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I show how to express the mean-pt fluctuation measure at 
   full STAR acceptance scale as an integral of the two-particle 
   number correlations on pt x pt space.  This relates the measure
   defined in STAR paper nucl-ex/0308033, “Event-wise <pt>
   fluctuations in Au+Au collisions at sqrt{s_NN} =130 GeV,”
   to Eq.(1) in STAR paper nucl-ex/0408012, “Two-particle
   correlations on transverse momentum and minijet dissipation
   in Au+Au collisions at sqrt{s_NN} =130 GeV.”

Lanny Ray 
STAR Event Structure Physics Working Group

November 2004

Relating Fluctuations and Correlations – PART I

The general steps are sketched out first.  For those interested in    
   understanding the precise algebraic steps I present a pedagogical 
   derivation in a following Appendix.
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In STAR paper nucl-ex/0308033, “Event-wise <pt> fluctuations …”
we introduced a new measure of non-statistical event-wise fluctuations 
in mean transverse momentum based on the difference between the
total variance and that expected when there are no dynamical correlations: 

2
ˆ

2 2
: )ˆ(

tt ptjtjnp ppn σσ −−≡∆

(see Appendix – slide 7 for definition of symbols;
overline denotes event-wise average)

In order to relate this variance difference quantity to two-particle correlations 
we need to re-express ∆σ2

pt:n in terms of sums over pairs of particles:
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(see Appendix
for complete

algebraic details)

This is the first line in Eq.(1) in nucl-ex/0408012. 
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Next, relate the sum over real pairs of particles within each event (first term of 
preceding equation) to the two-particle number density:
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Each pair of particles from 
each event is represented by 
a single point in the pt1 vs pt2 space.
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The sum of pairs in event j, 
averaged over events…

is approx. by a sum over bins, 
averaged over events, where
nsib=#real pairs in 2D bin (k,l).

The latter, avg. number of sibling pairs
in bin (k,l) is identified with sibling pair 

density times 2D bin area. 

Fill this binned space
with all pairs of
accepted particles
using all events in
the centrality bin.
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Similarly, relate the inclusive (mean-pt)2 term to a sum over mixed-event pairs and the 
mixed pair density, which serves as the uncorrelated two-particle reference density:
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Fill this binned space
with all pairs of
accepted particles
using mixed-events 
within the centrality bin.

Mixed-event avg. (double overlines) 
of sum over 2D bins, where

nj,k=#particles in bin k.

The latter, avg. number of mixed pairs
in bin (k,l) is identified with mixed pair 

density times 2D bin area. 
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Combining these two parts gives the relationship between mean-pt 
fluctuation variance excess measure ∆σ2

pt:n and two-particle correlations 
in Eq.(1) of nucl-ex/0408012 given by:
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All the steps and details are given in the following Appendix.

Note that we usually do not bin the two-particle densities directly in 
pt, but rather use a mapping from pt to X(pt) in order to achieve approx.
uniform statistics in the bins.  Also, in the future we plan to use transverse 
rapidity, yt, which is another mapping, in order to optimally display the 
transverse string fragmentation dynamics, analogous to that in Lund 
string fragmentation models along the beam axis.
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Appendix

• Definition of symbols
• Manipulation of ∆σ2

pt:n into sums over pairs 
of particles

• Derivation of lines 2 and 3 in Eq.(1) of 
nucl-ex/0408012.
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Definition of Symbols:

events all            
in particles accepted allfor   variance inclusive     

events allin  particles accepted allfor  mean  inclusive       ˆ
.event in  particles accepted all            

for magnitudes  momentum e transversofmean  
.event in            

 particle of magnitude  momentum e transvers  
events allfor ty multiplicimean       

indices particle     ,

acceptancein  event in  used particles ofnumber       
indicesevent    ,

bin centrality ain  events ofnumber        
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Manipulation of ∆σ2
pt:n into sums 

over pairs of particles
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First, I show how the mean-pt variance excess measure in Eq.(2) of STAR paper
nucl-ex/0308033 can be manipulated into sums over pairs of particles from the
same events (sibling pairs) and from mixed events (mixed pairs):

[Eq.(2) in nucl-ex/0308033]
STAR

variance
excess

measure

(separate true
pairs from “self” pairs)

(expand symbols)

(write out
the squares)
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(then collect
them)

jtp
2≡

(write out
all the terms)

(define)
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continued,

This term vanishes exactly if mean-pt
2

is not correlated with nj.  For STAR applications
this term is small compared to differences 

between the first two terms and will be neglected.

This is the first
line in Eq.(1) in

nucl-ex/0408012 
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Derivation of lines 2 and 3 in Eq.(1) 
of nucl-ex/0408012.
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In Tutorials 2 and 3 I introduced the normalized pair density ratio which
can be related to the two-particle correlation.  Starting with this measured
ratio in two-dimensional pt x pt space I will explain how the correlation
density and the combination of sums over sibling and mixed pairs on
the preceding pages can be related. 
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Represent event averaged,
bin-wise sibling pair fraction
with integral over 2D sibling
pair density, ρsib.

Fraction of
total sibling

pairs in bin (k,l)

Fraction of
total mixed

pairs in bin (k,l)

where εk , ∆pt are the pt bin size and acceptance

Normalized
ratio of

sibling-to-mixed
particle pair

densities
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Define the bin-wise
average density;
assume uniform
bin sizes εpt, and introduce

bin momentum pt,k:

Similarly, represent the event 
averaged, bin-wise mixed pair 
fraction as integral over ρmix
and define bin-wise average.

Normalize the sibling and
mixed-event densities
to the event-averaged

number of pairs;
express histogram ratio

in terms of densities:
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Using the results on page 11 and replacing the sums over pairs
with sums over 2D pt x pt bins we get, 

This term is
of order 1/ε

relative to the
leading term;

neglect for large
event samples.

In the limit of very small pt bins
This is the second line in 

Eq.(1) in nucl-ex/0408012 

(factor out
ptkptl)

(separate sums over different and same events)
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Using the definition of histogram ratio r, evaluating (mean pt)2

using the mixed density, and using the density normalization
definition, the final expression is written compactly as follows:

This is the third
line in Eq.(1) in

nucl-ex/0408012 

The last two equations summarize the integral relation between correlations 
and fluctuation measures used in nucl-ex/0408012 for full acceptance scale.  
Similar derivations can be applied to any other binned quantity.


