# Correlations, Fluctuations and Thermalization

Tom Trainor RHIC/AGS Users Meeting May 10, 2004

#### **Entropy Production and Dissipation**

$$S = N \ln \left\{ \frac{1}{\hbar^3} \cdot \left( \frac{\hat{z}^{d_z} \hat{r}^{d_r}}{N} \right) \cdot \hat{p}_l^{d_l} \hat{p}_t^{d_t} \right\} \begin{cases} N = ? \\ d = ? \end{cases}$$

Sakur-Tetrode entropy (ideal gas)



'stochastic' multiple nucleon scattering

entropy production steps  $\rightarrow$ 

- soft  $p_t$  and multiplicity
- hard  $p_t$  probes increase  $\propto v$
- *correlated*  $p_t$  structure
- dissipation of correlated structure

*reduced* correlations, fluctuations  $\Leftrightarrow$  dissipation, entropy *increase* 

Trainor

 $p_t$  growth with centrality: probe production  $\rightarrow$  dissipation



![](_page_2_Picture_0.jpeg)

Langevin Equation – I  $\dot{\vec{v}}(t) = -\frac{1}{\tau}\vec{v}(t) + \vec{a}_{stoch}(t) + \vec{a}_{mcs}(t)$ 

 $\vec{a}_x(t)$  gaussian random, zero mean,  $\vec{a}_{mcs}(t) \perp \vec{v}(t)$ 

thermalization of point motion in 2D

probe particle in dissipative medium

![](_page_2_Picture_3.jpeg)

![](_page_2_Figure_5.jpeg)

dissipation limit: thermal velocities, random walk

what happens to extended objects, internal structure?

# pQCD Energy Loss

![](_page_3_Figure_1.jpeg)

![](_page_4_Figure_0.jpeg)

![](_page_5_Figure_0.jpeg)

![](_page_6_Figure_0.jpeg)

![](_page_7_Figure_0.jpeg)

#### Fluctuations and Correlations J.G. Reid $\Delta R$ single point 2D scale integral 0.06 ک<mark>و</mark> 0.05 ک data 10<sup>2</sup> 0.04 $(\delta\eta,\delta\phi) = (\Delta\eta,\Delta\phi)$ 0.03 10 0.02 0.01 Q.J. Liu $^{6}_{x}$ 2 3 4 5 $\sqrt{n} \cdot (\langle p_t \rangle - \hat{p_t}) / \sigma_{p_t}$ 2D scale inversion fluctuation excess scale dependence D.J. Prindle joint autocorrelation $\Delta \sigma_{p_{t}:n}^{2} \equiv \overline{\left(p_{k}(\delta x) - n_{k}(\delta x)\hat{p}\right)^{2}} / n_{k} - \sigma_{\hat{p}_{t}}^{2} \qquad \Delta R \propto \overline{p_{ti} \cdot p_{tj}} / \sqrt{n_{i}n_{j}} - \sqrt{n_{i}n_{j}}\hat{p}_{t}^{2}$ $\Delta \sigma_{p_{l}:n}^{2} \left( m \varepsilon_{\eta}, n \varepsilon_{\phi} \right) = 4 \hat{p}^{2} \sum_{k=1}^{m} \varepsilon_{\eta} \sum_{l=1}^{n} \varepsilon_{\phi} \left( 1 - \frac{k - 1/2}{m} \right) \left\{ 1 - \frac{l - 1/2}{n} \right\} \left\{ \frac{d^{2} \overline{n}}{d n_{\star} d \varphi_{\star}} \frac{\Delta A}{A_{kl}} \left( \varepsilon_{\eta}, \varepsilon_{\phi} \right) \right\}$

fluctuations  $\Leftrightarrow$  integral equation  $\Leftrightarrow$  correlations

# $\langle p_t \rangle$ Fluctuations $\rightarrow p_t$ Correlations

![](_page_9_Figure_1.jpeg)

minijet dissipation & velocity/temperature structure:

- elongation on  $\eta_{\Delta}$
- necking on  $\phi_{\Delta}$

![](_page_9_Figure_5.jpeg)

soft partons as extended objects?

![](_page_9_Figure_7.jpeg)

![](_page_9_Figure_8.jpeg)

 $\phi_{\Lambda}$ 

![](_page_9_Figure_9.jpeg)

![](_page_9_Figure_10.jpeg)

![](_page_9_Figure_11.jpeg)

# **Event-wise Minijets**

autocorrelations represent *typical* structure of many minijets within and among collisions

![](_page_10_Figure_2.jpeg)

Trainor

# Langevin II – Minijet Dissipation

![](_page_11_Figure_1.jpeg)

### Au-Au Angular Correlations – II

![](_page_12_Figure_1.jpeg)

## Au-Au Collision Model

![](_page_13_Figure_1.jpeg)

![](_page_14_Figure_0.jpeg)