Early stage of RHIC collisions and its equilibration: a story told by correlations

BNL Nuclear Physics Seminar

Mikhail Kopytine, STAR Collaboration

Kent State University

http://www.star.bnl.gov/~kopytin/

September 8, 2004

- **1** Content of the talk
 - Equilibration

• Equilibration

Arguably the central issue in hadronic sector at RHIC. Is it taking place ? What is the mechanism ?

• Equilibration

Arguably the central issue in hadronic sector at RHIC. Is it taking place ? What is the mechanism ?

• Methods

• Equilibration

Arguably the central issue in hadronic sector at RHIC. Is it taking place ? What is the mechanism ?

• Methods

Initial state: a "calibrated source" of correlations. Watch their evolution into final state in time \rightarrow system size. Use two particle correlations and Discrete Wavelet Transform.

• Equilibration

Arguably the central issue in hadronic sector at RHIC. Is it taking place ? What is the mechanism ?

• Methods

Initial state: a "calibrated source" of correlations. Watch their evolution into final state in time \rightarrow system size. Use two particle correlations and Discrete Wavelet Transform.

Observations

• Equilibration

Arguably the central issue in hadronic sector at RHIC. Is it taking place ? What is the mechanism ?

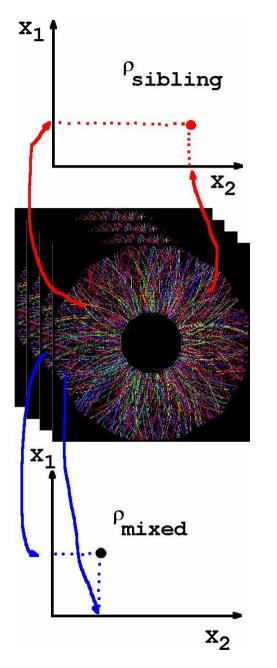
• Methods

Initial state: a "calibrated source" of correlations. Watch their evolution into final state in time \rightarrow system size. Use two particle correlations and Discrete Wavelet Transform.

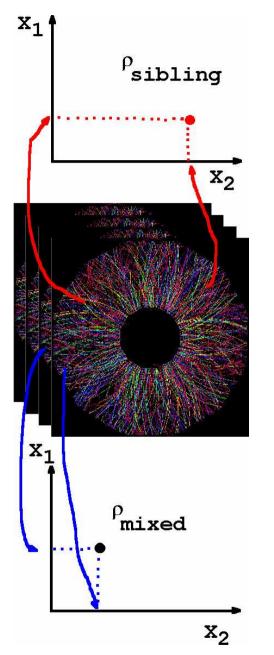
- Observations
- Conclusions

2 Autocorrelation

2 Autocorrelation



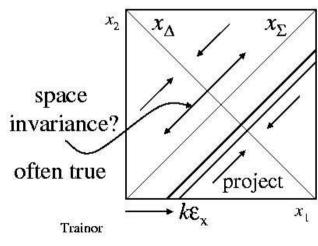
2 Autocorrelation



$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \rightarrow \left(\begin{array}{c} x_{\Sigma} \equiv x_1 + x_2 \\ x_{\Delta} \equiv x_1 - x_2 \end{array}\right),$$

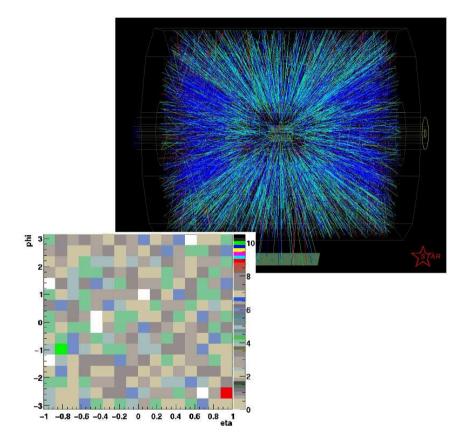
always a lossless transformation of data. **Autocorrelation** A is a projection of a two-point distribution onto difference variable(s) x_{Δ} , lossless for x_{Σ} -invariant (homogenous, stationary) problems.

$$\Delta R(x_1, x_2) = \frac{\rho_{sibling}(x_1, x_2)}{\rho_{mixed}(x_1, x_2)} - 1$$



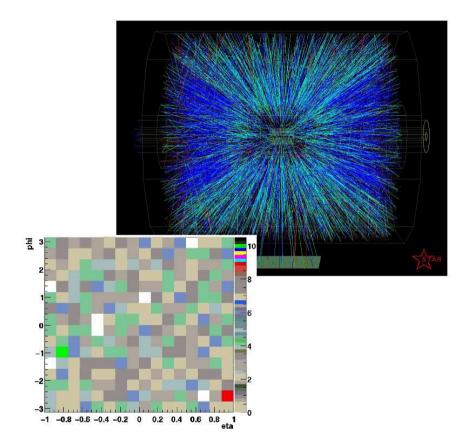
3 Uncorrelated event reference for DWT

3 Uncorrelated event reference for DWT

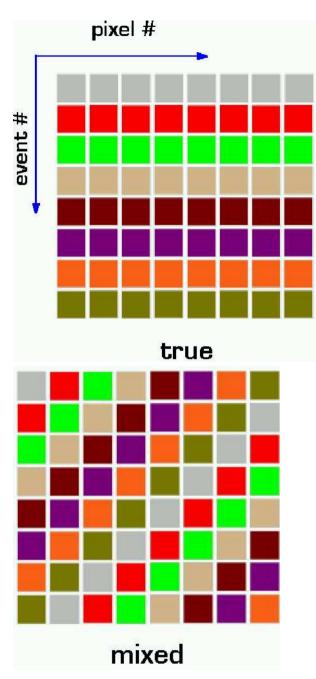


mixed events: no pixel used twice; ≤ 1 pixel from any event in the same mixed event; no mixing of events with largely different multiplicity and vertex.

3 Uncorrelated event reference for DWT

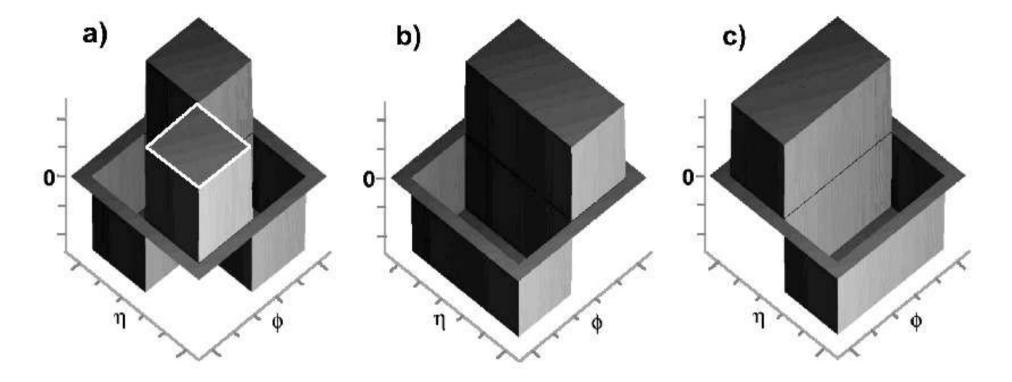


mixed events: no pixel used twice; ≤ 1 pixel from any event in the same mixed event; no mixing of events with largely different multiplicity and vertex.

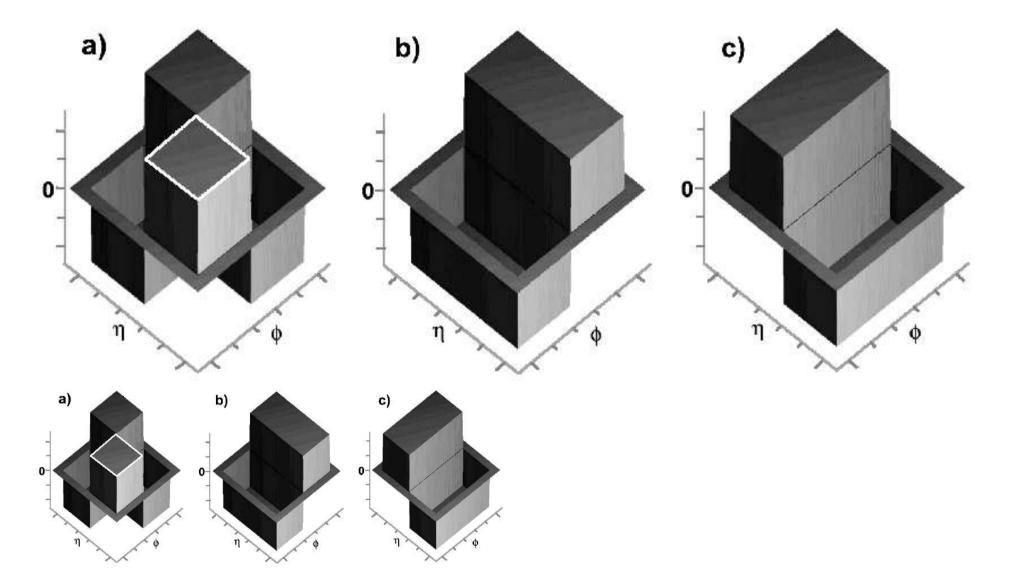


4 Discrete Wavelet Transform (DWT)

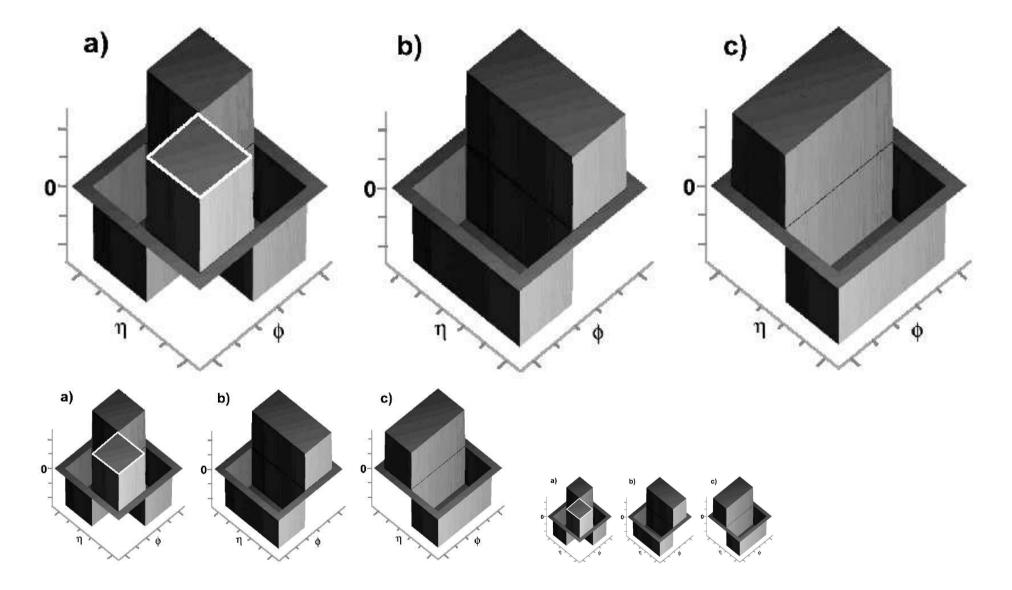
4 Discrete Wavelet Transform (DWT)



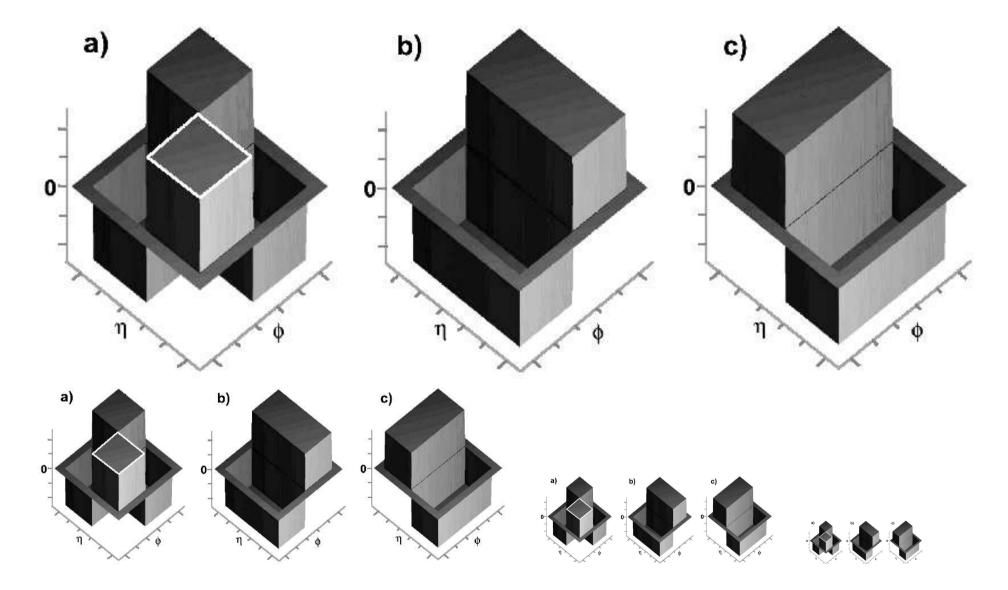
4 Discrete Wavelet Transform (DWT)



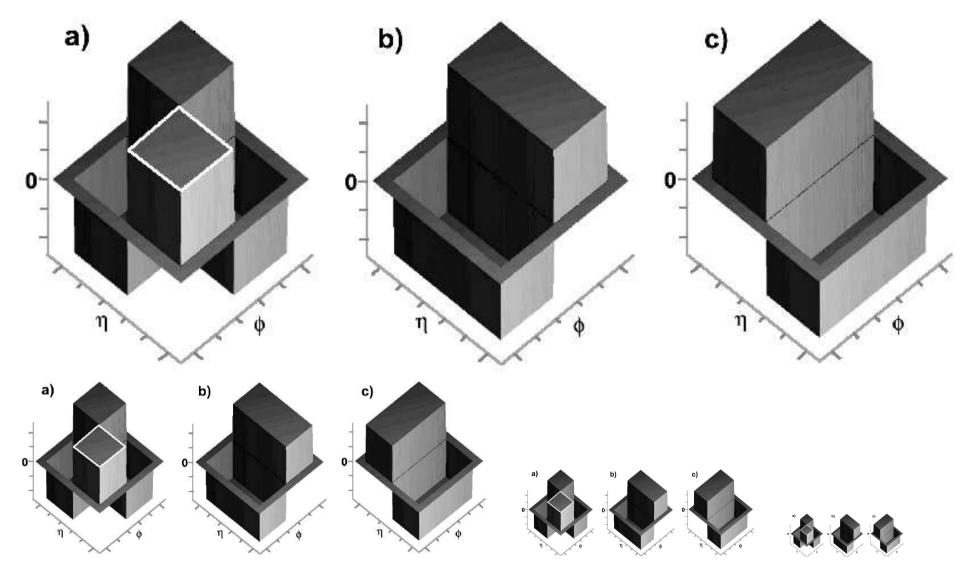
4 Discrete Wavelet Transform (DWT)



4 Discrete Wavelet Transform (DWT)



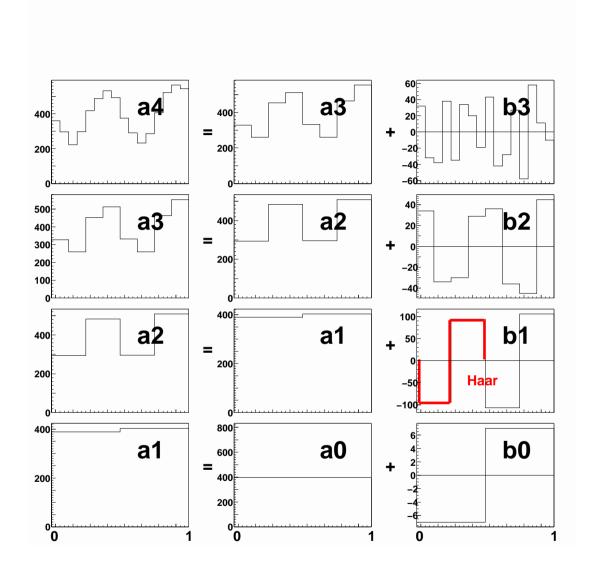
4 Discrete Wavelet Transform (DWT)



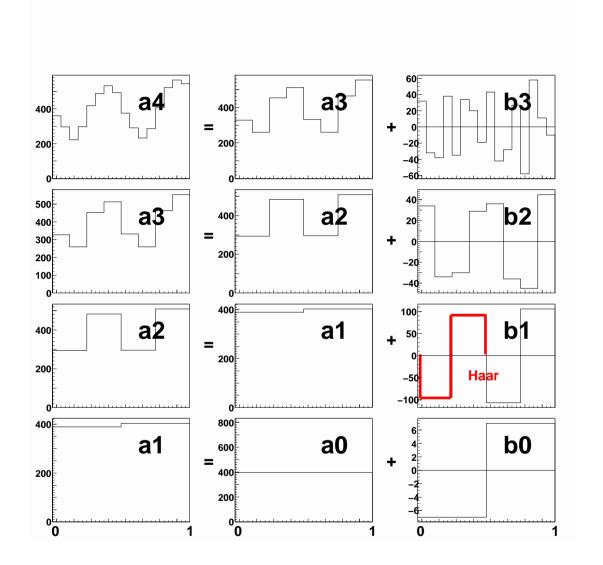
 $F_{m,i,j}^{\lambda}(\phi,\eta)$ -Haar wavelet **orthonormal basis** in (ϕ,η) : scale fineness (m), directional modes of sensitivity (λ) , track density $\rho(\eta,\phi,p_T)$, locations in 2D (i,j). **DWT is an expansion in this basis.**

A flow-inspired example

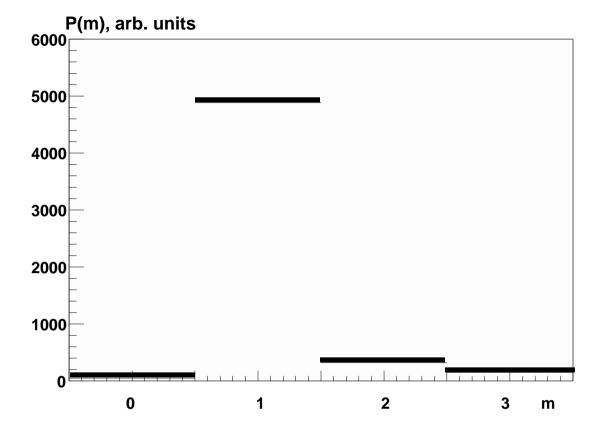
5 A flow-inspired example



5 A flow-inspired example



Elliptic flow-inspired example: x axis - an angle in "naturalunits" $(2\pi = 1)$, y axis multiplicity. The multiresolution theorem: **a4** = **a0+b0+b1+b2+b3**, can have better fineness.



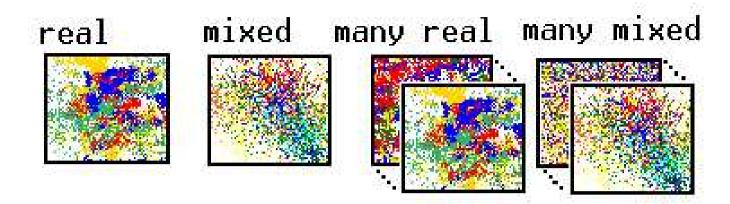
Power spectrum of that flow event as a function of "fineness" m. The dominant contrubution is m = 1 (the " v_2 " harmonic, **b1**). Statistical fluctuations also contribute.

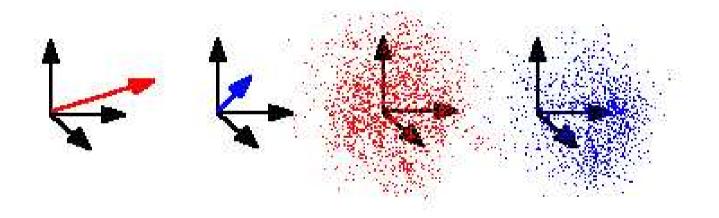
 $P(m) = 2^{-m} \sum_{i} \langle \rho, F_{m,i} \rangle^2.$

Computational complexity O(N)!

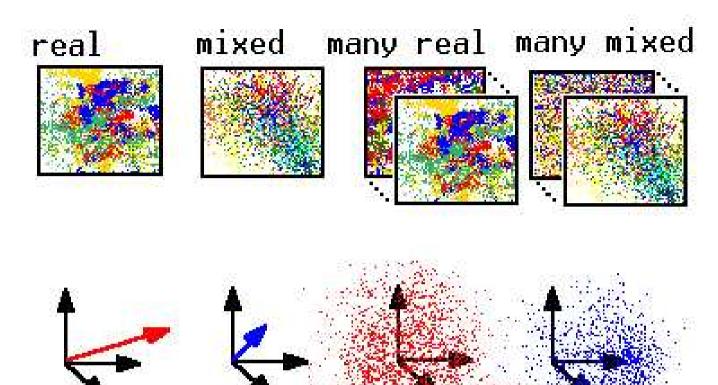
6 DWT Power Spectra and the Hilbert Space

6 DWT Power Spectra and the Hilbert Space

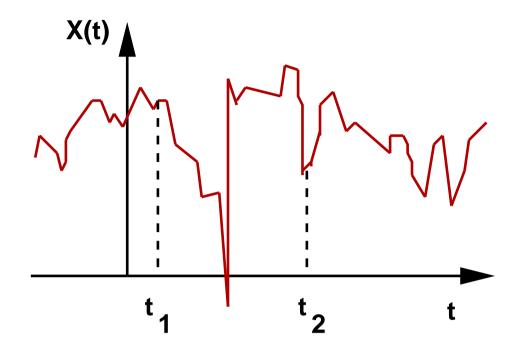


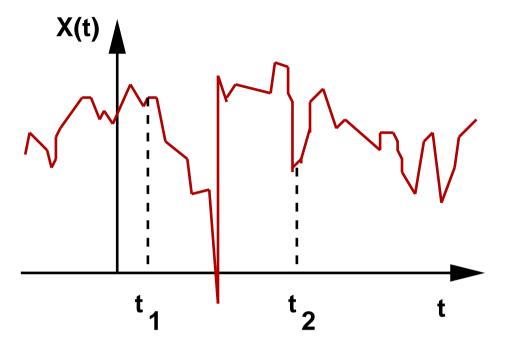


6 DWT Power Spectra and the Hilbert Space



Power of local fluctuations, mode λ : $P^{\lambda}(m) = 2^{-2m} \sum_{i,j} \langle \rho, F^{\lambda}_{m,i,j} \rangle^2 \propto \operatorname{norm}^2$ in the DWT subspace. "Dynamic texture" $P^{\lambda}_{dyn}(m) \equiv P^{\lambda}_{true}(m) - P^{\lambda}_{mix}(m)$.



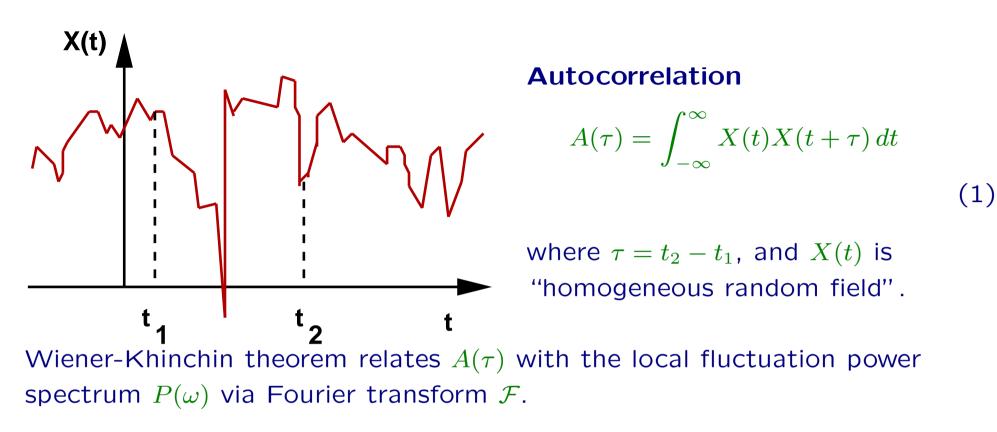


Autocorrelation

$$A(\tau) = \int_{-\infty}^{\infty} X(t) X(t+\tau) dt$$

(1)

where $\tau = t_2 - t_1$, and X(t) is "homogeneous random field".



$$\mathcal{F}_{\omega \to \tau}(P(\omega)) = A(\tau) \tag{2}$$

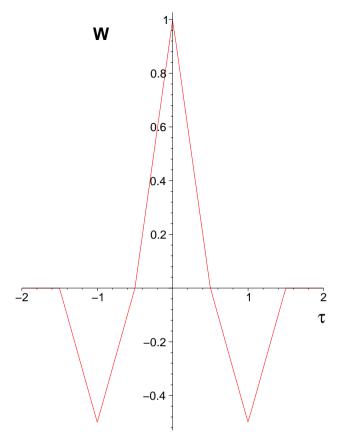
$$P(\omega) = \mathcal{F}_{\tau \to \omega}(A(\tau)) \tag{3}$$

$$O(N) \to O(N^2)$$
 (4)

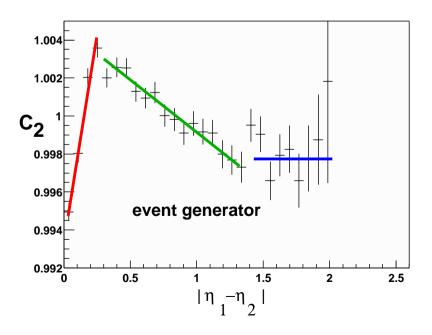
Prefer O(N) for initial data processing for CPU reasons.

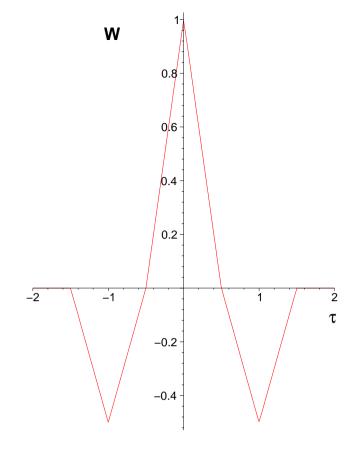
$$P(m) = \overline{\int_{-\infty}^{\infty} X(\tau/2) X(-\tau/2) W(\tau,m) \, d\tau},$$

$$P(m) = \overline{\int_{-\infty}^{\infty} X(\tau/2) X(-\tau/2) W(\tau,m) \, d\tau},$$

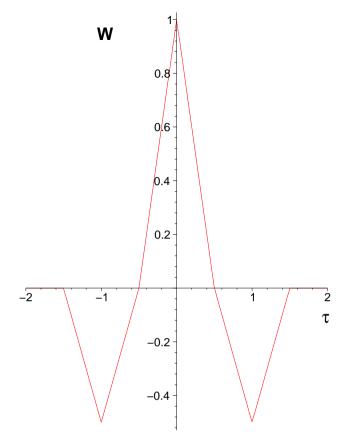


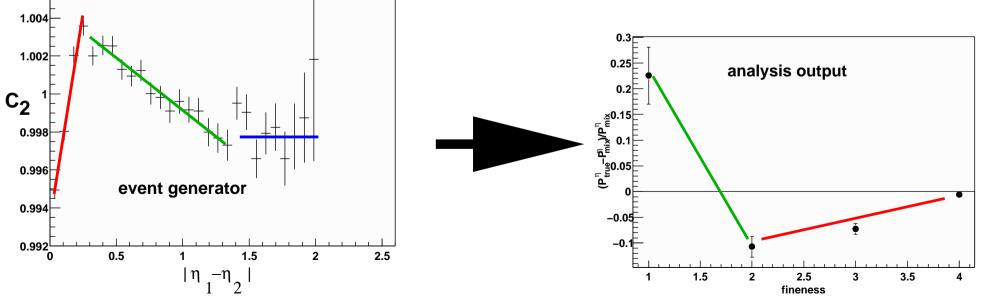
$$P(m) = \overline{\int_{-\infty}^{\infty} X(\tau/2) X(-\tau/2) W(\tau,m) \, d\tau},$$





$$P(m) = \overline{\int_{-\infty}^{\infty} X(\tau/2) X(-\tau/2) W(\tau,m) \, d\tau},$$

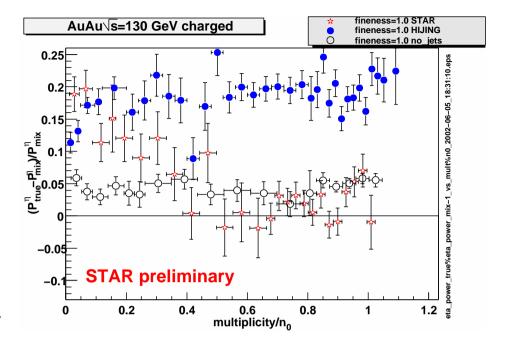




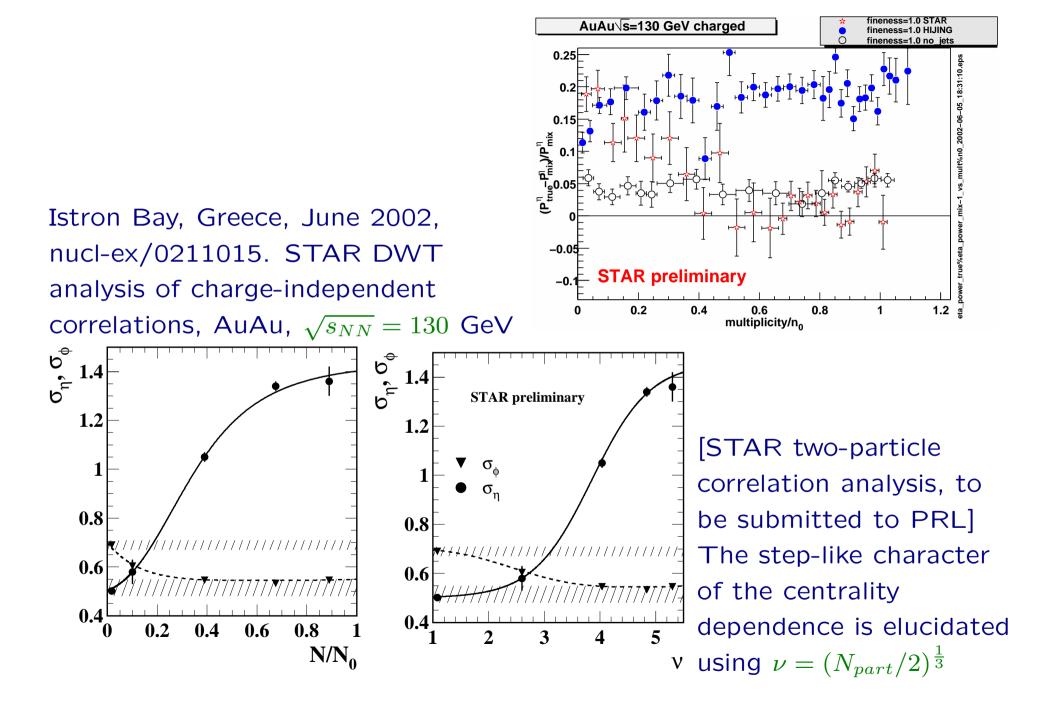
8 Centrality dependence

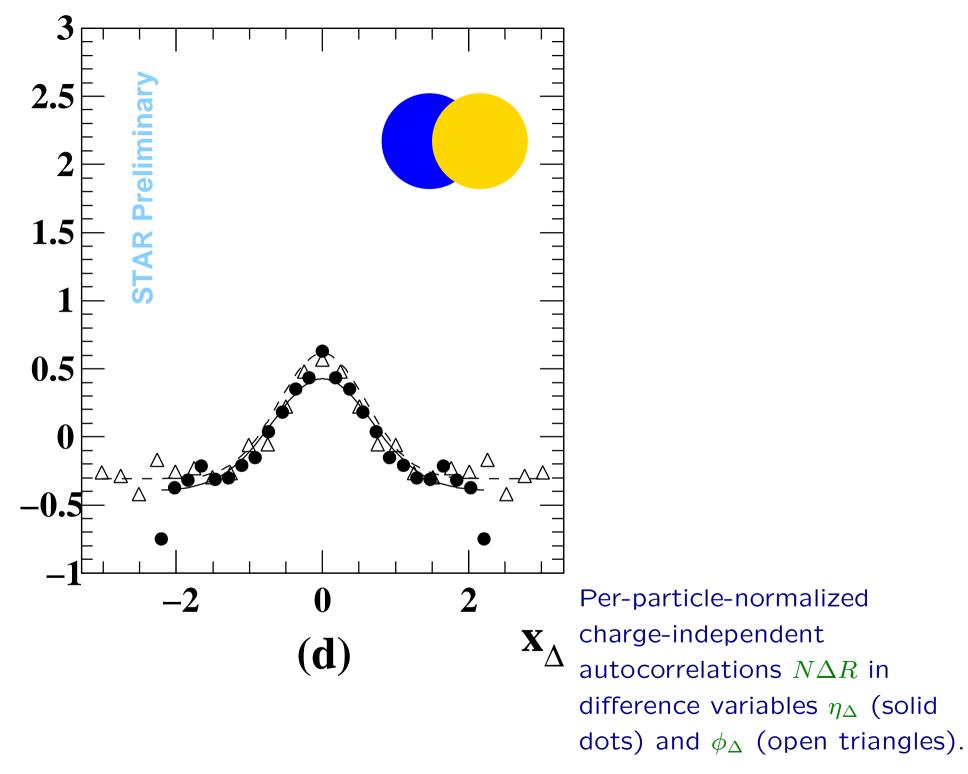
8 Centrality dependence

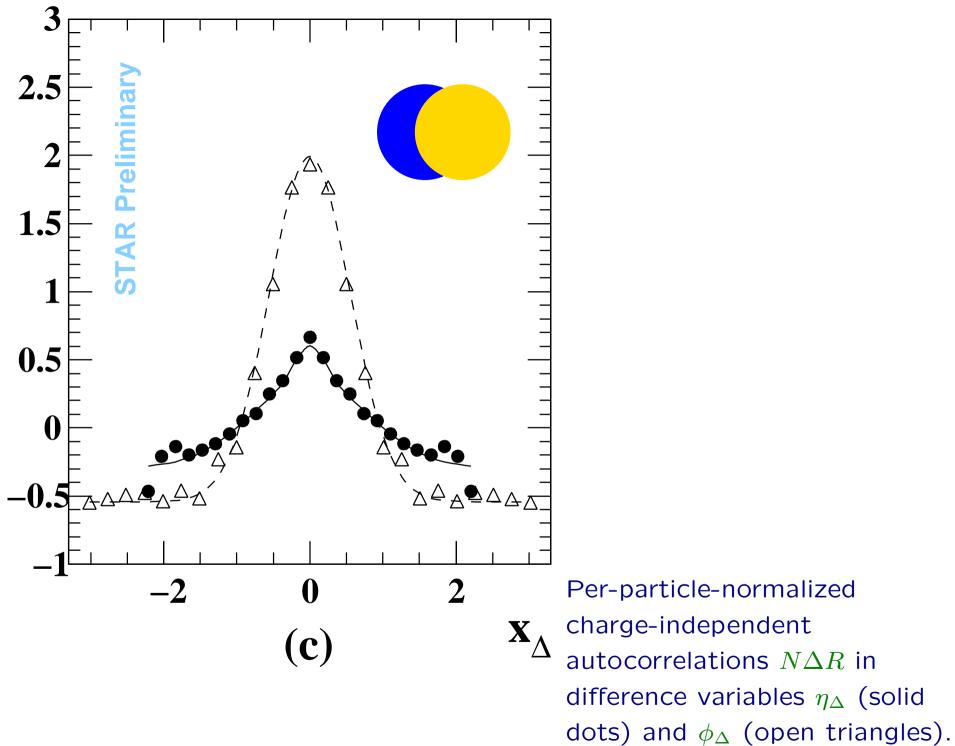
Istron Bay, Greece, June 2002, nucl-ex/0211015. STAR DWT analysis of charge-independent correlations, AuAu, $\sqrt{s_{NN}} = 130$ GeV

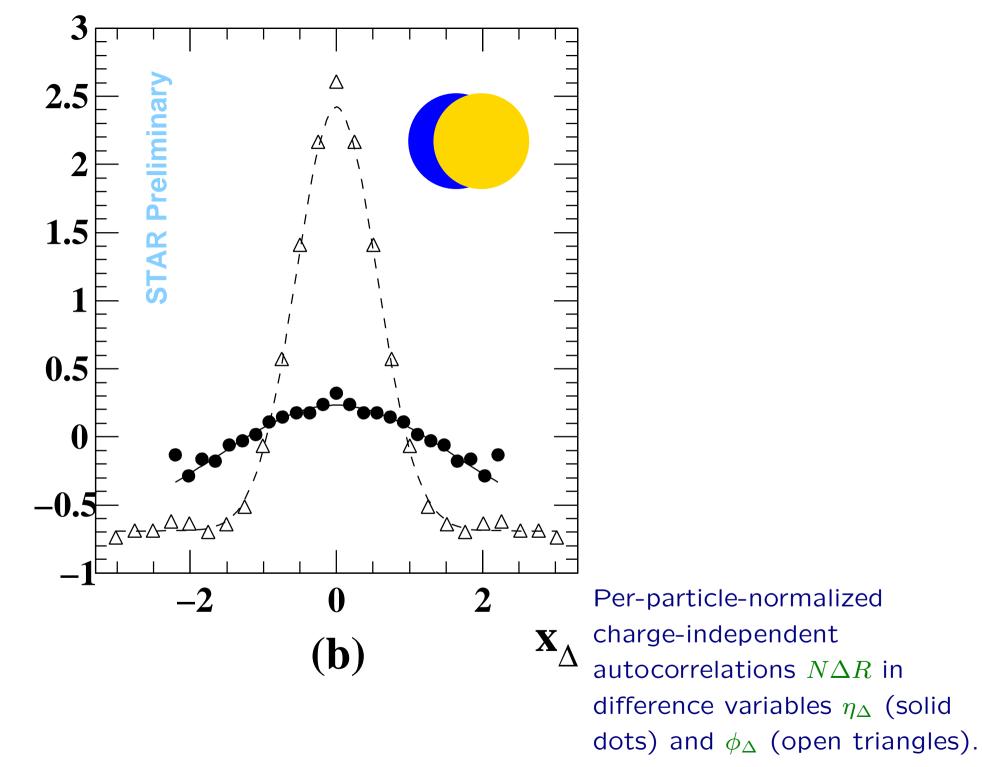


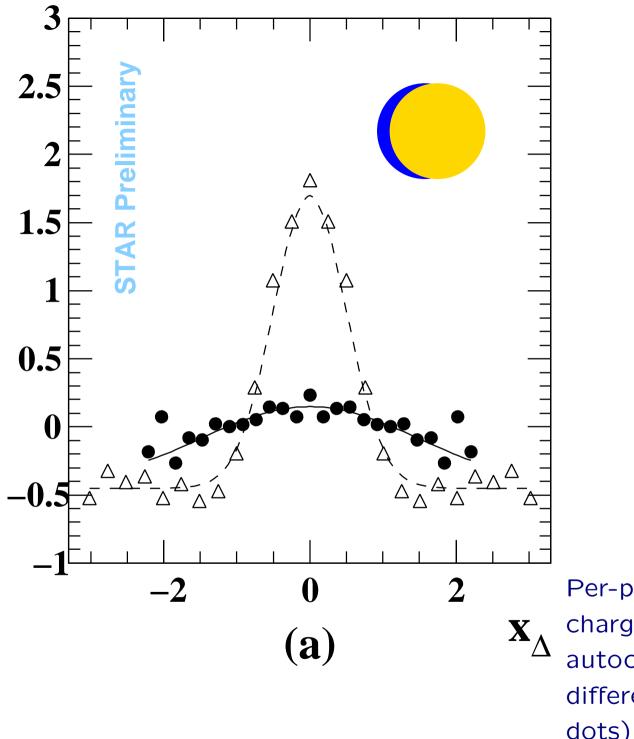
8 Centrality dependence





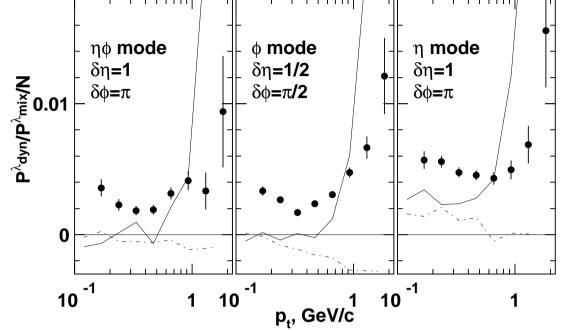






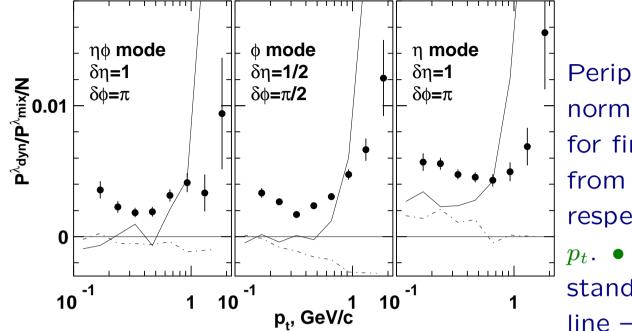
 $\Delta \begin{array}{l} \mbox{Per-particle-normalized} \\ & \mbox{charge-independent} \\ & \mbox{autocorrelations } N\Delta R \mbox{ in} \\ & \mbox{difference variables } \eta_{\Delta} \mbox{ (solid} \\ & \mbox{dots) and } \phi_{\Delta} \mbox{ (open triangles).} \end{array}$

9 p_t dependence: peripheral events, $\sqrt{s_{NN}} = 200$ GeV



Peripheral events (60-84%): normalized dynamic texture for fineness scales m = 0, 1, 0from left to right panels, respectively, as a function of p_t . • – STAR data; solid line – standard HIJING, dash-dotted line – HIJING without jets.

9 p_t dependence: peripheral events, $\sqrt{s_{NN}} = 200$ GeV

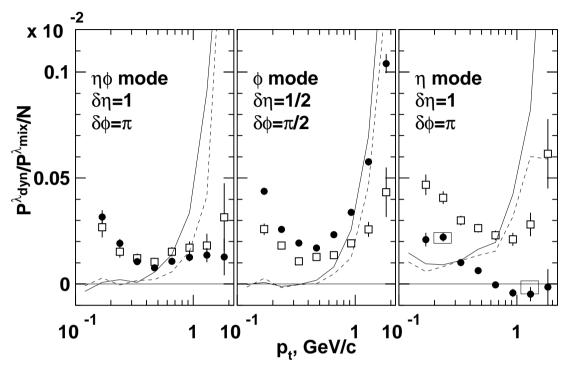


Peripheral events (60-84%): normalized dynamic texture for fineness scales m = 0, 1, 0from left to right panels, respectively, as a function of p_t . • – STAR data; solid line – standard HIJING, dash-dotted line – HIJING without jets.

Qualitative trends in peripheral data are as expected. What signal to expect in the central data, if correlation does not change ?

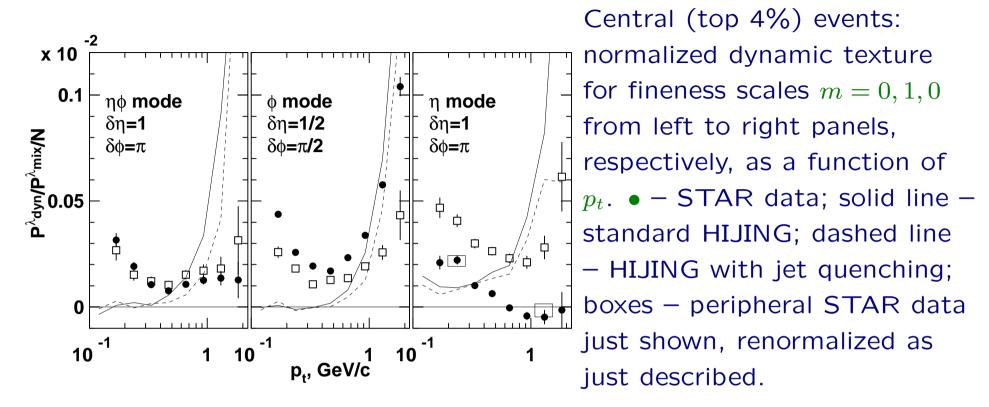
$$\left(\frac{P_{true}}{P_{mix}} - 1\right) \frac{1}{N} \bigg|_{central} = \left(\frac{P_{true}}{P_{mix}} - 1\right) \bigg|_{peripheral} \frac{1}{N_{central}}$$
(5)

10 p_t dependence: central events, $\sqrt{s_{NN}} = 200$ GeV



Central (top 4%) events: normalized dynamic texture for fineness scales m = 0, 1, 0from left to right panels, respectively, as a function of p_t . • – STAR data; solid line – standard HIJING; dashed line – HIJING with jet quenching; boxes – peripheral STAR data just shown, renormalized as just described.

10 p_t dependence: central events, $\sqrt{s_{NN}} = 200$ GeV



We are observing a modification of the minijet structure predominantly in the longitudinal, η direction. Longitudinal expansion of the hot and dense medium formed early in the collision makes this direction special and is likely to be part of the modification mechanism.

via rejection/acceptance algorithm, according to a multiparticle probability density distribution. In general, for N particles denoted 1, 2, ..., N the differential probability density

P(1, 2, ..., N) = P(1)P(2|1)P(3|1, 2)...P(N|1, 2, ..., N-1),

where P(2|1) and subsequent terms are conditional single particle probabilities.

via rejection/acceptance algorithm, according to a multiparticle probability density distribution. In general, for N particles denoted 1, 2, ..., N the differential probability density

P(1, 2, ..., N) = P(1)P(2|1)P(3|1, 2)...P(N|1, 2, ..., N-1),

where P(2|1) and subsequent terms are conditional single particle probabilities.

Two-particle correlation

 $C(1,2) = \frac{P(1,2)}{P(1)P(2)} = \frac{P(2|1)}{P(2)}.$

via rejection/acceptance algorithm, according to a multiparticle probability density distribution. In general, for N particles denoted 1, 2, ..., N the differential probability density

P(1, 2, ..., N) = P(1)P(2|1)P(3|1, 2)...P(N|1, 2, ..., N-1),

where P(2|1) and subsequent terms are conditional single particle probabilities.

Two-particle correlation

Add particle 2 to particle 1:

 $C(1,2) = \frac{P(1,2)}{P(1)P(2)} = \frac{P(2|1)}{P(2)}.$

P(2|1) = P(2)C(1,2)

via rejection/acceptance algorithm, according to a multiparticle probability density distribution. In general, for N particles denoted 1, 2, ..., N the differential probability density

P(1, 2, ..., N) = P(1)P(2|1)P(3|1, 2)...P(N|1, 2, ..., N-1),

where P(2|1) and subsequent terms are conditional single particle probabilities.

Two-particle correlation

$$C(1,2) = \frac{P(1,2)}{P(1)P(2)} = \frac{P(2|1)}{P(2)}.$$

Add particle 2 to particle 1:

P(2|1) = P(2)C(1,2)A two-particle approximation: continue by induction

 $P(3|1,2) = P((3|1)|2) = P(3|1)C(2,(3|1)) \approx P(3)C(3,1)C(2,3),$

via rejection/acceptance algorithm, according to a multiparticle probability density distribution. In general, for N particles denoted 1, 2, ..., N the differential probability density

P(1, 2, ..., N) = P(1)P(2|1)P(3|1, 2)...P(N|1, 2, ..., N-1),

where P(2|1) and subsequent terms are conditional single particle probabilities.

Two-particle correlation

$$C(1,2) = \frac{P(1,2)}{P(1)P(2)} = \frac{P(2|1)}{P(2)}$$

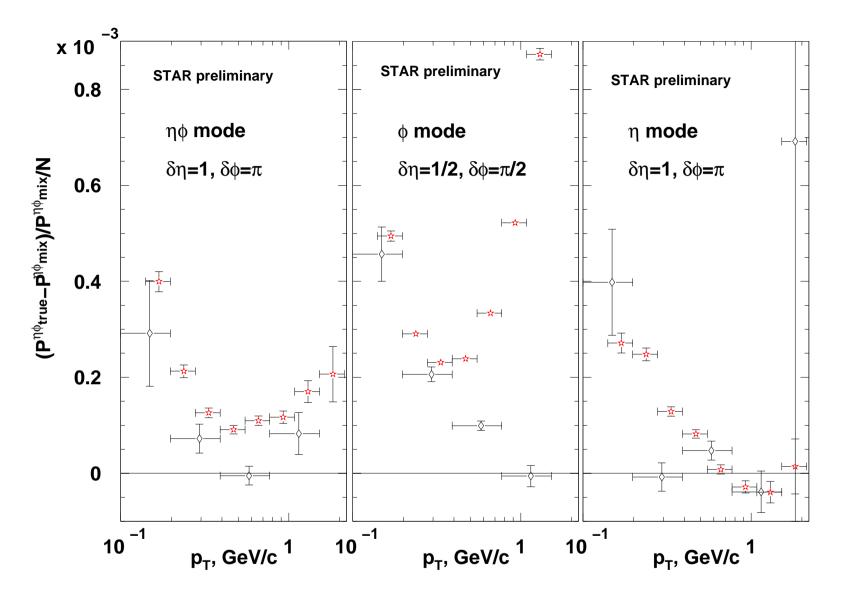
Add particle 2 to particle 1:

P(2|1) = P(2)C(1,2)A two-particle approximation: continue by induction

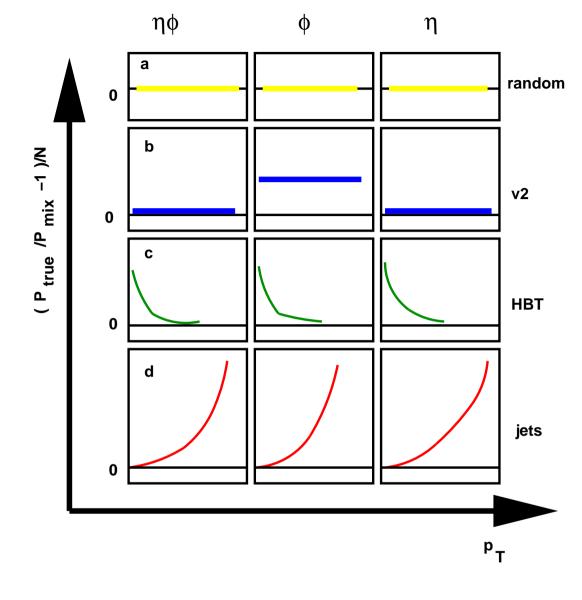
 $P(3|1,2) = P((3|1)|2) = P(3|1)C(2,(3|1)) \approx P(3)C(3,1)C(2,3),$

$$P(N|1, 2, ..., N-1) \approx P(N) \prod_{i=1}^{i=N-1} C(i, N)$$

12 Understanding low p_t



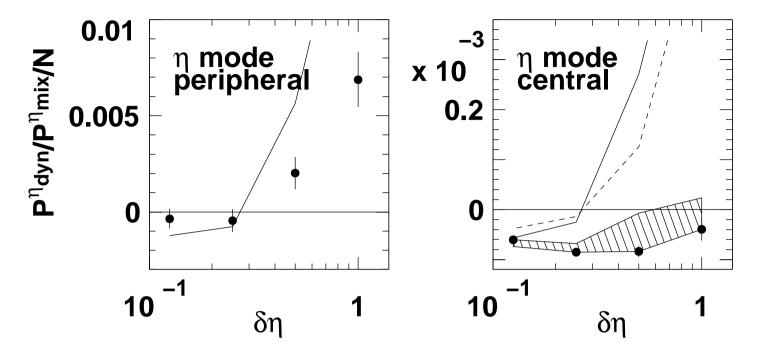
An event generator tuned to reproduce like- and unlike-sign correlations in Q_{inv} , reproduces the low p_t trends in the data. HBT, Coulomb and string fragmentation physics contribute at low p_t .



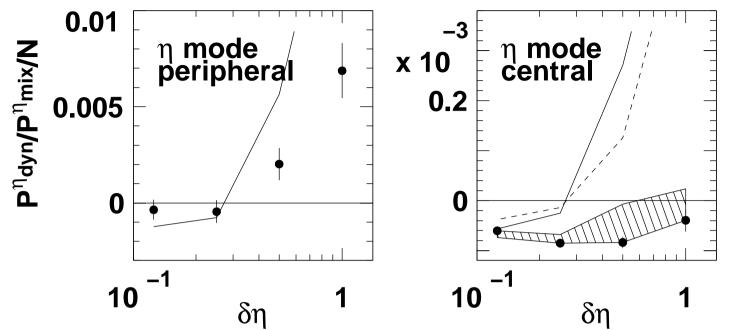
Dynamic texture response in various idealized situations (showing only one scale): (a) events of random (uncorrelated) particles (b) p_t -independent elliptic flow (c) Correlations at low Q_{inv} (Bose-Einstein correlations and Coulomb effect) (d) HIJING jets

13 Scale dependence

13 Scale dependence



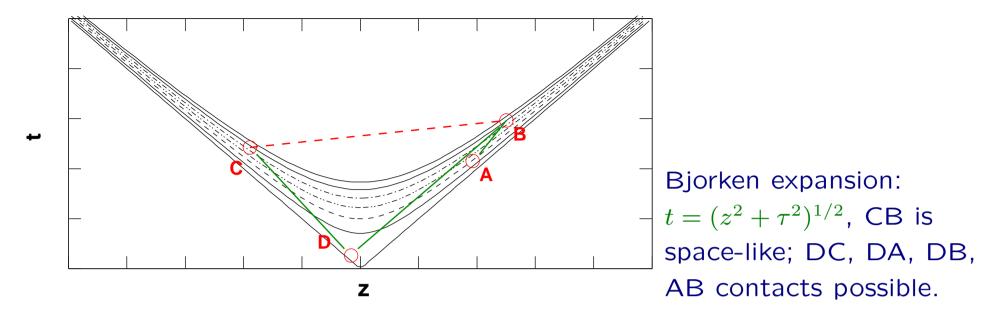
13 Scale dependence



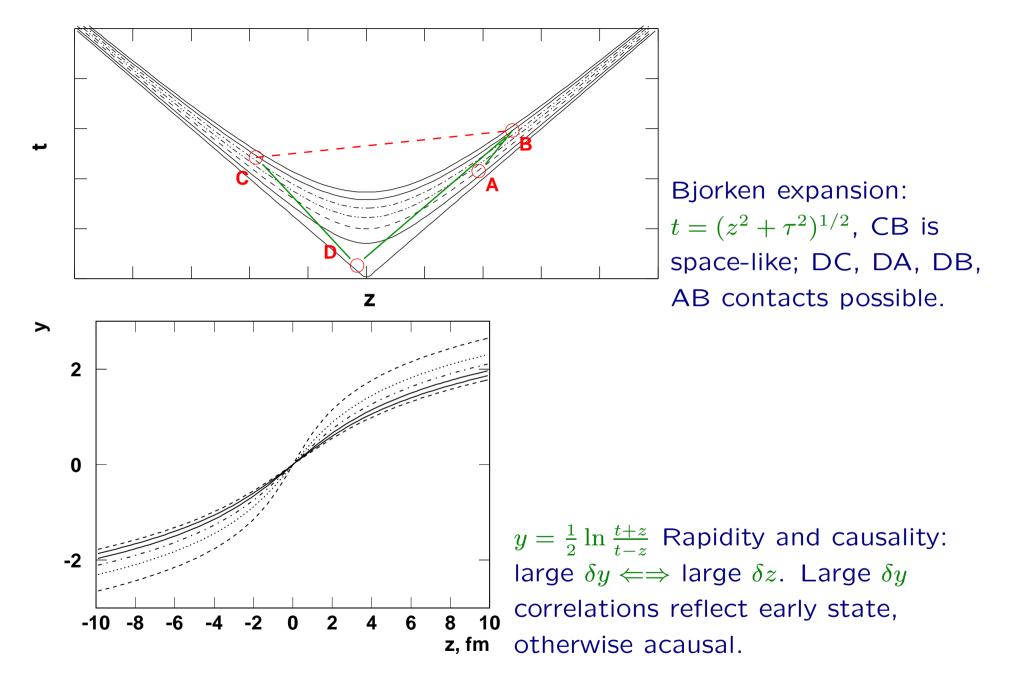
Scale dependence of the dynamic texture measure in peripheral and central events for $1.1 < p_t < 1.5 \text{ GeV}/c$. •– STAR data; solid line – standard HIJING; dashed line – HIJING with jet quenching. An estimate of systematic error, mainly due to track merging, is shown as a hatched area.

14 Rapidity scale and collision history

14 Rapidity scale and collision history



14 Rapidity scale and collision history



• DWT power spectra provide efficient (O(N)) differential scale decomposition of the two-point correlation structure

- DWT power spectra provide efficient (O(N)) differential scale decomposition of the two-point correlation structure
- Fluctuations in local hadron density in the momentum space due to angularly correlated (mini)jets are observable with minimum-bias TPC tracks at $p_t < 2$ GeV/c \Rightarrow can study equilibration !

- DWT power spectra provide efficient (O(N)) differential scale decomposition of the two-point correlation structure
- Fluctuations in local hadron density in the momentum space due to angularly correlated (mini)jets are observable with minimum-bias TPC tracks at $p_t < 2$ GeV/c \Rightarrow can study equilibration !
- The minijet correlation structure is strongly modified with centrality; the effect appears to "turn on" around $\nu = (N_{part}/2)^{1/3} \approx 3$.

- DWT power spectra provide efficient (O(N)) differential scale decomposition of the two-point correlation structure
- Fluctuations in local hadron density in the momentum space due to angularly correlated (mini)jets are observable with minimum-bias TPC tracks at $p_t < 2$ GeV/c \Rightarrow can study equilibration !
- The minijet correlation structure is strongly modified with centrality; the effect appears to "turn on" around $\nu = (N_{part}/2)^{1/3} \approx 3$.
- Broadening of the correlation in η and weakening of P_{dyn}^{η} on the coarse scale are consistent descriptions of the effect. The modification is particularly strong at $p_t > 0.8$ GeV. How does the coupling between longitudinal flow and minijets work ? What do we learn about the expanding fluid ? The fluid seems opaque and "dissipative".

- DWT power spectra provide efficient (O(N)) differential scale decomposition of the two-point correlation structure
- Fluctuations in local hadron density in the momentum space due to angularly correlated (mini)jets are observable with minimum-bias TPC tracks at $p_t < 2$ GeV/c \Rightarrow can study equilibration !
- The minijet correlation structure is strongly modified with centrality; the effect appears to "turn on" around $\nu = (N_{part}/2)^{1/3} \approx 3$.
- Broadening of the correlation in η and weakening of P_{dyn}^{η} on the coarse scale are consistent descriptions of the effect. The modification is particularly strong at $p_t > 0.8$ GeV. How does the coupling between longitudinal flow and minijets work ? What do we learn about the expanding fluid ? The fluid seems opaque and "dissipative".
- The scale dependence of the effect points to the early stage as its source

- DWT power spectra provide efficient (O(N)) differential scale decomposition of the two-point correlation structure
- Fluctuations in local hadron density in the momentum space due to angularly correlated (mini)jets are observable with minimum-bias TPC tracks at $p_t < 2$ GeV/c \Rightarrow can study equilibration !
- The minijet correlation structure is strongly modified with centrality; the effect appears to "turn on" around $\nu = (N_{part}/2)^{1/3} \approx 3$.
- Broadening of the correlation in η and weakening of P_{dyn}^{η} on the coarse scale are consistent descriptions of the effect. The modification is particularly strong at $p_t > 0.8$ GeV. How does the coupling between longitudinal flow and minijets work ? What do we learn about the expanding fluid ? The fluid seems opaque and "dissipative".
- The scale dependence of the effect points to the early stage as its source
- More info: nucl-ex/0407001