Large-scale Correlation Structure on Two-particle Axial Momentum Space in Au-Au Collisions at $\sqrt{S_{NN}}$ = 130 GeV

Aya Ishihara University of Texas at Austin for the STAR collaboration

DNP meeting 03, Tucson

Two-particle Correlations in Axial Momentum Space (η, φ)

How are the correlations, well studied in p-p collisions modified in Au-Au collisions?

Reproduced with data from Ref. Phys. Lett. B56:400,1975

Pair Number Density Ratio

 \vec{p}_2

 \vec{p}_1

Event B

 $\vec{p}_2 \stackrel{\text{mixed pair}}{\stackrel{\text{distribution}}{\stackrel{\text{di$

 $r(\vec{p}_{1}, \vec{p}_{2}) = \frac{\rho_{sibling}(\vec{p}_{1}, \vec{p}_{2})}{\rho_{mixed}(\vec{p}_{1}, \vec{p}_{2})}$

Count numbers of pairs in each bin for sibling and mixed and form ratios

sibling pair distribution p_1

Data Selection and Cuts:

Collision system: $Au + Au = \sqrt{s_{NN}} = 130 \, GeV$

•Central (15%) trigger (210k events after event cut)

•Minimum-bias trigger (124k events after event cut)

- $0.15 < p_t < 2 \text{ GeV}$
- |η|<1.3
- full 2π azimuth

Pair cuts correct for track splitting and merging, and remove most of HBT/Coulomb correlations

mixed-pair reference

event ordering on vertex position and multiplicity

Ishihara

Like-sign and Unlike-sign / $\eta \otimes \eta$ and $\phi \otimes \phi$ correlation

- Little dependence on sum or pair-average η or ϕ
- Form the joint autocorrelation to study *charge-independent* (CI) and *charge-dependent* (CD) correlations

Charge-Independent Joint Autocorrelation

Ishihara

Charge-Dependent Joint Autocorrelation

1D projections

► Larger change on ϕ_{Δ} : → evolution from 1D color-string charge-ordering to 2D surface-ordering

Shape change and larger amplitude for the most central events :
→ pair emission probability falls with opening angle

Ishihara

Summary

- Large-amplitude CI and CD two-particle number correlations are observed on axial momentum space
- CI and CD joint autocorrelations show strong centrality dependencies of correlation structure: amplitude, shape and characteristic lengths

CI

•Initial-state multiple scattering (minijets)

•Suggest modification of minijets in a dissipative medium

CD

•Hadronization geometry

•Suggest surface charge ordering and growth of an opaque medium in central collisions