

Low-*Q*² Partons in p-p and Au-Au Collisions

Tom Trainor ISMD 2005 – *Kroměříž, CR* August, 2005

Agenda

- Survey of p-p correlations
- Fragment distributions on (y_t, y_t) in p-p
- Fragment distributions in Au-Au
- Angular correlations on $(\eta_{\Delta}, \phi_{\Delta})$ in p-p
- Angular correlations in Au-Au
- p_{t} correlations in p-p and Au-Au

QCD from the bottom up

Low- Q^2 Partons in p-p Collisions

r or by inversion of fluctuation scale dependence

Single-particle Fragmentation – I fragmentation functions on logarithmic variables

Single-particle Fragmentation – II

simple e-e systematics on transverse rapidity

 \rightarrow two-particle fragment distribution

Two-particle Fragment Distributions an approach derived from fragmentation functions

one can sketch a two-particle minimum-bias fragment distribution starting with a surface from which fragmentation functions are conditional slices

construct a surface representing fragmentation functions vs parton momentum Q/2 symmetrize the surface to represent fragment-fragment correlations compare to data: general features agree; string fragments appear at small y_t US – same side

y_t

Jet Morphology Relative to Thrust

11

Symmetrized Angular Kinematics remove trigger-associated asymmetry

$$\sqrt{\frac{\left\langle p_{t,2}^{2} \right\rangle}{\left\langle p_{t,1}^{2} \right\rangle}} \left\langle j_{t\phi,1}^{2} \right\rangle + \sqrt{\frac{\left\langle p_{t,1}^{2} \right\rangle}{\left\langle p_{t,2}^{2} \right\rangle}} \left\langle j_{t\phi,2}^{2} \right\rangle = \sqrt{\left\langle p_{t,1}^{2} \right\rangle \left\langle p_{t,2}^{2} \right\rangle} \left\{ \left\langle \sin^{2} \phi_{12} \right\rangle_{SS} + 2 \left\langle \sin^{2} \phi_{1} \right\rangle \left\langle \sin^{2} \phi_{2} \right\rangle \right\}$$

Symmetrize
$$\langle | j_{t\phi} | \rangle$$
 and $\langle | k_{t\phi} | \rangle$
no small-angle approximation, similar fragment p_t

$$\overline{\langle j_{i\phi}^2 \rangle_{12}} = \frac{(m_{\pi}/2)^2 \exp\{y_{i2}\}}{2\cosh\{y_{iA}\}} \{\langle \sin^2(\phi_A/\sqrt{2}) \rangle_{ss} + 2\langle \sin^2(\phi_A/2\sqrt{2}) \rangle^2 \}$$
As $\langle \sin^2(\phi_A/\sqrt{2}) \rangle \rightarrow \sin^2(\sigma_{\phi_A}/\sqrt{\pi})$ same for $\overline{\langle j_{i\pi}^2 \rangle_{12}} (y_{i2}, y_{iA})$ ss (y_{i2}, y_{iA}) same for $\overline{\langle j_{i\pi}^2 \rangle_{12}} (y_{i2}, y_{iA})$ since $(\phi_A = \phi_{12})$ start (y_{i2}, y_{iA}) start $(y_{i2}, y_$

Fragment Asymmetry about Thrust *evolution with Q² of soft jet angular asymmetry*

 y_t cut space

 p_t combinations determine Q^2 of parton interaction

no trigger particle

- Small-Q² partons down to 1 GeV are detectable
- These softest jets are strongly elongated in the azimuth φ direction in p-p collisions

softest jets ever! big non-perturbative effects

Minijet Deformation on (η, ϕ) in Au-Au

fragmentation asymmetry reverses -p- $p \rightarrow Au$ -Au

The Other k_t Broadening

interaction between intrinsic k_t and momentum transfer q

the alignment between parton $k_t s$ and q determines whether relative azimuth or relative p_t of fragments will broaden

$\langle p_t \rangle$ Fluctuations and p_t Correlations

partons and velocity correlations: how is p_t distributed on (η,ϕ) ?

T. A. Trainor, R. J. Porter and D. J Prindle, J. Phys. G: Nucl. Part. Phys. 31 (2005) 809-824; hep-ph/0410182 Trainor 19

Compare with p-p p_t Autocorrelations

Recoil Response to Parton Stopping red shift: particle production may be from a recoiling source

Summary

- Precision survey of p-p correlation structure
- Model-independent access to low- Q^2 partons
- Hydrodynamic aspects of parton scattering?
- The other k_t broadening: p_t asymmetry
- Low- Q^2 partons as Brownian probes of A-A
- Dissipation: p-p fragment distributions modified in A-A
- Non-pQCD p-p angular correlations modified in A-A
- p_t correlations: temperature/velocity structure of A-A
- Strong disagreement with pQCD Hijing Monte Carlo
- Recoil response of A-A bulk medium: viscosity $\neq 0$

