.

Justification:
The STAR detector system will consist of many independent detector systems, which will
all have their individual dead time. Any combination of detectors is possible for coincident
triggers. The readout time of the various systems varies greatly. Therefore it is possible that
during the conversion of one detector another detector is already live and ready to take
more data. The STAR trigger system supports to fire triggers to fast detectors even if their
previously coincident event with a slow detector is still being processed. Therefore it is
very important to have a mechanism that allows to uniquely identify to which event and
detector any data buffer belongs. In order to uniquely identify a data buffer with a given
event the trigger system will distribute a unique trigger token together with the trigger
command itself. One way to make the trigger token unique is to use enough bits to make
sure that the same trigger token will never be used again. For example a 64 bit bunch
crossing number would be a good example. However cost considerations require the num-
ber of bits transferred per trigger to be as small as possible. Another approach is to make
sure that the same trigger token is not used again until the event is assembled. In this sce-
nario the number of bits required for the trigger token is defined by the maximum number
of outstanding triggers that are allowed by the data acquisition system. An upper limit for
this number is defined by the highest accepted DAQ trigger rate (1000/sec) and the maxi-
mum DAQ latency (2s). Correspondingly a 12 bit trigger token would be sufficient. The
trigger system will reuse a trigger token only if the corresponding event was readout and
assembled by DAQ and the appropriate trigger structures were cleared by DAQ in the
Trigger-DAQ interface.

9

3 Implementation

The interface between the trigger system and DAQ is very simple. Its sole functional require-

ment is to supply DAQ with information about the currently available events for readout. There are
no critical timing constraints since the rate of accepted events will be low (on average one event
per ms). The simplest data exchange mechanism is a dual ported memory. The two ports of that
memory are the Trigger L2 systems and the DAQ system. One dedicated processor (Trigger-DAQ
interface controller) will maintain and update all data structures in that memory. DAQ will have
one process performing all DAQ related actions.

Figure 2 shows a sketch of the data structures in the Trigger-DAQ interface that accommodate
the stated requirements. Most of the memory will be write protected to ensure integrity of the data
structures. Only the mail-box and flag regions are writable by DAQ as indicated in figure 2. The
latest version of the CVS1 managed C-include file trigger_daq_interface.h specifying the struc-
tures in detail will be accessible from the world wide web. It will be uniquely identified with a
version code that is part of the CSR2 space. This correct version code has to be read at start up time
by every process accessing these data structures before performing any further actions. In case of
a mismatch the program has to terminate with a fatal error.

The only required parameter to access the Trigger-DAQ interface is the base address of the
trigger_root data structure. It depends on the address mapping of the individual processor and
cannot therefore be defined globally. All pointers in all other structures of the Trigger-DAQ in-
terface are with respect to this address. The trigger_root structure reflects the main organization of
the Trigger-DAQ interface.

The handshake between Trigger and DAQ is basically a two word handshake. The Trigger-
DAQ interface will start-up with Trigger-DAQ mailbox pointer and the token return mailbox
being cleared by Trigger.

Any time there is a non zero value in the Trigger-DAQ mailbox pointer and a new event
available the Trigger-DAQ interface controller will write the base address of the appropriate
trigger_header structure (with respect to the trigger_root pointer) to that mailbox address and
clear the Trigger-DAQ mailbox pointer. The DAQ processor will respond by updating that pointer
if it accepted the trigger request. This handshake scheme prevents multiple requests to overwrite
each other.

The handshake for returning trigger tokens is equally simple. DAQ writes the trigger token that
is no longer needed to the token return mailbox but only if this word is equal to 0. The Trigger-
DAQ interface controller responds by clearing that word no later than 100 µs after the posted
request. To allow some book keeping within the trigger system of the L3 event abort rate DAQ
needs to inform Trigger if the event related to the given token was accepted or rejected by L3. If
the event was accepted DAQ returns the token unmodified. If the event was aborted it will return
the token times -1. The Trigger-DAQ interface controller will use the absolute value of any value
found in the token return mailbox. The sign of that value defines if the given event was accepted
(>0) or rejected (<0).

1.Concurrent Version System - this system is recommended for software version control by the STAR SOFI group

2.Control-Status-Register

10

11

mailbox_region

read and writable by DAQ read only for DAQ

trigger_root

CSR space

DAQ
handshake

ptr

globally defined

base addressTrig->DAQ
mailbox ptr

token return
mailbox

trigger_data

Trigger Detector
raw data

Trigger Detector
raw data

Trigger Detector
raw data

Trigger Detector
raw data

trigger_header

event
descriptor

L2 summary
for L3

trigger_data
pointers

address offset

posted at
Trig-DAQ mailbox

trigger_data

Trigger Detector
raw data

Trigger Detector
raw data

trigger_header

event
descriptor

L2 summary
for L3

trigger_data
pointers

address offset

posted at
Trig-DAQ mailbox

Figure 2: A sketch of the data structures in the Trigger-DAQ interface. The event descrip-
tor field in the trigger header contains the data items listed in section 2.3. The L2 summary
field is described in section 2.5 and the trigger data pointers define the data field contain-
ing the Trigger detectors raw data including the Trigger history (section 2.4).
Note: all pointers shown here are with respect to the trigger root base address.

