Relating Fluctuations and Correlations - PART I

Lanny Ray
STAR Event Structure Physics Working Group November 2004

Il show how to express the mean- p_{t} fluctuation measure at full STAR acceptance scale as an integral of the two-particle number correlations on $p_{t} \times p_{t}$ space. This relates the measure defined in STAR paper nucl-ex/0308033, "Event-wise <pt> fluctuations in Au+Au collisions at sqrt\{s_NN\} $=130 \mathrm{GeV}$," to Eq.(1) in STAR paper nucl-ex/0408012, "Two-particle correlations on transverse momentum and minijet dissipation in $A u+A u$ collisions at sqrt\{s_NN\} $=130 \mathrm{GeV}$."
-The general steps are sketched out first. For those interested in understanding the precise algebraic steps I present a pedagogical derivation in a following Appendix.

In STAR paper nucl-ex/0308033, "Event-wise <pt> fluctuations ..." we introduced a new measure of non-statistical event-wise fluctuations in mean transverse momentum based on the difference between the total variance and that expected when there are no dynamical correlations:

$$
\Delta \sigma_{p_{t}: n}^{2} \equiv \overline{n_{j}\left(\left\langle p_{t}\right\rangle_{j}-\hat{p}_{t}\right)^{2}-\sigma_{\hat{p}_{t}}^{2}, ~}
$$

(see Appendix - slide 7 for definition of symbols; overline denotes event-wise average)

In order to relate this variance difference quantity to two-particle correlations we need to re-express $\Delta \sigma^{2}{ }_{p t: n}$ in terms of sums oyer pairs of particles:

$$
\left.\Delta \sigma_{p_{t}, n}^{2} \cong\left\{\frac{1}{n_{j} \sum_{i \not i i^{\prime}=1}^{n_{j}}\left(p_{t, j i} p_{t, j i}\right.}-\hat{p}_{t}^{2}\right)\right\}
$$

This is the first line in Eq.(1) in nucl-ex/0408012.

Next, relate the sum over real pairs of particles within each event (first term of preceding equation) to the two-particle number density:

$\operatorname{Bin} k, p_{t k}$

$$
\overline{\sum_{i \neq i^{\prime}=1} p_{t, j i} p_{t, j i^{\prime}}} \cong \overline{\sum_{k, l} p_{t, k} p_{t, l} n_{j, k l}^{s i b}}=\overline{\sum_{k, l} p_{t, k} p_{t, l}} \varepsilon_{p_{t}}^{2} \bar{\rho}_{s i b}\left(p_{t, k}, p_{t, l}\right)
$$

The sum of pairs in event j, \quad is approx. by a sum over bins, averaged over events...
averaged over events, where $n^{\text {sib }}=\#$ real pairs in 2D bin (k, l).

The latter, avg. number of sibling pairs in bin (k, l) is identified with sibling pair density times 2D bin area.

Similarly, relate the inclusive (mean-pt) ${ }^{2}$ term to a sum over mixed-event pairs and the mixed pair density, which serves as the uncorrelated two-particle reference density:

$\hat{p}_{t}^{2} \equiv\left(\frac{1}{\bar{N}} \overline{\sum_{i=1} p_{t, j i}}\right)^{2} \cong \frac{1}{\bar{N}^{2}} \overline{\overline{\sum_{k, l}} p_{t, k} p_{t, l} n_{j, k} n_{j^{\prime}, l}}=\frac{1}{\bar{N}^{2}} \sum_{k, l} p_{t, k} p_{t, l} \varepsilon_{p_{t}}^{2} \bar{\rho}_{m i x}\left(p_{t, k}, p_{t, l}\right)$
Mixed-event avg. (double overlines) of sum over 2D bins, where
$n_{j, k}=\#$ particles in bin k. Tutorial 4

Combining these two parts gives the relationship between mean-pt fluctuation variance excess measure $\Delta \sigma^{2}{ }_{p t: n}$ and two-particle correlations in Eq.(1) of nucl-ex/0408012 given by:

$$
\begin{aligned}
\Delta \sigma_{p_{t, n}}^{2} & \cong \sum_{k, l} p_{t, k} p_{t, t} \varepsilon_{p_{t}}^{2}\left[\bar{\rho}_{s i b}\left(p_{t, k}, p_{t, l}\right)-\bar{\rho}_{m i x}\left(p_{t, k}, p_{t, l}\right)\right] / \bar{N} \\
& \cong(1 / \bar{N}) \iint_{\left(\Delta t_{t}\right)^{2}} d p_{t 1} d p_{t 2} p_{t 1} p_{t 2}\left[\bar{\rho}_{s i b}\left(p_{t 1}, p_{t 2}\right)-\bar{\rho}_{m i x}\left(p_{t 1}, p_{t 2}\right)\right] \\
& =(1 / \bar{N}) \iint_{\left(\Delta \Delta_{t}\right)^{2}} d p_{t 1} d p_{t 2} p_{t 1} p_{t 2} \bar{\rho}_{m i x}\left(p_{t 1}, p_{t 2}\right)\left[\hat{r}\left(p_{t 1}, p_{t 2}\right)-1\right]
\end{aligned}
$$

Note that we usually do not bin the two-particle densities directly in p_{t}, but rather use a mapping from p_{t} to $X\left(p_{t}\right)$ in order to achieve approx. uniform statistics in the bins. Also, in the future we plan to use transverse rapidity, y_{t}, which is another mapping, in order to optimally display the transverse string fragmentation dynamics, analogous to that in Lund string fragmentation models along the beam axis.
All the steps and details are given in the following Appendix.

Appendix

- Definition of symbols
- Manipulation of $\Delta \sigma_{p t: n}^{2}$ into sums over pairs of particles
- Derivation of lines 2 and 3 in Eq.(1) of nucl-ex/0408012.

Definition of Symbols:

$\varepsilon=$ number of events in a centrality bin
$j, j^{\prime}=$ event indices
$n_{j} \quad=$ number of particles used in event j in acceptance
$i, i^{\prime}=$ particle indices
$\bar{N}=$ mean multiplici ty for all events
$p_{t, j i}=$ transverse momentum magnitude of particle i in event j.
$\left\langle p_{t}\right\rangle_{j}=$ mean of transverse momentum magnitudes for all accepted particles in event j.
$\hat{p}_{t} \quad=$ inclusive mean p_{t} for all accepted particles in all events
$\sigma_{\hat{p}_{t}}^{2}=$ inclusive p_{t} variance for all accepted particles in all events

Manipulation of $\Delta \sigma^{2}{ }_{p t: n}$ into sums over pairs of particles

First, I show how the mean- p_{t} variance excess measure in Eq.(2) of STAR paper nucl-ex/0308033 can be manipulated into sums over pairs of particles from the same events (sibling pairs) and from mixed events (mixed pairs):
$\left.\begin{array}{rl}\begin{array}{c}\text { STAR } \\ \text { variance } \\ \text { excess } \\ \text { measure }\end{array}\end{array}\right\} \Delta \sigma_{p_{t} \cdot n}^{2}=\frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon} n_{j}\left[\left\langle p_{t}\right\rangle_{j}-\hat{p}_{t}\right]^{2}-\sigma_{\hat{p}_{t}}^{2} \quad$ [Eq.(2) in nucl-ex/0308033] $] \quad \begin{aligned} & \text { (expand symbols) } \\ & \\ & =\frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon} n_{j}\left[\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} p_{t, j i}-\hat{p}_{t}\right]^{2}-\frac{1}{\bar{N} \varepsilon} \sum_{j=1}^{\varepsilon} \sum_{i=1}^{n_{j}}\left(p_{t, j i}-\hat{p}_{t}\right)^{2}\end{aligned}$
(write out
the squares)

$$
\begin{aligned}
& \begin{aligned}
\text { est }= & \frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon} n_{j}\left[\frac{1}{n_{j}^{2}} \sum_{i \neq i}^{n_{j}} p_{t, j i j} p_{t, j i}+\frac{1}{n_{j}^{2}} \sum_{i=1}^{n_{j}} p_{t, j i}^{2}-\frac{2 \hat{p}_{t}}{n_{j}} \sum_{i=1}^{n_{j}} p_{t, j i}+\hat{p}_{t}^{2}\right] \\
& -\frac{1}{\bar{N} \varepsilon} \sum_{j=1}^{\varepsilon} \sum_{i=1}^{n_{j}}\left(p_{t, j i}^{2}-2 \hat{p}_{t} p_{t, j i}+\hat{p}_{t}^{2}\right) \quad \text { pairs from "self" pairs) }
\end{aligned} \\
& \text { where } \quad \bar{N} \equiv \frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon} n_{j}, \text { and } \hat{p}_{t} \equiv \frac{1}{\bar{N} \varepsilon} \sum_{j=1}^{\varepsilon} \sum_{i=1}^{n_{j}} p_{t, j i}
\end{aligned}
$$

continued,
$\begin{gathered}\text { (write out } \\ \text { all the terms) }\end{gathered} \quad \Delta \sigma_{p_{t}: n}^{2}=\frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon} \frac{1}{n_{j}} \sum_{i \neq i^{\prime}=1}^{n_{j}} p_{t, j i} p_{t, j i^{\prime}}-\frac{2 \hat{p}_{t}}{\varepsilon} \sum_{j=1}^{\varepsilon} n_{j} \frac{1}{n_{j}} \sum_{i=1}^{n_{j}} p_{t, j i}$

$$
\begin{aligned}
& +\frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon} n_{j} \hat{p}_{t}^{2}+\frac{2 \hat{p}_{t}}{\overline{N \varepsilon}} \sum_{j=1}^{\varepsilon} \sum_{i=1}^{n_{j}} p_{t, j i}-\frac{1}{\bar{N} \varepsilon} \sum_{j=1}^{\varepsilon} \sum_{i=1}^{n_{j}} \hat{p}_{t}^{2} \\
& +\frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon} \frac{1}{n_{j}} \sum_{i=1}^{n_{j}} p_{t, j i}^{2}-\frac{1}{\bar{N} \varepsilon} \sum_{j=1}^{\varepsilon} \sum_{i=1}^{n_{j}} p_{t, j i}^{2} \\
& =\frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon} \frac{1}{n_{j}} \sum_{i \neq i^{\prime}=1}^{n_{j}} p_{t, j i} p_{t, j i^{\prime}}+(-2 \bar{N}+\bar{N}+2-1) \hat{p}_{t}^{2} \\
& \\
& +\frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon}\left(1-\frac{n_{j}}{\bar{N}}\right) \frac{1}{n_{j}} \sum_{i=1}^{n_{j}} p_{t, j i}^{2}
\end{aligned}
$$

(then collect them)

$$
\equiv\left\langle p_{t}^{2}\right\rangle_{j} \quad \text { (define) }
$$

continued,

$$
\Delta \sigma_{p_{t} t^{n}}^{2}=\frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon} \frac{1}{n_{j}} \sum_{j \neq i^{\prime}=1}^{n_{j}} p_{t, j i} p_{t, j i^{\prime}}-(\bar{N}-1) \hat{p}_{t}^{2}+\underbrace{\frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon}\left(1-\frac{n_{j}}{\bar{N}}\right)\left\langle p_{t}^{2}\right\rangle_{j}}
$$

This term vanishes exactly if mean- $p_{t}{ }^{2}$
is not correlated with n_{j}. For STAR applications this term is small compared to differences between the first two terms and will be neglected.

$$
\begin{aligned}
& \Delta \sigma_{p_{t}, n}^{2} \cong \frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon} \frac{1}{n_{j}} \sum_{i \not i i^{\prime}=1}^{n_{j}} p_{t, j i} p_{t, j i^{\prime}}-(\bar{N}-1) \hat{p}_{t}^{2} \\
& \Delta \sigma_{p_{t}, n}^{2} \cong \frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon}\left\{\frac{1}{n_{j}} \sum_{i \neq i^{\prime}=1}^{n_{j}}\left(p_{t, j i} p_{t, j i^{\prime}}-\hat{p}_{t}^{2}\right)\right\}
\end{aligned}
$$

This is the first line in Eq.(1) in nucl-ex/0408012

Derivation of lines 2 and 3 in Eq.(1) of nucl-ex/0408012.

In Tutorials 2 and 31 introduced the normalized pair density ratio which can be related to the two-particle correlation. Starting with this measured ratio in two-dimensional $p_{t} \times p_{t}$ space I will explain how the correlation density and the combination of sums over sibling and mixed pairs on the preceding pages can be related.

Normalized
particle pair densities

$$
\hat{r}_{k l}=\underbrace{\sum_{j=1}^{\varepsilon} n_{j}\left(n_{j}-1\right)}_{\begin{array}{c}
\text { Fraction of } \\
\text { total sibling } \\
\text { pairs in bin }(k, l)
\end{array}} \underbrace{\sum_{j=1}^{\varepsilon} n_{j, k l}^{s i b}}_{\begin{array}{c}
\text { Fraction of } \\
\text { total mixed } \\
\text { pairs in bin }(k, l)
\end{array}} \div \underbrace{\frac{\sum_{j \neq j^{\prime}} n_{j, k} n_{j^{\prime}, l}}{\sum_{j \neq j^{\prime}} n_{j} n_{j^{\prime}}}}\} \quad \begin{gathered}
\begin{array}{c}
n_{j, k l}^{s i b}=\text { number of sibling pairs in 2D } \\
p_{t} \otimes p_{t} \text { bin }(k, l) \text { in event } j \\
n_{j, k}=\text { number of particles in } p_{t} \text { bin } k, \\
\text { in event } j
\end{array}
\end{gathered}
$$

pair density, $\rho_{s i b}$.

$$
\left\{\frac{\int_{\varepsilon_{k}} \int_{\varepsilon_{l}} d p_{t 1} d p_{t 2} \rho_{s i b}\left(p_{t 1}, p_{t 2}\right)}{\iint_{\left(\Delta p_{t}\right)^{2}} d p_{t 1} d p_{t 2} \rho_{s i b}\left(p_{t 1}, p_{t 2}\right)} \cong \frac{\sum_{j=1}^{\varepsilon} n_{j, k l}^{s i b}}{\sum_{j=1}^{\varepsilon} n_{j}\left(n_{j}-1\right)}\right.
$$

where $\varepsilon_{k}, \Delta p_{t}$ are the p_{t} bin size and acceptance

Define the bin-wise average density; assume uniform

$$
\int_{\varepsilon_{k}} \int_{\varepsilon_{l}} d p_{t 1} d p_{t 2} \rho_{s i b}\left(p_{t 1}, p_{t 2}\right) \equiv \varepsilon_{k} \varepsilon_{l} \bar{\rho}_{s i b}\left(p_{t, k}, p_{t, l}\right)
$$

bin sizes $\varepsilon_{p t}$, and introduce

$$
=\varepsilon_{p_{t}}^{2} \bar{\rho}_{s i b}\left(p_{t, k}, p_{t, l}\right)
$$

bin momentum $p_{t, k}$:
Similarly, represent the event averaged, bin-wise mixed pair

$$
\int_{\varepsilon_{k}} \int_{\varepsilon_{l}} d p_{t 1} d p_{t 2} \rho_{m i x}\left(p_{t 1}, p_{t 2}\right) \equiv \varepsilon_{k} \varepsilon_{l} \bar{\rho}_{m i x}\left(p_{t, k}, p_{t, l}\right)=\varepsilon_{p_{t}}^{2} \bar{\rho}_{m i x}\left(p_{t, k}, p_{t, l}\right)
$$

Using the results on page 11 and replacing the sums over pairs with sums over 2D $p_{t} \times p_{t}$ bins we get,

$$
\begin{aligned}
& \begin{aligned}
& \Delta \sigma_{p_{t}: n}^{2}=\frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon} \frac{1}{n_{j}} \sum_{k, l} p_{t, k} p_{t, l} n_{j, k l}^{s i b}-\frac{(\bar{N}-1)}{\varepsilon^{2} \bar{N}^{2}} \sum_{j, j^{\prime}=1}^{\varepsilon} \sum_{k, l} p_{t, k} p_{t, l} n_{j, k} n_{j^{\prime}, l} \quad \text { (factor out } \\
&\left.p_{t k} p_{t l l}\right)
\end{aligned} \\
& \\
& =\sum_{k, l} p_{t, k} p_{t, l}[\frac{1}{\varepsilon} \sum_{j=1}^{\varepsilon} \frac{n_{j, k l}^{s i b}}{n_{j}}-\underbrace{\frac{(\bar{N}-1)}{\varepsilon^{2} \bar{N}^{2}} \sum_{j \neq j^{\prime}=1}^{\varepsilon} n_{j, k} n_{j^{\prime}, l}-\frac{(\bar{N}-1)}{\varepsilon^{2} \bar{N}^{2}} \sum_{j=1}^{\varepsilon} n_{j, k} n_{j, l}}]
\end{aligned}
$$

$$
\begin{aligned}
\Delta \sigma_{p_{t, n}}^{2} & \cong \sum_{k, l} p_{t, k} p_{t, l}\left[\frac{\varepsilon_{p_{t}}^{2}}{\bar{N}} \bar{\rho}_{s i b}\left(p_{t, k}, p_{t, l}\right)-\frac{\varepsilon_{p_{t}}^{2}}{\bar{N}} \bar{\rho}_{m i x}\left(p_{t, k}, p_{t, l}\right)\right] \\
& +\sum_{k, l} p_{t, k} p_{t, l} \frac{\varepsilon_{p_{t}}^{2}}{\varepsilon \bar{N}}\left(\bar{\rho}_{m i x}\left(p_{t, k}, p_{t, l}\right)-\frac{\bar{N}-1}{\bar{N}} \bar{\rho}_{s i b}\left(p_{t, k}, p_{t, l}\right)\right) \\
& \cong \sum_{k, l} p_{t, k} p_{t, l} \varepsilon_{p_{t}}^{2}\left[\bar{\rho}_{s i b}\left(p_{t, k}, p_{t, l}\right)-\bar{\rho}_{m i x}\left(p_{t, k}, p_{t, l}\right)\right] / \bar{N}
\end{aligned}
$$

$$
\Delta \sigma_{p_{t}: n}^{2} \cong(1 / \bar{N}) \int \underbrace{}_{\left(\Delta p_{t}\right)^{2}} d p_{t 1} d p_{t 2} p_{t 1} p_{t 2}\left[\bar{\rho}_{s i b}\left(p_{t 1}, p_{t 2}\right)-\bar{\rho}_{m i x}\left(p_{t 1}, p_{t 2}\right)\right]
$$

This is the second line in Eq.(1) in nucl-ex/0408012

Using the definition of histogram ratio r, evaluating (mean $\left.p_{t}\right)^{2}$ using the mixed density, and using the density normalization definition, the final expression is written compactly as follows:

$$
\begin{aligned}
& \Delta \boldsymbol{\sigma}_{p_{t} n}^{2} \cong(1 / \bar{N}) \iint_{\left(\Delta p_{t}\right)^{2}} d p_{t 1} d p_{t 2} p_{t 1} p_{t 2} \overline{\boldsymbol{\rho}}_{m i x}\left(p_{t 1}, p_{t 2}\right)\left[\hat{r}\left(p_{t 1}, p_{t 2}\right)-1\right] \\
& \hat{p}_{t}^{2}=\frac{\iint_{\left(\Delta p_{t}\right)^{2}} d p_{t 1} d p_{t 2} p_{t 1} p_{t 2} \bar{\rho}_{m i x}\left(p_{t 1}, p_{t 2}\right)}{\iint_{\left(\Delta p_{t}\right)^{2}} d p_{t 1} d p_{t 2} \bar{\rho}_{m i x}\left(p_{t 1}, p_{t 2}\right)}=\frac{\iint_{\left(\Delta p_{t}\right)^{2}} d p_{t 1} d p_{t 2} p_{t 1} p_{t 2} \bar{\rho}_{m i x}\left(p_{t 1}, p_{t 2}\right)}{\overline{N(N-1)}}
\end{aligned}
$$

$$
\Delta \sigma_{p_{t} t^{n}}^{2} \cong(\bar{N}-1) \hat{p}_{t}^{2}\left\langle\hat{r}\left(p_{t 1}, p_{t 2}\right)-1\right\rangle,
$$

This is the third line in Eq.(1) in nucl-ex/0408012
where the bracket represents a weighted average given in general by:

$$
\langle\Re\rangle \equiv \frac{\iint_{\left(\Delta p_{t}\right)^{2}} d p_{t 1} d p_{t 2} p_{t 1} p_{t 2} \bar{\rho}_{m i x}\left(p_{t 1}, p_{t 2}\right) \Re}{\iint_{\left(\Delta p_{t}\right)^{2}} d p_{t 1} d p_{t 2} p_{t 1} p_{t 2} \bar{\rho}_{m i x}\left(p_{t 1}, p_{t 2}\right)}
$$

The last two equations summarize the integral relation between correlations and fluctuation measures used in nucl-ex/0408012 for full acceptance scale. Similar derivations can be applied to any other binned quantity.

