Event Structure at RHIC from p-p to Au-Au

Tom Trainor University of Washington March, 2004

Agenda

- p-p minbias minijets probe A-A bulk medium
- $\langle p_t \rangle$ fluctuations: minijets as velocity structures
- Minijet *deformation* on (η, ϕ) : parton-medium coupling
- Minijet dissipation: two-particle fragmentation function
- Net-charge correlations: 2D hadronization geometry

A summary of results from the STAR Event Structure Working Group

p-p 1D Two-component Model

per-event p_t distribution

factorization hypothesis

soft hard

$$1/p_t dN/dp_t(p_t, n_{ch}) = n_s(n_{ch}) S_0(p_t) + n_h(n_{ch}) H_0(p_t)$$

integrates to n_{ch} each integrates to 1

five-parameter model

$$n_{ch} = n_{s}(n_{ch}) + n_{h}(n_{ch})$$

linearity assumption:
$$n_{h}(n_{ch}) / n_{ch} = \alpha(n_{ch} - n_{0})$$

normalized p_{t} distribution
$$1 / n_{s}(n_{ch}) \cdot 1 / p_{t} dN / dp_{t}(p_{t}, n_{ch}) = S_{0}(p_{t}) + n_{h}(n_{ch}) / n_{s}(n_{ch}) \cdot H_{0}(p_{t})$$

Trainor

normalized p_{t} distributions

p-p 1D Differential Analysis

Soft reference S_0 : Lévy on $m_t \rightarrow \text{error function on } y_t!$

Lévy S₀:

$$1/m_t \ dN / dm_t \equiv A / \{1 + \beta_0 (m_t - m_0) / n\}^n$$

$$y_t \equiv \ln \left\{ \sqrt{1 + (p_t / m_0)^2} + p_t / m_0 \right\}$$

$$p_t / m_0 \equiv \gamma \beta_t$$

p-p Soft-sector n_{ch} Dependence

R. J. Porter

increasing N_{ch} \rightarrow

Fluctuations and Autocorrelations

integral equation: invert variance difference to get ΔR

$\langle p_t \rangle$ Fluctuation Scaling

one bang

In-medium Au-Au Minijet Model

\sqrt{s} Dependence of LSC

Dramatic changes with $\sqrt{s_{NN}}$

Hard-scattering threshold at 10 GeV?

Summary

- Correlations and fluctuations: powerful new techniques
- Formal connection to cosmic microwave analysis
- New STAR results:
 - Minijet gaussian on y_t in p-p collisions
 - Minijet correlations on (η, ϕ) in p-p collisions
 - Minijet distortions on (η, ϕ) in Au-Au collisions
 - Dissipative bulk medium in Au-Au collisions
 - 2D isospin antiferromagnet in Au-Au collisions
- Bulk color-medium properties in HI collisions
- Strong \sqrt{s} dependence of p_t fluctuations/correlations