Function and VI
Reference Manual

"ﬂ”?:rrlll%'lq\llAEINTs January 1998 Edition

The Software is the Instrument ™ Part Number 321526B-01

Internet Support

E-mail: support@natinst.com

FTP Siteftp.natinst.com

Web Addresshttp://www.natinst.com

Bulletin Board Support

BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,

Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1997, 1998 National Instruments Corporation. All rights reserved.

Important Information

Warranty

Copyright

Trademarks

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do
not execute programming instructions if National Instruments receives notice of such defects during the warranty
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves
the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for
any damages arising out of or related to this document or the information contained in it.

EXxcEePTAs SPECIFIEDHEREIN, NATIONAL INSTRUMENTSMAKES NO WARRANTIES, EXPRESSOR IMPLIED, AND SPECIFICALLY

DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESSFORA PARTICULAR PURPOSE CUSTOMER S RIGHT TO RECOVER

DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTSSHALL BE LIMITED TO THE AMOUNT
THERETOFOREPAID BY THE CUSTOMER NATIONAL INSTRUMENTSWILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF

DATA, PROFITS USE OF PRODUCTS OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOR

This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract

or tort, including negligence. Any action against National Instruments must be brought within one year after the cause
of action accrues. National Instruments shall not be liable for any delay in performance due to causes beyond its
reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service failures
caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions;
owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood,
accident, actions of third parties, or other events outside reasonable control.

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part,
without the prior written consent of National Instruments Corporation.

DAQCard™, DAQ-STC™, DAQPad™, LabVIEW™atinst.com ™, National Instruments™, NI-DAQ™,
PXI™, RTSI™, and SCXI™, are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all traditional
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent serious injury
or death should always continue to be used when National Instruments products are being used. National Instruments
products are NOT intended to be a substitute for any form of established process, procedure, or equipment used to
monitor or safeguard human health and safety in medical or clinical treatment.

Contents

About This Manual
Organization of the Product User Manualcccciuuiiiieieee i ee e XXV
Conventions Used in This Manual............cccoooeiiiiiieeeeeeeeeaans XXVi
Related DOCUMENTALION. .. .uuvvteirririritiririr s e e s e s e se s e s e e e s e s e e e e eaeaeeeeeeeaeeaaeseseseeeseees XXVii
CUStOMEr COMMUNICALION ..uvvvvveiiiiririiiiiiiriei e s s e s e sese s s e e e e e s e sesaseseaeseeeseseeseeaeseeeens XXVili
Chapter 1
Introduction to the G Functions and Vls
Locating the G FUNCHONS @Nd VIScoouiiiiiiiiiiiii e 1-1
FUNCLION QN VI OVEIVIEWScevveeiiiieeeeeee et e e e e et e e e e e e e ebbe e e e e s eeaabeeeeseees 1-2
] 1 (U Tod (U =TS 1-2
N[0T =T o VT o 1T T 1-3
BOOIEAN FUNCLIONSeveiiiiiieeiee et e e e e e e e eraaaas 1-3
SNG FUNCHONS. ..ottt s e e e 1-3
AITAY FUNCHIONS ...ceiiiiiiiiie ettt et e e st e e e e 1-3
(08 [0y (] g U [T 0T 1= 1-3
ComPAriSON FUNCHONSciiiiiiiiie ittt 1-4
Time and Dialog FUNCLIONScooiiiiiiiiiiiiie e 1-4
[TST 1@ 2 U T T 1 o 1R 1-4
AdVANCEA FUNCHIONScceeeiiie e e e e e e e e e e e e e 1-4
DA ettt e e e e e e e e aet et e et e ——————— 1-5
INSTIUMENT 1O .ottt e e e s e e e e eas 1-5
COMMUNICALIONcoeiiiiiiiiieieeeeeee e e s e s e e e e e e e eeeeeaaeaeeeeseeseeeeesreresararanes 1-5
N = 12T Y SRS 1-5
SEIECE A VL.t oo et e e e e e e e e e e e 1-6
IV} (o] = | PP UPPUPURRRPRPRPIR: 1-6
INStrument DHVEr LIDIaryc.c..vvveiieeiiee e 1-6
L LYY g I o - VSRR 1-6
PN o] o] o= 11T o I @Xo] | 1 (] PR 1-7

© MNational Instruments Corporation v LabVIEW Function and VI Reference Manual

Contents

PART |
G Functions and Vs

Chapter 2
G Function and VI Reference Overview
G FUNCLIONS OVEIVIEW. ...ttt ettt nnn e nnne e e nne s 2-2
Introduction t0 POIYMOIPRISM......cc e e e e ee e 2-2
POlYMOIPRISIM ...t e 2-2
UNit POlYMOIPRISM ..cceieie e e e 2-3
NUMETIC CONVEISION ...ttt ettt 2-4
Overflow and UNderflowcoocvviiiiiiiiiieciiec e 2-5
Wi SEYIES ... e e e e e e e e e e e e e e e e e e aaa—a 2-6
Chapter 3
Structures
SETUCLUIES OVEIVIEW ..c.ciiiiie ettt ettt ettt e e e st e e e e s bt e e e st b e e e e e nabbe e e e enenes 3-2
Chapter 4
Numeric Functions
Polymorphism for NUMEric FUNCHONSvviiiiiiiieiiiee e 4-2
Polymorphism for Transcendental FUNCHONScceeeeiiiiiieieiniiiiee e 4-3
Polymorphism for Conversion FUNCHONSc.uevveiiiiiieeiiiiiee e 4-3
Polymorphism for ComplexX FUNCLIONScooiiiiiiiiiiiiiiee e 4-4
Arithmetic FUNCLION DESCHPLIONSvviiiiiiiieii et 4-4
Conversion FUNCHIONS DESCHPLIONS.......iuuiiiie ittt 4-9
Trigonometric and Hyperbolic FUNCctions DeSCIPLIONScoovviiiieiiiiiiee e 4-14
Complex FUNCLION DESCHPLIONSc.uiiiieiiiiieee et 4-20
Additional Numeric Constants DEeSCHPLIONSuvviiiiiiiiieiiiie et 4-21
Chapter 5
Boolean Functions
Polymorphism for Boolean FUNCLONS...........ccccuiiiiiiiiicc et e e 5-1
Boolean FUNCioN DESCIIPLIONScciceiiiiiiiiieiie et e e e e e s e e e e e e e e s st e e e e e e e e e s e snnnnnes 5-2

LabVIEW Function and VI Reference Manual vi © MNational Instruments Corporation

Contents

Chapter 6
String Functions
Overview of Polymorphism for String FUNCHONS...........cccuiiiiiiiiiie e 6-1
Polymorphism for String FUNCHIONSoooiiiiiiiiiiiiee e 6-1
Polymorphism for Additional String to Number Functions.............ccccccceeeeenn. 6-2
Polymorphism for String Conversion FUNCHONS...........ccuvuiiiiiiiiieeeiiiieee 6-2
FOrmMat StNGS OVEIVIEWeeiiiiiiiei ittt e e e e e e e et e e e e e ae e e s e e s nbebbeeeeeas 6-2
String FUNCHON DESCIIPLIONS ...ceiiiiiiiiiiiiiiee et e e e e e e e 6-6
String Conversion FUNCION DESCHPLIONSuuuiiiiiieiaieiiiiiii et 6-18
SHNG FIXEA CONSTANTSeuiiiiiiiie ettt e e ettt e e e e e e e e e e et abreeeaaaeeas 6-20
Chapter 7
Array Functions
Array FUNCHON OVEIVIEWuiiiiiiiiiie e e e i ceciiietee e et e e e e e e s s re e e e e ae e e s s e s nannnsreereeeaeaeaeeannnnnns 7-2
Out-of-Range INAEX ValUES.......cccceeeiiiiiiiiiiieeeee e 7-3
Polymorphism for Array FUNCHONScoiiiiiiiiiiiiiiie e svnren e e e 7-3
Array FUNCION DESCIIPLIONS......uuuiiiiiiiiiee e e s i et er e e e e s e s s e e e e e e e s s s s st rrerreeaeeeaean 7-3
Chapter 8
Cluster Functions
ClUSEEr FUNCLION OVEIVIEW ...ccciiiiiiiiie ittt ettt ettt e et e e e sib e e e s sbaeeeeeanes 8-2
Polymorphism for ClUStEr FUNCHONSoiuuiiiiiiiiiie e 8-3
Setting the Order of Cluster EIemMentS..........ccooiiiiiiiiiiiiiie e 8-3
Cluster FUNCLION DESCIPLIONSeiiiiiiiiiiee ittt et 8-4
Chapter 9
Comparison Functions
Comparison FUNCLON OVEIVIEW.........cccciiiiiiiiiiii e 9-1
B00olean COMPATISONccoiuiiiiieiiiiie ettt e e e 9-1
SrNG COMPATISON.....eiiiiiiiiii ettt e e e s e e e e e nnees 9-2
NUMETIC COMPATISON. ..ceeiitiriieiiiiie e ettt ettt s s e e s bt e s e nnbe e e e e annneas 9-2
ClUSEEr COMPATTISON ...ttt ettt e et e e e st e e e e sbreeea e 9-2
COMPAISON MOAES......cooiiiiiiie it e 9-2
Character COMPATISONueiiiiiiiieie ittt e e e s snb e e annnees 9-4
Polymorphism for Comparison FUNCHONSoouiiiiiiiiiiceiicce e 9-5
Comparison FUNCLION DESCIIPLONSceiiiiiiiieeiiiiiee ettt e 9-6

© MNational Instruments Corporation vii LabVIEW Function and VI Reference Manual

Contents

Chapter 10
Time, Dialog, and Error Functions
Time, Dialog, and Error FUNCHONS OVEIVIEWcooiiiiiiiiiiiiiie e 10-2
TIMING FUNCHONS ...ttt e e e e e e e e s enanes 10-2
Error HanNdliNG OVEIVIEW.......c.coiiiiiiiiiiiiiie ettt 10-3
Error I/O and the Error State CIUSEr..........ceviiieiiiiiiiiiiieeeeeee e 10-4
Time and Dialog FUNCLION DESCHPIONS.uuiiiiiiiaiiiiiiiiiiee e 10-6
Error Handling VI DESCIPLIONSuuiiiiieeieiiiiitie ettt e e 10-10
Chapter 11
File Functions
File 1/0 VI and FUNCHON OVEIVIEW.ciiuiiiieiiiiiiie ettt e s siteee e st e e e snnbee e e e nnneee 11-2
HIGh-LEVEl FIle VIS ... a e 11-2
Low-Level File VIs and File FUNCLONSccuviiiiiiiiiie e 11-2
Byte Stream and Datalog FileS.............oooiiiiiiiiiieiee e 11-3
FIow-Through Parameters.........cceceeiiiiiiiiiiiiiieeee e ae e e 11-4
Error 1/0 in File 1/O FUNCHONSuuiiiiiiiiieiiiiiiiieee e 11-5
PEIMISSIONS ...ttt e e e e e e 11-5
File I/O Function and VI DeSCHPLIONSiiiiiiieiee e e 11-6
Binary File VI DESCIPLIONS.ttt n e a e e e e e e e 11-12
Advanced File FUNCLION DESCIPLIONSovviiiiieiiieiiiiiiies s e e e e e e e e e e e e e e aaaaeeereeeeeeanes 11-14
ConfIguration File VIS.... ... i e a e e e e e e 0..11-2
File Constants DeSCIIPLIONSuviviiieiiiiiiiiieeesss e s s s e e e s e e e e e e e e e ae e et e eeeeeeeeaeaeeeeeerernrnnnnaaanns 11-26
Chapter 12
Application Control Functions
Application CoNtrol FUNCLIONScoiuiiiiiiiiiie ettt 12-2
Help FUNCLION DESCHPLIONSiiiiiiiiie ittt 12-7
V1= 10 0 T o) PRSPPI 8.....12
Chapter 13
Advanced Functions
Advanced FUNCLioN DESCIPLIONSoiuuiiiiiiiiiie ettt e e 13-2
Data Manipulation FUNCtion DESCHPLIONS.........ceiiiiiiiiiieiiiiie e 13-4
MEMOIY VI DESCHIPIONS ...c.uetiieee ittt e e e s aanneeees 13-7
SYNCAIONIZALION VIS ...ciiiiiiiiii ettt e e s e e e s abrreeeeaaes 13-8
NOLFICALION VIS ... e e e e e e e e e e e ennes 13:8....
QUEUE VIS ..ottt e e e e e e e e e e e e e aeaeeeann 13-11.
RENUEZVOUS VIS ... ittt e e e e e e e e e e e e e e e e e sneeneeees -14....13

LabVIEW Function and VI Reference Manual viii © MNational Instruments Corporation

SEMAPNOIE VIS ..ottt 3:16.....1
Occurrence FUNCLION DESCPLIONS.uviiiiiiiiiie ittt

PART Il
Data Acquisition Vis

Contents

Chapter 14
Introduction to the LabVIEW Data Acquisition Vis
Finding Help Online for the DAQ VIScuiiiiiiiiiicc st r e e e 14-2
The ANAIOG INPUL VIS ...t e e e e e e e s s r e e e e e e e e s e s nnnbnraneeees 14-3
Easy ANalog INPUL VIS ..ot e e e e e e ennnes 14-4
Intermediate ANalog INPUE VIS ... e 14-5
ANalog INPUt ULITILY VIS. ... 14-5
Advanced ANalog INPUL VIS ..o e 14-5
Locating Analog INput VI EXamMPIES......cccooeiiiiiiiiieicce e 14-5
F N g b= oo T 011 o1 U L B 4 SR 6....14-
Easy ANalog OULPUL VIS....uuueeeiie i s 14-7
Intermediate Analog OULIPUL VISuvieiiiiiiiiiiiiieis s s e e e e e e e e ee e eeeeeeeaaenens 14-7
Analog OUtPUL ULITItY VIS ...ccceii i 14-7
Advanced Analog OULPUL VISocieiiiiiiiieiieiiiiiierses s e e e e e e e e e e e aeeeeeeeeeeaenns 14-8
Locating Analog Output VI EXamples ... 14-8
Digital FUNCHON VIS ...t e aeeeeeaeeaeennnees 8....14-
Easy Digital 1/O VIS ... e aaaaes 14-9
Intermediate Digital /O VIS........coveeiiiiieiiiiiiieries st e e e e e e e eeaeaaanns 14-9
Advanced Digital [/O VIS........cooviviiiieeieerrss s e e e e e ae s e e e ae e e e e e aeaaaans 14-10
Locating Digital I/O VI EXaMPIESuuuuuuriiiiiiiiii e 14-10
COUNTEE VIS et e e e e e e e e e e e e e e eeeeeeeeenes 14-10.
EASY COUNTEI VIS, ..ttt e e aab e e aeee 14-11
Intermediate Counter INPUL VIS........iiiiiiiiiiie e 14-11
AAVANCEA COUNTET VIS ...ttt e e e 14-12
Locating Counter VI EXampPlesS.......coceeiiiiiiiiii e 14-12
Calibration and Configuration VISuuuiiiiiiiiiiiiiir s e e e nea e e e e e e aaaeaeas 14-12
Signal ConditioNiNg VISccooiiiii i 14-12
Chapter 15
Easy Analog Input Vis
15-1

Easy Analog INPut VI DESCHPLIONScciiiiiiiieiiiiiee et

© National Instruments Corporation ix

LabVIEW Function and VI Reference Manual

Contents

Chapter 16

Intermediate Analog Input Vis

HaNAIING BITOTS ...t eee e e 6-1.....1
Intermediate Analog INput VI DeSCIIPLIONScoooiiiiiiiiiiiie e 16-2

Chapter 17
Analog Input Utility Vis

L F= Lo [T g T T S 4 0] £ PR 7-2.....1
Analog Input Utility VI DESCIIPLIONSceveeeeiii ittt e e e e e eeseinreee e e e e e e e e snranaeeee e 17-2

Chapter 18
Advanced Analog Input Vis

Advanced Analog INput VI DESCHPLIONSceiiiiiiiiieiiiiiee e 18-1

Chapter 19
Easy Analog Output Vs

Easy Analog Output VI DESCHIPHONSccciiuiiiieiiiiiiee ittt esireee e e 19-1

Chapter 20

Intermediate Analog Output Vis

L F= Lo [T g T T 0] £ USRS 0:1....2
ANalog OULPUL VI DESCIIPLIONSuuuiiiiiiieeeeeiiiciitieee e e e e e e e e sssntrrrre e e e s ee e e s e s s nnenrrrrrreaeeeeenas 20-2

Chapter 21
Analog Output Utility Vis

HANAING EFTOIS ...ttt e s 1-1.....2
Analog Output Utility VI DESCIIPLIONSccceiiiiiiiieiiiiiiie ittt 21-2

Chapter 22
Advanced Analog Output Vis

Advanced Analog Output VI DESCIIPHONS.cuuuiiiiiiiiiii et 22-1

Chapter 23
Easy Digital 1/0 Vis

Easy Digital 1/O DESCIPLONS........cccviiiiieieiie e e e et e e e e e s s e e e e e e e s s e s snrnreaaeeeeeeas 23-1

LabVIEW Function and VI Reference Manual X © MNational Instruments Corporation

Chapter 24
Intermediate Digital 1/0 Vis

Contents

[F= T To | T To T = 1 o =R 24:2.....

Intermediate Digital 1/O VI Descriptions

Chapter 25
Advanced Digital 1/0 Vis

Digital POrt VI DESCIIPLIONS ...cviiieeiii ittt ie e e e e e e s s st r e s e e e e s e e s st a e e e e e e e e e s s e snneeneeees 25-2
Digital Group VI DESCIIPLIONS........uuiiiiiiieeieees e e et e e e e e e e e s st rr e e e e e e e s s e e s ssnnrrrrrereaaaees 25-3

Chapter 26

Easy Counter Vis
Easy Counter VI Descriptions

Chapter 27
Intermediate Counter Vis

HaNAIiNG EFTOrS......eeiiiiiieee et 27-2.....

Intermediate Counter VI Descriptions

Chapter 28
Advanced Counter Vis

Advanced Counter VI Descriptions

Chapter 29

Calibration and Configuration Vis

Calibration and Configuration VI Descriptions

Channel Configuration VISocueiioiiiiie et 29-18

Chapter 30
Signal Conditioning Vis

Signal Conditioning VI Descriptions

© MNational Instruments Corporation

Xi

LabVIEW Function and VI Reference Manual

Contents

PaART Il
Instrument 1/0 Functions and Vis

Chapter 31
Introduction to LabVIEW Instrument 1/0 Vis
INSTFUMENT DIVEIS OVEIVIEW ...ceiiiiiieiiee ittt e s eitieee e s sttt e et e e e s neaee e e s snbeeeeessnnaeeeessnnneeas 31-2
Instrument Driver DIStriDULION...........coiiiiiiiiiiie e 31-3
CD-ROM Instrument Driver DisStributioncccccoviiiieeeiiiiiieneninns 31-3
Instrument Driver TEMPIALE VISccovveeiiiiieeee e 31-4
INtroduction t0 VISA LIBIaryc..evviiiiieiice et 31-4
INErOAUCTION T0 GPIB ... 31-5
LabVIEW Traditional GPIB FUNCHONScccuiiiiiiiiieiiee e 31-5
GPIB 488.2 FUNCHONSuutiiiiiiieiee ettt e e e e e e e e 31-5
Single-Device FUNCLONS.......ccoiiiiiiiiii e 31-6
Multiple-Device FUNCLONSccoooiiiiiiieeeeeeeeeee s 31-6
Bus Management FUNCLIONScccoooveviiiiiieieeeeeee e 31-6
LOW-LeVel FUNCHIONSuiiiiiiiiiiaieeiiieeee e 31-7
General FUNCHONSuuuiiiiiiiiii e 31-7
SErIAl POIT VI OVEIVIEW ...ttt ettt ettt e e e et e e e e e e e e e e e sanabeeeeees 31-7
Chapter 32
Instrument Driver Template Vls
Introduction to Instrument Driver Template VIS.......coooiiiiiiiiiie e 32-1
Instrument Driver Template VI DEeSCHPLIONSc.vviiiiiiiiie it 32-2
Chapter 33
VISA Library Reference
(O] o1=T =i o]0 - TP PP PO P PP PPPPPPPPPPPP 33:2..
VISA Library Reference Parametersccooviiiiiiiiiiiiie e 33-2
VISA Operation DEeSCHPLIONS.ueiieiiiiiiie ettt 334
Event Handling FUNCHONScoiiiiiiiiieiieee e 33-10
High Level Register ACCESS FUNCLONS..........ciiiiiiiiiiiiiiice et 33-12
Low Level Register ACCESS FUNCHONScooiiiiiiiieiiiiiie e 33-16
VISA Serial FUNCHONS.coi ittt e e e e e e s s eeeaaaeeeeaeannes 33-18
VISA Property NOGEvuiiiiiiiiiiie ettt e e 33-19
VISA Property NOde DeSCIPUONSueiiiiiiiiiie ittt e et e e nirnee e e e 33-20
Fast Data Channel ... 33-20
GENETAl SEHINGS ...ttt et 33-20
GPIB SEINGS ... et teeeitiit ettt e et e e e e e 33-20
Interface INfOrmMation ..o 33-21

LabVIEW Function and VI Reference Manual Xii © MNational Instruments Corporation

Contents

Message-Based SettiNgScouuiuiiiiiiiiiiie e 33-21
MOdEM LiNE SEINGS ...vviieiiiiiiie ettt 33-21
PXIRESOUICES ...ttt ettt e et e e e e et e e e e e ebea s 33-21
[IS 1= 11T o PP PRPRPTPPPP 33-21
RegiSter-Based SEttNGS.......coiuuiiiiiiiiiiee et 33-21
ST AT LRST= 1] [0 PP PPPPPPPR 33-22
Version INfOrMALIONuviiiiiiee e e e e 33-22
VIME/VXE SEEHNGS ..ce ittt ettt e e nbbaee e e 33-22
Chapter 34
Traditional GPIB Functions
Traditional GPIB FUNCHON Parameters............eciiiiiiiiiiiiiiieeea et 34-2
Traditional GPIB FUNCLION BENAVIOTcciiiiiiiiiiiiiiiie ettt 34-3
Traditional GPIB FUNCLION DESCIPLIONSoeoiiiiiiiiiieiiee ettt e e 34-3
GPIB Device and Controller FUNCLIONSuuiiiiiiiiiiiiieeee e 34-7
DEVICE FUNCLIONSvviiiiiiiiiiiiiiiiieiii e s e e s e s e s e e e e e e e e e e e e e aaaaaaaaaaaaans «f...34
Controller FUNCLIONS ..o e e e e e e e e e e e e e e e e 9.....34-
Chapter 35
GPIB 488.2 Functions
GPIB 488.2 Common FUNCLON Parametersoocvveeiiiiiieeiiiiiee et 35-1
GPIB 488.2 Function Descriptions (Single-Device FUNCLIONS)...........ccccvvveeeeeeeeeiccinnne, 35-2
GPIB 488.2 Multiple-Device FUNction DESCIIPLIONSceveeeeeeiiiiiiiiiieeee e e s s ecciiiineeeeeeeens 35-4
GPIB 488.2 Bus Management Function DesSCriptionS.........ccccvvveeeeiiiiciiieireeee e 35-6
GPIB 488.2 Low-Level I/O Function DeSCIPLiONS.........ccvveeeiiiiiiiiiiiiieeee e cciivineeee e 35-8
GPIB 488.2 General FUNCtioN DESCHPLIONSieieeeie i 35-10
Chapter 36
Serial Port Vls
Serial POrt VI DESCHPLONS ... s e e e e e s e s er e e e e e e e e s ansnsnnrnrneeeaeaeeeenean 36-1
PART IV
Analysis Vis
Chapter 37
Introduction to Analysis in LabVIEW
Full Development SYSEM.........cccciiiiiiiii i 37-2
ANGAIYSIS VI OVEIVIEW ...ttt ettt e e e e e e s s s e e e e e e e e e s s e s snnnbaeereeeaaeaesanannns 37-2

© MNational Instruments Corporation Xiii LabVIEW Function and VI Reference Manual

Contents

ANAIYSIS VI OrganiZAtIONc.uvviiiiiiiiiii et 37-3
Notation and Naming CONVENTIONSeeiiiiiiiiiiiiiiiiee et e et snebeee e 37-4

Chapter 38

Signal Generation Vis
Signal Generation VI DESCHPLIONS.uuiiiiiiieai ittt e e e e e 38-2

Chapter 39
Digital Signal Processing Vls

Signal Processing VI DESCHPLIONSccccuviiiiiiiie et s s ar e e e e e s e e eeaee e 39-2

Chapter 40

Measurement Vis
Measurement VI DESCHIPHONSuuiiiiiiiieie ettt 40-2

Chapter 41
Filter Vis

FIlter VI DESCIIPLIONSeeeeeee ittt e e 2...41-

Chapter 42
Window Vls

WINAOW VI DESCHPONSuuiiiiiiiiiiee e e e i e ectiiie e et e e e e e s se e e e e e e e e e e s s ssnsbnbaeeeeaaeaeeessnnnnnes 42-2

Chapter 43
Curve Fitting Vs

Curve Fitting VI DESCIPLIONSeeiiiiiiieeeiitee ettt 43-2

Chapter 44
Probability and Statistics Vs

Probability and StatisticsS VI DESCHPLIONS..........eiiiiiiiiiieeiiiiiee et 44-2

Chapter 45
Linear Algebra Vis

Linear Algebra VI DESCHPLIONSuuuiiiiiiee et e e s r e e e e e s e s areeaaee e 45-2

LabVIEW Function and VI Reference Manual Xiv © MNational Instruments Corporation

Contents

Chapter 46
Array Operation Vis
Array Operation VI DeSCIIPLIONSuuiiiiiieeiei ittt e e e e e e e 46-2
Chapter 47
Additional Numerical Method Vis
Additional Numerical Method VI DeSCIIPHONS........ccuviiiiiiiiiee it 47-1
PART V
Communication Vis and Functions
Chapter 48
TGP Vis
RO eV I =T o o] o] 1 o] o E TSP TP PPRPPPPP 48-2
QIO o U o 1o Y 2. 48
Chapter 49
UDP Vis
UDP VI DESCHIPLIONStteeee ettt ettt ettt e e e st e e e st e e e e s nnba e e e e e nnbbe e e e e snnbeeeeennneeas 49-1
Chapter 50
DDE Vis
DDE Client VI DESCHPLIONSceiiiiiiiiieiiiieie ettt esnneae s 50-2
DDE Server VI DESCHPLIONSccoiiiiiiiieiie e e ettt e e e e e s s st e e e e e e e e e s s snnnnenneeeees 50-3
Chapter 51
ActiveX Automation Functions
ActiveX Automation FUNCHION DESCHPLIONSceeiiiiiiiieiiiiiee it 51-2
Data CoNVErSION FUNCHIONuuiiiiiiiiiiee ittt e sttt e e e e e e e s e s st eeeeeaaeeeesanenes 51-4
Chapter 52
AppleEvent Vis
General AppleEveNnt VI BENAVIONcoiuiiiiiiiiiiiie e 52-2
The User Identity DIialog BOXuuuiiiieeeeiiiiiiiiiiieeeeeee e e e s s ssiineneee e e e e e e e s e s nnnneeees 52-2
TANGEEID oot 52-3
Y= Lo [@ o) 1o] 1RSSR 52-4
Targeting VI DESCHPLIONScciii i ettt e e e e e e e e e s e e s e aaeeeeeas 52-4

© MNational Instruments Corporation XV LabVIEW Function and VI Reference Manual

Contents

APPIEEVENT VI DESCHIPHIONS.eiieiiieiiiee ittt ettt st e ebbe e e s 52-6
LabVIEW-Specific APPIEEVENT VIS ..ot 52-8
Yo (V7= L ol=To B o] ool PRSPPI 9. 52-
Constructing and Sending Other AppleEVents ..., 52-9
Creating AppleEVeNt PArameterscueeeeiiiiiiieiiiiee e 52-10
Low-Level APPIEEVENT VISooiiiiiiiiiiiie ettt 52-13
Object SUPPOIt VI EXAMPIEcoiiiiiiiieiiiiiie e 52-16
Sending AppleEvents to LabVIEW from Other Applications............cccccvevveieeeeneiiiennns 52-18
Required APPIEEVENLSooiiiiiii i 52-18
LabVIEW Specific APPIEEVENLScooiiiiiiiiiiiie e 52-18
Replies t0 APPIEEVENTS ... 52-18
EVENE RUN V..o 52-19
=TS g o] 1o o R 52-19
EVENE ClaSS......ieiiie i 52-19
EVENTID ..ot 52-19
EVENt PArameters........ooviiiiiiiiiiieeee e 52-19
Reply Parameters........ccuvuveiieeeee e en e 52-19
POSSIDIE EFTOIS.....ciiiiiiie it 52-19
EVENE: ADOI V1 ..ot 52-20
[T g o] 1o o R 52-20
EVENE ClaSS......ceiiiiiiiiiie e 52-20
EVENTID ..o 52-20
EVENt PArameters........oeviiiiiiiiiiiiieeeee e 52-20
Reply Parameters........cuuvveriieeee e ee e 52-20
POSSIDIE EFTOIS....cciiiiiiie ittt 52-20
EVENE VI ACHVE? ..ottt 52-21
=T] o] 1o o [SRR 52-21
EVENE ClaSS......ceiiieiiiiiiee e 52-21
EVENEID ..o 52-21
Event Parameters. ... 52-21
Reply Parameters.......cccuvveeiieeeee it 52-21
POSSIDIE EXTOIS.....ciiviiiie ittt 52-21
EVENL: ClOSE VI .ot 52-22
DTSt] o] 1o o [RS 52-22
EVENE ClaSS......uviiie et 52-22
EVENEID .ot 52-22
Event Parameters. ... 52-22
Reply Parameters.........ccuvveeiieeeee e 52-22
POSSIDIE EITOrS. ...t 52-22

LabVIEW Function and VI Reference Manual Xvi © MNational Instruments Corporation

Contents

Chapter 53
Program to Program Communication Vis
PPC VI DESCIIPLIONScceii ittt ettt ettt e e e e e e e e e s abb b e s e e e e aaaeeeeaaannes 53-2
Appendices and Index
Appendix A
Error Codes
NUMETIC EITOI COURSoiiiiiiiiiiie ittt et ettt e e st ee s annbneee s A-1
Appendix B
DAQ Hardware Capabilities
MIO and Al Device Hardware Capabilities...........ccuveiiiiiiiiiiii e B-1
Lab and 1200 Series and Portable Devices Hardware Capabilities............cccccocvvveennnne. B-10
BAXX DBVICES. ...ttt ettt ettt e et e e et e e e b e e e B-14..
SCXI Module Hardware Capabilitiescveeiiiiiiiieiiiiiee e B-16
Analog Output Only Devices Hardware Capabilities............cccceeiiiiiiiiiiiieieiieee e, B-20
Dynamic Signal Acquisition Devices Hardware Capabilitiesccccceeiviiiiiiininnnn. B-21
Digital Only Devices Hardware Capabilities...........c.cccooriiiiiiiiiiiii e B-22
Timing Only Devices Hardware CapabilitieS ... B-23
5102 Devices Hardware CapabilitieS..........ccoiiiiiiiiiii e B-24
Appendix C
GPIB Multiline Interface Messages
MUItIliNE INtEIrfaCe MESSATESuuueiiiiiiiiee ettt e e e e e e e e e C-1
Message DefiNitiONSuuiiiiiiiiiii e C-6
Appendix D

Customer Communication

Index

© MNational Instruments Corporation Xvii LabVIEW Function and VI Reference Manual

Contents

Figures

Figure 27-1.
Figure 27-2.
Figure 27-3.
Figure 27-4.
Figure 27-5.
Figure 27-6.

Figure 28-1.
Figure 28-2.
Figure 28-3.
Figure 28-4.
Figure 28-5.
Figure 28-6.
Figure 28-7.
Figure 28-8.

Figure 28-9.
Figure 30-1.
Figure 30-2.
Figure 30-3.

Figure 30-4.
Figure 30-5.

Figure 41-1.
Figure 41-2.
Figure 41-3.
Figure 41-4.

Tables

LabVIEW Function and VI Reference Manual

Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.

Figures and Tables

Setup Mode in ICTR CONLrOl........ooouiiiiiiiiiiie e 27-5
Setup Mode 1 in ICTR CONtrol...........uuuiiiiiiiiieeee e 27-6
Setup Mode 2 in ICTR CONLrol........ccuuuiiiiiiiiieeeee e 27-6
Setup Mode 3N ICTR CONLrol........ccuuuiiiiiiiiieeee e 27-6
Setup Mode 4 in ICTR CONLrol..........cuuuiiiiiiiiieeee e 27-6
Setup Mode 5in ICTR CONLrol........c.cuuiiiiiiiiiieeee e 27-7
Unbuffered Mode 2 and 3 COUNTINGueeeiiiieiiiiiiiiieiceeeee e 28-4
Buffered Mode 3 COUNTINGuvvriiiiiieaieiiiiiieieee e 28-5
Unbuffered Mode 4 High Pulse Width Measurementcccccceee... 28-6
Buffered Mode 4 Rising-Edge Pulse Width Measurement..................... 28-6
Unbuffered Mode 4 Rising-Edge Period Measurement...............cccco...... 28-7
Buffered Mode 4 Rising-Edge Pulse Width Measurement..................... 28-7
Unbuffered Mode 6 High Pulse Width Measurementccccceee... 28-7
Buffered Mode 6 High Pulse Width Measurement

(Count on Rising Edge Of SOUICE)ueviiiiiiiieiiiiiiec e 28-8
Buffered Mode 7 Semi-Period Measurementcccoccvvveiniiieeeiniinennn 28-8

Strain Gauge Bridge Completion Networks

(Quarter-Bridge Configuration)coocueeeeiiiiieee e 30-4
Strain Gauge Bridge Completion Networks

(Half-Bridge Configuration)ceeeeeiiieieeiiiieeee i 30-5
Strain Gauge Bridge Completion Networks

(Full-Bridge Configuration)coouiueieeeiiieeee e 30-6
Circuit Diagram of a Thermistor in a Voltage Divider..........cccccocueeeene 30-7
Circuit Diagram of a Thermistor with Current Excitation...................... 30-7
LOWPASS FIlLEI ...t 41-8
HIGNPASS FltEr ...cooiiiiieiee e 41-8
Bandpass Filter.........uuiiiiiiiiii e 41-8
BandStOp FIlLEr.....ccoiiiiiieiiie e 41-9
Special ESCAPE COUESuueiiiiiiiiiiiiiiiiie e 6-3
SHING SYNTAX. ittt e e bbb e e e as 6-4
Possible Format into String Errors.............eeeveiiiiiiiiiiiiiieeece e 6-7
FOrmat SPECITIEIS ...eeiiiiiie e 6-7
Special Characters for Match Patternccccccoiiiiicc s 6-9
Strings for the Match Pattern Examples ..., 6-10

XViii © MNational Instruments Corporation

Table 6-7.
Table 6-8.

Table 9-1.

Table 10-1.
Table 10-2.

Table 18-1.
Table 18-2.

Table 18-3.
Table 18-4.
Table 18-5.
Table 18-6.
Table 18-7.
Table 18-8.
Table 18-9.

Table 18-10.

Table 18-11.

Table 18-12.

Table 18-13.

Table 25-1.
Table 28-1.
Table 28-2.
Table 28-3.

Table 29-1.
Table 29-2.

Table 34-1.
Table 34-2.

Table 51-1.

Table 52-1.

Contents

Scan from String ErTOrS... ..o 6-12
Scan from String EXamplesS ... 6-12
Lexical Class Number DeSCriptioNScoviuiiiieiniiiie e 9-8
Valid Value of Elements for Date/Time Cluster..........cccccovvvevieeeeeninnnne 10-2
Format Codes for the Time Format String..........coecvveeiiiieeeeiiiieeee 10-7
Al Buffer Config VI Device-Specific Settings and Ranges................... 18-2
Device-Specific Settings and Ranges for Controls

in the Al Clock Config VIooiiiii e 18-4
Device-Specific Settings and Ranges for the Al Control VI................... 18-6
Device-Specific Settings and Ranges for the Al Group Config VI 18-7
Al Hardware Config Channel Configurationccccccoevvvviieeeeeeeiinnnns 18-9
Device-Specific Settings and Ranges for the Al Hardware Config VI...18-11
Device-Specific Settings and Ranges for the Al SingleScan Vi............. 18-14
Restrictions for Analog Triggering on E-Series DeViCes.......ccccccveeerrnnne 18-17
Digital Trigger Sources for Devices

with Fixed Digital Trigger SOUICEScovvvviieiiieeee i ciiieeee e e e e 18-18
Device-Specific Settings and Ranges

for the Al Trigger Config VI (Part 1)cccccvviieiieeeeeiiiciiieeeeee e 18-18
Device-Specific Settings and Ranges

for the Al Trigger Config VI (Part 2).........ccccuvvieiieeeeeiiiciiieeeeee e 18-20
Device-Specific Settings and Ranges

for the Al Trigger Config VI (Part 3)........cccccuviieeieeeeeiiiciiieeeeee e 18-20
Device-Specific Settings and Ranges

for the Al Trigger Config VI (Part 4)ccccouveeeeeeeeei i 18-21
Device Specific Parameters and Legal Ranges for Devices.................... 25-6
Counter Chips and Their Available DAQ DeVICESceeveeeviiicirrvveennnnn. 28-2
Valid Counter Numbers for CTR Group Config Devices............cccuuu.... 28-3
AdJACENT COUNTEIS ..uvviiiiiiee e i e ettt e e e s e e e e e e s st eeeeeaee s 28-9
Channel to Index VI Parameter Examples...........cccccvvevieeeeeeee e, 29-8
Channel to Index VI Parameter Examples for Suncccccccveveeeeeniinnns 29-9
Command String Device FUNCLONScoccciiiiiiiiiieee e 34-4
Command String Controller FUNCLONSccoeiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeies 34-4
New and Old ActiveX Automation FUNCLIONSocciviiiiiiiiiiieeenie 51-2
AppleEvent Descriptor String FOrmats............ooovvvvvvviviiiiiiiiiieienie e 52-11

© MNational Instruments Corporation Xix LabVIEW Function and VI Reference Manual

Contents

Table A-1. NUumeric Error Code RANGESuvveiiiiiiiiiee ettt A-1
Table A-2. VISA EIOr COUEScoiiiiiiiiiieeeeeeee et e e e e e e e e e e e e e e e e eeeeeaeeaens A-2
Table A-3. ANAIYSIS ErTOr COUESuviiiiiiiiiiie ittt A-4
Table A-4. Data Acquisition VI Error COUES.......cuuviiiiiiiiiie i A-7
Table A-5. APPIEEVENT Error COUESeviiieiiiiiiee et A-21
Table A-6. Instrument Driver Error COAESoocuviiiiiiiiieee et e e e e A-22
Table A-7. PPC EITOr COUEBSoeviiiiittettiiccee et et e e e e e A-23
Table A-8. GPIB EITOr COUEBScceeveeeeiietiitit it ee e e et e e e e e e e e e e e e e e e e e b e aaaaaes A-24
Table A-9. LabVIEW Function Error COAESuuuuiiiieeeeeiiiiiiiieeireeee e e e e s eneneveeeees A-25
Table A-10. LabVIEW-Specific PPC Error COUES.........ccoeiiiiiiiiiiiiiiie e A-28
Table A-11. TCP and UDP Error COUESciceeiiiiiiiiiiiiiiireeeee e e e s ssesienaeeeeeeaeeeseeennnnes A-28
Table A-12. Serial POrt Error COUESuuuuiiiiiieeeiieiicieiieiree s e e e e e s ssesieeeeeree e e e e e e e ennnnees A-29
Table A-13. LabVIEW-Specific Error Codes for AppleEvent Messages................... A-29
Table A-14. DDE EITOr COUEScooiiiiiiiiei ittt A-29
Table B-1. Analog Input Configuration Programmability—MIO and Al Devices.. B-1
Table B-2. Analog Input Characteristics—MIO and Al Devices (Part 1)................ B-2
Table B-3. Analog Input Characteristics—MIO and Al Devices (Part 2)................ B-3
Table B-4. Internal Channel Support—MIO and Al DEVICEScceevvvvivvivieeereeennn, B-4
Table B-5. Analog Output Characteristics—MIO and Al DeViCescccccvveeeennnnne B-4
Table B-6. Analog Output Characteristics—E Series Devices..........cccccvvvvveeeeeninnnns B-7
Table B-7. Digital I/O Hardware Capabilities—MIO and Al Devices...........c......... B-8
Table B-8. Counter Characteristics—MIO and Al DEVICEScccceeeeiiiieeeiiiiieeenns B-9
Table B-9. Counter Usage for Analog Input and Output—MIO and Al Devices..... B-10
Table B-10. Analog Input Configuration Programmability—

Lab and 1200 Series and Portable DeviCes.........cccccevviviieeiiiiieeeeennnen, B-10
Table B-11. Analog Input Characteristics—Lab and 1200 Series and

Portable Devices (Part 1)cccuuveveeeeiiiciiiieie e e e B-11
Table B-12. Analog Input Characteristics—Lab and 1200 Series and

Portable Devices (Part 2)cceeveeei it B-11
Table B-13. Analog Output Characteristics—Lab and 1200 Series and

POrtable DEVICESuviiiiiiiiiiee ittt e e B-12
Table B-14. Counter Usage for Analog Input and Output—Lab Series and

POrtable DEVICESeiiiiiiiiiiee ittt B-12
Table B-15. Digital I/O Hardware Capabilities—Lab and 1200 Series and

POrtable DEVICESoeiiiiiiiiiie ettt B-13
Table B-16. Analog Output and Digital Output Characteristics—

BAXX SErIES DEVICESvveiieiiiiiiie ettt B-14
Table B-17. Counter/Timer Characteristics—Lab and 1200 Series and

POrtable DEVICESuuiiiiiiiiiiee et B-15
Table B-18. Analog Input Characteristics—SCXI Modules (Part 1)ceeeeee. B-16
Table B-19. Analog Output Characteristics—SCXI Modules..........ccccuvvvvvvevninnnennnn. B-17
Table B-20. Relay Characteristics—SCXI MOdUIESoovvviriiiiviiiiiiiiiiieiee e, B-17

LabVIEW Function and VI Reference Manual XX © MNational Instruments Corporation

Table B-21.
Table B-22.
Table B-23.
Table B-24.
Table B-25.
Table B-26.

Table B-27.

Table B-28.

Table B-29.
Table B-30.
Table B-31.
Table B-32.
Table B-33.
Table B-34.

© National Instruments Corporation XXi

Contents

Digital Input and Output Characteristics—SCXI Modules..................... B-18
Terminal Block Selection Guide—SCXI Modules...........cccccevviieieennnn. B-18
Analog Input Configuration Programmabilityccccoveiiiiiniinennnnen. B-19
Analog Input Configuration Programmabilityccccveiiiiiniinennnnen. B-19
Analog Output Characteristics—Analog Output Only Devices.............. B-20
Analog Input Configuration Programmability—

Dynamic Signal AcqUuiSItion DEVICES..........euvvviiiiiieiiiiiiie e B-21
Analog Output Characteristics—

Dynamic Signal AcqUuiSItion DEVICES...........uuvviiviiieiiiiiee e B-21
Analog Input Characteristics—

Dynamic Signal ACqUISItion DEVICES...........uuvviiviiieiiiiiiie e B-22
Digital Hardware Capabilities—Digital I/O DeViCesS..........cccccevvveeeennee. B-22
Digital Hardware Capabilities—Timing Only Devicescccvvveee... B-23
Counter/Timer Characteristics—Timing Only Devices..........ccccccceevnnne B-24
Analog Input Configuration Programmabilitycccceveeeeviiiiciiiennnn. B-24
Analog Input CharacteristiCsuuvieeiiiiiiciiiiiie e B-24
Analog Input Characteristics, Part 2.........ccccccveeeiivcviiiieeie e B-24

LabVIEW Function and VI Reference Manual

About This Manual

TheLabVIEW Function and VI Reference Mancahtains descriptions of
all virtual instruments (VIs) and functions, including the following:

» VIs that support the devices for data acquisition

» Vis for GPIB, VXIbus, and serial port I/O operation

« digital signal processing, filtering, and numerical and statistical VIs
* networking and interapplication communications VIs

This manual is a supplement to ttebVIEW User Manuaknd you should
be familiar with that material.

This manual provides an overview of each function and VI available in the
LabVIEW development system. However, for more specific parameter
information regarding each function and VI, refer to@mine Reference
which you can access by selectitglp»Online Reference or to the Help
window, which you access by selectidglp»Show Help

Organization of the Product User Manual

This manual covers five subject areas: G functions and VIs, Data
Acquisition VIs, Instrument I/O Vls, Analysis VIs, and Communications
VlIs. Chapter 1introduction to the G Functions and Vistroduces the
functions and VIs available in the LabVIEW development system.

e Part I,G Functions and Vldncludes Chapters 2 through 13, which
describe the functions unique to the G programming language.

e Part Il,Data Acquisition Visincludes Chapters 14 through 30, which
describe the Data Acquisition (DAQ) Vls.

* Part lll, Instrument I/O Functions and VIscludes Chapters 31
through 36, which describe the Instrument 1/O VIs and functions.

e Part IV,Analysis VisincludeChapters 37 through 47, which describe
the Analysis Vls.

e Part V,Communication VIs and Functigrniacludes Chapters 48
through 53, which describe the Communication VIs.

© MNational Instruments Corporation XXiif LabVIEW Function and VI Reference Manual

About This Manual

In addition, this manual includes the following appendices and index:

* Appendix A,Error Codes includes tables that summarize the analog
and digital 1/0 capabilities of National Instruments data acquisition
devices.

« Appendix B,DAQ Hardware Capabilitieslists commands that
IEEE 488 defines.

* Appendix C,GPIB Multiline Interface Messagedescribes basic
concepts you need to understand to operate GPIB.

¢ Appendix D,Customer Communicatigeontains forms to help you
gather the information necessary to help us solve your technical
problems and a form you can use to comment on the product
documentation.

« Thelndexcontains an alphabetical list of VIs described in this manual,
including the page where you can find each one.

Conventions Used in This Manual

<>

(]

»

bold

bold italic

Ctrl

The following conventions are used in this manual:

Angle brackets enclose the name of a key on the keyboard — for example,
<shift>. Angle brackets containing numbers separated by an ellipsis
represent a range of values associated with a bit or signal name —

for example, DBIO<3..0>.

Square brackets enclose optional items — for examggspdnse].

A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys —
for example, <Control-Alt-Delete>.

The» symbol leads you through nested menu items and dialog box options
to a final action. The sequengie»Page Setup»Options»Substitute

Fonts directs you to pull down thgile menu, select theage Setuptem,
selectOptions, and finally select th8ubstitute Fontsoptions from the

last dialog box.

Bold text denotes the names of menus, menu items, parameters, dialog
boxes, dialog box buttons or options, icons, windows, Windows 95 tabs,
or LEDs.

Bold italic text denotes an activity objective, note, caution, or warning.

Key names are capitalized.

LabVIEW Function and VI Reference Manual Xxiv © MNational Instruments Corporation

italic

italic monospace

monospace

monospace bold

paths

About This Manual

Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text from which you supply the
appropriate word or value, as in Windows. 3.

Italic text in this font denotes that you must supply the appropriate words
or values in the place of these items.

Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines, device names, functions,
operations, variables, filenames and extensions, and for statements and
comments taken from programs.

Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, folders, and files.

Related Documentation

You might find the following documentation helpful as you read this
manual:

e LabVIEW User Manual

e G Programming Reference Manual

* LabVIEW Data Acquisition Basics Manual
» LabVIEW QuickStart Guide

e LabVIEW Online Referengeavailable by selecting
Help»Online Reference

* LabVIEW Online Tutoria{Windows only), which you launch from
the LabVIEW dialog box.

* LabVIEW Getting Started Card

e G Programming Quick Reference Card
* LabVIEW Release Notes

* LabVIEW Upgrade Notes

© MNational Instruments Corporation Xxv LabVIEW Function and VI Reference Manual

About This Manual

Customer Communication

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in Appendi€stomer
Communicatiopat the end of this manual.

LabVIEW Function and VI Reference Manual XXVi © MNational Instruments Corporation

Introduction to the
G Functions and Vs

This chapter contains basic information about the functions and virtual
instruments (VIs) that are available in the LabVIEW development system.

The development system includes collections of Vs that work with your
G programming language, data acquisition (DAQ) hardware devices,
instrument devices, and other communication interfaces.

Locating the G Functions and Vis

Functions are elementary nodes in the G programming language. They are
analogous to operators or library functions in conventional languages.
Functions are not VIs and therefore do not have front panels or block
diagrams. When compiled, functions generate inline machine code.

You select functions from theunctions palette in the block diagram.
When the block diagram window is active, sel&fmdows»

Show FunctionsPalette. You also can access tRanctions palette by
popping up on the area in the block diagram window where you want to
place the function.

© MNational Instruments Corporation 1-1 LabVIEW Function and VI Reference Manual

Chapter 1 Introduction to the G Functions and VIs

The following illustration shows the functions and VIs available from the
Functions palette.

= Functions] |

Structures, Numeric, Boolean

w

Al
- W -

i~

1=

e
-

-

.
-

@ String, Array, Cluster
s n ok b
-.-:E-“" * / E Comparison, Time & Dialog File I/O
EYL ERLE =
i i Communication, Instrument 1/O, DA!
A Q
e (P | T . .

‘q = Analysis, Tutorial, Advanced

Instrument Library, User Libraries,

Application Control

Select a VI

Many Functions palette chapters include information about function
examples. The paths for these examples for LabVIEW begin with
examples\

Function and VI Overviews

The following functions and VIs are available from Fenctions palette.

Structures

G Structures include While Loop, For Loop, Case, and Sequence
structures. This palette also contains the global and local variable nodes,

and the formula node.
&d

LabVIEW Function and VI Reference Manual 1-2 © MNational Instruments Corporation

Chapter 1 Introduction to the G Functions and VIs

Numeric Functions

Numeric functions perform arithmetic operations, conversions,
trigonometric, logarithmic, and complex mathematical functions. This
palette also contains additional numeric constants, such as

k
123

Boolean Functions
Boolean functions perform Boolean and logical operations.

k
F

String Functions

String functions manipulate strings and convert numbers to and from
strings. This palette also includes Additional String To Number functions
and String Conversion functions.

k

Array Functions
Array functions assemble, disassemble, and process arrays.

==
L
-

Cluster Functions
Cluster functions assemble, access, and change elements in a cluster.

k

=]

© MNational Instruments Corporation 1-3 LabVIEW Function and VI Reference Manual

Chapter 1 Introduction to the G Functions and VIs

Comparison Functions

Comparison functions compare data (greater than, less than, and so on) and
operations that are based on a comparison, such as finding the minimum
and maximum ranges for a group or array of values.

" 3
'.':E}"?

Time and Dialog Functions

Time and Dialog functions manipulate time functions and display dialog
boxes. This palette also includes the VIs that perform error handling.

File 1/0 Functions

File 1/0 functions manipulate files and directories. This palette also
contains the subpalettéslvanced File Functions Binary File VIs, and

File Constants
|i

]

Advanced Functions

Advanced functions are functions that are highly specialized. The Code
Interface Node is an example of an advanced functionA@lkanced
palette also contains Data Manipulation functions and Occurrences
functions.

LabVIEW Function and VI Reference Manual 1-4 © MNational Instruments Corporation

Chapter 1 Introduction to the G Functions and VIs

DAQ

DAQ VIs acquire and generate real-time analog and digital data as well as
perform counting operations. See Chaptedritoduction to the LabVIEW
Data Acquisition ViIsfor more information.

Instrument 1/0

Instrument I/O VIs communicate with instruments using GPIB, VISA, or
serial communication. See Chapter Bitroduction to LabVIEW
Instrument I/O Vls for more information.

Communication

Communication VIs network to other applications using TCP/IP, DDE,
ActiveX, Apple Events, PPC, or UDP. See ChapterM® VIs through
Chapter 53Program to Program Communication VFr more
information.

il

Analysis Vis

Analysis Vs perform measurement, signal generation, digital signal
processing, filtering, windowing, probability and statistics, curve fitting,
linear algebra, array operations, and VIs which perform additional
numerical methods. See Chapterld#oduction to Analysis in LabVIEW
for more information.

4

© MNational Instruments Corporation 1-5 LabVIEW Function and VI Reference Manual

Chapter 1 Introduction to the G Functions and VIs

Select A VI...

TheSelect a VI...allows you to select any VI using a file dialog box and

then place it on a diagram.

Tutorial

The Tutorial VIs provide examples for you to use while working through
theLabVIEW User Manual.

r

<

Instrument Driver Library

Instrument drivers are a set of Vls for GPIB, VISA, serial, and CAMAC
instruments. National Instruments, as well as other vendors, distribute these
instrument drivers. Any drivers you place in thr.lib appear in the
palette.

User Library

TheUser Library palette automatically includes any VIs in your
userlib directory, making it more convenient to gain access to
commonly used sub-VIs you have written.

I

LabVIEW Function and VI Reference Manual 1-6 © MNational Instruments Corporation

Chapter 1 Introduction to the G Functions and VIs

Application Control

TheApplication Control palette includes the Help functions, Menu
functions, Print Vs, and VI Server Vls.

© MNational Instruments Corporation 1-7 LabVIEW Function and VI Reference Manual

Part |

G Functions and Vs

Part I,G Functions and Vlsntroduces the G Functions and Vls
descriptions. This part contains the following chapters:

Chapter 2G Function and VI Reference Overvjaatroduces the G
functions and VIs. This chapter also describes the differences between
functions and Vils.

Chapter 3Structuresdescribes the structures available in G.

Chapter 4Numeric Functionsdescribes the functions that perform
arithmetic operations, complex, conversion, logarithmic, and
trigonometric operations. It also describes the commonly used
constants like the Numeric constant, Enumerated constant, and Ring
constant, as well as additional numeric constants.

Chapter 5Boolean Functionsdescribes the functions that perform
logical operations.

Chapter 65String Functionsdescribes the string functions, including
those that convert strings to numbers and numbers to strings.

Chapter 7Array Functions describes the functions for
array operations.

Chapter 8Cluster Functionsdescribes the functions for
cluster operations.

Chapter 9Comparison Functionglescribes the functions that
perform comparisons or conditional tests.

Chapter 10Time, Dialog, and Error Functionglescribes the timing
functions, which you can use to get the current time, measure elapsed
time, or suspend an operation for a specific period of time. Error
Handling also is covered in this chapter.

Chapter 11File Functions describes the low-level VIs and functions
that manipulate files, directories, and paths. This chapter also
describes file constants and the high-level file Vis.

Part | G Functions and Vs

e Chapter 12Application Control Functionsgdescribes the Application
Control functions.

« Chapter 13Advanced Functionslescribes the functions that perform
advanced operations. This chapter also describes the Help, Data
Manipulation, and Synchronization functions, and the VI Control and
Memory VISA.

LabVIEW Function and VI Reference Manual -2 © MNational Instruments Corporation

G Function and
VI Reference Overview

This chapter introduces the G Functions and VIs, descriptions of which
comprise Chapter 3 through Chapter 13.

Functions are elementary nodes in the G programming language. They are
analogous to operators or library functions in conventional languages.
Functions are not VlIs and therefore do not have front panels or block
diagrams. When compiled, functions generate machine code.

VIs are “virtual instruments,” so called because they model the appearance
functions of a physical instrument.

You select G Functions from tlkeinctions palette, in the block diagram.
When the block diagram window is active, you can displaythetions
palette by selectingvindows»Show Functions Palette You also can
access th&unctions palette by popping up on the area in the block
diagram window where you want to place the function.

© MNational Instruments Corporation 2-1 LabVIEW Function and VI Reference Manual

Chapter 2 G Function and VI Reference Overview

The following illustration shows the G functions and VIs available on the
Functions palette.

& Functions __H|

G Functions and Vls

Many Functions palette chapters include information about function
examples.

G Functions Overview

For brief descriptions of each of the eleven G Function and VI palettes
available, refer to Chapter thtroduction to the G Functions and VIs

Introduction to Polymorphism

The following sections provide some general information about
polymorphism in G functions.

Polymorphism

Polymorphisnis the ability of a function to adjust to input data of different
types or representations. Most functions are polymorphic. Vis are not
polymorphic. All functions that take numeric input can accept any numeric

LabVIEW Function and VI Reference Manual 2-2 © MNational Instruments Corporation

Chapter 2 G Function and VI Reference Overview

representation (except some functions that do not accept complex
numbers).

Functions are polymorphic to varying degrees; none, some, or all of their
inputs may be polymorphic. Some function inputs accept numbers or
Boolean values. Some accept nhumbers or strings. Some accept not only
scalar numbers but also arrays of numbers, clusters of numbers, arrays of
clusters of numbers, and so on. Some accept only one-dimensional arrays
although the array elements may be of any type. Some functions accept all
types of data, including complex numbers.

Unit Polymorphism

If you want to create a VI that computes the root, mean square value of a
waveform, you have to define the unit associated with the waveform.

You would need a separate VI for voltage waveforms, current waveforms,
temperature waveforms, and so on. LabVIEW has polymorphic unit
capability so that one VI can perform the same calculation, regardless of
the units received by the inputs.

You create a polymorphic unit by enteritig, wherex is a number (for
example$1). You can think of this as a placeholder for the actual unit.
When LabVIEW calls the VI, the program substitutes the units you pass in
for all occurrences dfx in that VI.

LabVIEW treats a polymorphic unit as a unique unit. You cannot convert

a polymorphic unit to any other unit, and polymorphic units propagate
throughout the diagram, just as other units do. When the unit connects to an
indicator that also has the abbreviatin the units match and the VI can
then compile.

You can us&l in combinations just like any other unit. For example, if the
input is multiplied by 3 seconds and then wired to an indicator, the indicator
must be$l s units. If the indicator has different units, the block diagram
shows a bad wire. If you need to use more than one polymorphic unit, you
can use the abbreviatio$8, $3, and so on.

A call to a subVI containing polymorphic units computes output units
based on the units received by its inputs. For example, suppose you create
a VI that has two inputs with the polymorphic uditsand$2 that creates

an output in the forms1 $2 /s . If a call to the VI receives inputs with

the unit m/s to thél input and kg to thé2 input, LabVIEW computes the
output unit akg m/ s"2

© MNational Instruments Corporation 2-3 LabVIEW Function and VI Reference Manual

Chapter 2

G Function and VI Reference Overview

Suppose a different VI has two inputssafand$1/s , and computes an
output of$172 . If a call to this VI receives inputs of m/s to $leinput
andm/s”2 to the$l/s input, LabVIEW computes the output unit as
m~2 / s”2 . If this VI receives inputs of m to ti$a input and kg to
the$l/s input, however, LabVIEW declares one of the inputs as a unit
conflict and computes (if possible) the output from the other input.

A polymorphic VI can have a polymorphic subVI because LabVIEW keeps
the respective units distinct.

Numeric Conversion

You can convert any numeric representation to any other numeric
representation. When you wire two or more numeric inputs of different
representations to a function, the function usually returns output in the
larger or wider format. The functions coerce the smaller representations to
the widest representation before execution.

Some functions, such as Divide, Sine, and Cosine, always produce
floating-point output. If you wire integers to their inputs, these functions
convert the integers to double-precision, floating-point numbers before
performing the calculation.

For floating-point, scalar quantities, it is usually best to use
double-precision, floating-point numbers. Single-precision, floating-point
numbers save little or no execution time, and overflow much more easily.
The analysis libraries, for example, use double-precision, floating-point
numbers. You should only use extended-precision, floating-point numbers
when necessary. The performance and precision of extended-precision
arithmetic varies among the platforms.

For integers, it is usually best to use a long integer.

If you wire an output to a destination that has a different numeric
representation from the source, G converts the data according to the
following rules:

* Signed or unsigned integer to floating-point number—Conversion is
exact, except for long integers to single-precision, floating-point
numbers. In this case, G reduces the precision from 32 bits to 24 bits.

¢ Floating-point number to signed or unsigned integer—G moves
out-of-range values to the integer's minimum or maximum value.
Most integer objects, such as the iteration terminal of a For Loop,
round floating-point numbers. G rounds a fractional part of 0.5 to the
nearest even integer—for example, G rounds 6.5 to 6 rather than 7.

LabVIEW Function and VI Reference Manual 2-4 © MNational Instruments Corporation

Chapter 2 G Function and VI Reference Overview

» Integer to integer—G does not move out-of-range values to the
integer’s minimum or maximum value. If the source is smaller than the
destination, G extends the sign of a signed source and places zeros in
the extra bits of an unsigned source. If the source is larger than the
destination, G copies only the low order bits of the value.

The block diagram placescaercion dobn the border of a terminal where
the conversion takes place to indicate that automatic numeric conversion
occurred, as in the following example.

Because VIs and functions can have many terminals, a coercion dot can
appear inside an icon if the wire crosses an internal terminal boundary
before it leaves the icon/connector, as the following illustration shows.

FiH)

Moving a wired icon stretches the wire. Coercion dots can cause a VI to use
more memory and increase its execution time. You should try to keep data
types consistent in your VIs.

Overflow and Underflow

G does not check for overflow or underflow conditions on integer values.
Overflow and underflow for floating-point numbers is in accordance with
IEEE 754 Standard for binary, floating-point arithmetic.

Floating-point operations propagate not-a-number (NaN) and zInf
faithfully. When you explicitly or implicitly convert NaN or +Inf to an
integer or Boolean value, however, you get a value that looks reasonable,
but is meaningless. For example, dividing by zero produces =Inf, but
converting that value to a word integer gives the value 32,768, which is the
largest value that can be represented in the destination format.

© MNational Instruments Corporation 2-5 LabVIEW Function and VI Reference Manual

Chapter 2 G Function and VI Reference Overview

Wire Styles
The wire style represents the data type for each terminal, as the following
table shows. Polymorphic functions show the wire style for the most
commonly used data type.
Scalar 1D Amay 20 Amay 30 Aray 4D Amray
Murmber
Boolean R
String iAnnnnnnns 3000000000 RARARRRRR IBRRARAARA REARARARE
General Cluztel comes o
Clugter of Mumber: commms e
LabVIEW Function and VI Reference Manual 2-6

© National Instruments Corporation

Structures

This chapter describes the Structures available in G.
To access th8tructures palette, seledtunctions»Structures The

following illustration shows the options that are available oisthectures
palette.

5 Functi
™ Suuotures | |
| m’ Iﬁlbl
|
2

Structures

Seeexamples\general\structs.llb for examples of how these
structures are used in LabVIEW.

© MNational Instruments Corporation 3-1 LabVIEW Function and VI Reference Manual

Chapter 3 Structures

Structures Overview

The following Structures are available in G.

Case Structure
Has one or more subdiagramscasegsexactly one of which executes when the structure
executes. Whether it executes depends on the value of the Boolean, string, or numeric scalar
you wire to the external side of the terminakefector

For more information on how to use the Case structure in LabVIEW, see Ch&pdase4nd
Sequence Structures and the Formula NadéheLabVIEW User Manual

Sequence Structure

Consists of one or more subdiagramdrames that execute sequentially. As an option, you
can add sequence locals that allow you to pass information from one frame to subsequent
frames by popping up on the edge of the structure.

TR

For more information on how to use the Sequence structure in LabVIEW, see Chapter 4,
Case and Sequence Structures and the Formula,NiodtleeLabVIEW User Manual

For Loop
Executes its subdiagramtimes, wheren equals the value contained in the count terminal.
As an option, you can add shift registers so that you can pass information from one iteration
to the next by popping up on the edge of the structure.

numbser
of times . -
cument ieration

For more information on how to use For Loop in LabVIEW, see Chapteo®s and Charts
in theLabVIEW User Manual

LabVIEW Function and VI Reference Manual 3-2 © MNational Instruments Corporation

Chapter 3 Structures

While Loop

Executes its subdiagram until a Boolean value you wire toahéitional terminals FALSE.
As an option, you can add shift registers so you can pass information from one iteration to the
next by popping up on the edge of the structure.

Sy current feration

o

condiion

For more information on how to use While Loop in LabVIEW, see Chaptardps and
Charts in theLabVIEW User Manual

Formula Node
Executes mathematical formulae on the block diagram.

input—Tlx=n E

st [owtpart

formulae

For more information on the Formula Node, see Chapt@adge and Sequence Structures and
the Formula Nodgin theLabVIEW User Manual

Global Variable

A built-in LabVIEW object that you define by creating a special kind of VI, with front panel
controls that define the datatype of the global variable. You can read and write values to the
global variable.

For more information on the Global Variable, see ChapteGR#al and Local Variables
in theG Programming Reference Manual

© MNational Instruments Corporation 3-3 LabVIEW Function and VI Reference Manual

Chapter 3 Structures

Local Variable
Lets you read or write to one of the controls or indicators on the front panel of your VI.

Writing to a local variable has the same result as passing data to a terminal, except that you
can write to it even though it is a control, or read from it even though it is an indicator.

LOCAL

For more information on the Local Variable, see ChapteG&al and Local Variablesn
theG Programming Reference Manual

LabVIEW Function and VI Reference Manual 3-4 © MNational Instruments Corporation

Numeric Functions

This chapter describes the functions that perform arithmetic, complex,
conversion, logarithmic, and trigonometric operations. It also describes the
commonly used constants such as the Numeric constant, Enumerated
constant, and Ring constant, as well as additional numeric constants.

To access theumeric palette, seledtunctions»Numeric. The following
illustration shows the options that are available orNimeric palette.

SEE
- —Diﬂhlumen-::

el (12 ;
e o e]
Bers) [B> > > By

Taliatiy

g I BB B
I e

el

I[“

|

HI

TheNumeric palette includes the following subpalettes:
» Additional Numeric Constants

e Complex

» Conversion

* Logarithmic

e Trigonometric

For examples of some of the arithmetic functions ezamples\
general\structs.llb

© MNational Instruments Corporation 4-1 LabVIEW Function and VI Reference Manual

Chapter 4

Numeric Functions

Polymorphism for Numeric Functions

Note

The arithmetic functions accept numeric input data. With some exceptions
noted in the function descriptions, the output has the same numeric
representation as the input, or if the inputs have different representations,
the output is the wider of the inputs.

The arithmetic functions work on numbers, arrays of numbers, clusters of
numbers, arrays of clusters of numbers, complex numbers, and so on.
A formal and recursive definition of the allowable input type is as follows:

Numeric type= numeric scalar || arragdmeric typg|| cluster
[numeric typels

The numeric scalars can be a floating-point, integer or complex,
number. G does not allow you to use arrays of arrays.

Arrays can have any number of dimensions of any size. Clusters can have
any number of elements. For functions with one input, the functions operate
on each element of the structure.

For functions with two inputs, you can use the following input
combinations:

e Simila—both inputs have the same structure, and the output has the
same structure as the inputs.

* One scalar—one input is a numeric scalar, the other is an array or
cluster, and the output is an array or cluster.

« Array of—one input is a numeric array, the other is the numeric type
itself, and the output is an array.

For similar inputs, G performs the function on the respective elements of
the structures. For example, G can add two arrays element by element.
Both arrays must have the same dimensionality. You can add arrays with
differing numbers of elements; the output of such an addition has the same
number of elements as the smallest input. Clusters also must have the same
number of elements, and the respective elements must have the same
structure.

You cannot use the multiply function to do matrix multiplication. If you use the
multiply function with two matrices, G takes the first number in the first row of the
first matrix, multiplies it by the first number in the first row of the second matrix,
and so on.

LabVIEW Function and VI Reference Manual 4-2 © MNational Instruments Corporation

Chapter 4 Numeric Functions

For operations involving a scalar and an array or cluster, G performs the
function on the scalar and the respective elements of the structure.

For example, G can subtract a number from all elements of an array,
regardless of the dimensionality of the array.

For operations that involve a humeric type and an array of that type,

G performs the function on each array element. For example, a graph is an
array of points, and a point is a cluster of two numeric typasdy. To

offset a graph by 5 units in tlalirection and 8 units in thedirection, you

can add a point, (5, 8), to the graph.

The Polymorphic Combinations example below illustrates some of the
possible polymorphic combinations of the Add function.

Sirnilar One Scalar

scalar
soalar :|>_ AR scalr :l>— aray
array :I% artay array
array sralar ;[% cluster
cluzter ﬁ>m cluster cluster
cluster

Array of

array of clusters

= aray of clusters
cluster =

Polymorphism for Transcendental Functions

The transcendental functions accept numeric input data. If the input is an
integer, the output is a double-precision, floating-point number. Otherwise,
the output has the same numeric representation as the input.

These functions work on numbers, arrays of numbers, clusters of numbers,
arrays of clusters of numbers, complex numbers, and so on.

Polymorphism for Conversion Functions

All the conversion functions except Byte Array to String, String to Byte
Array, Convert Unit, and Cast Unit Bases are polymorphic. Therefore, the
polymorphic functions work on scalar values, arrays of scalars, clusters of
scalars, arrays of clusters of scalars, and so on. The output has the same
numeric representation as the input but with the new type.

© MNational Instruments Corporation 4-3 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

When you compare signed and unsigned integers and the signed integer is
negative, the negative integer is changed to positive before the comparison
occurs. Therefore, you do not get the expected results. For example, if you
enter —1 with representation 132 for one input and 5 with a representation
U32 as the other input, the result returned states that the minimum value
is 5, because 5 is less than 4294967295.

Polymorphism for Complex Functions

The complex functions work on scalar values, arrays of scalars, clusters of
scalars, arrays of clusters of scalars, and so on. The output has the same
composition as the input but with the new type.

Arithmetic Function Descriptions

The following functions are available.

Absolute Value
Returns the absolute value of the input.

i+

abzx]

Add

Computes the sum of the inputs.

B iy
¥

Add Array Elements

Returns the sum of all the elementsiinmeric array.

NUMEric array I;I\'> UM

LabVIEW Function and VI Reference Manual 4-4 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Compound Arithmetic
Performs arithmetic on two or more numeric, cluster, or Boolean inputs.

waluel
va]l._|e1

sum, product,
ANC or OF of
values

'-.-'a‘:i!e n-i

You select the operation (multiply, AND, or OR) by popping up on the function and selecting
Change Mode

You can invert the inputs or the output of this function by popping up on the individual
terminals, and selectirigvert. For Add, selecinvert to negate an input or the output. For
Multiply, selectinvert to use the reciprocal of an input or to produce the reciprocal of the
output. For AND or OR, seletivert to logically negate an input or the output.

Note You add inputs to this node by popping up on an input and selecting Add Input or
by placing the Positioning tool in the lower left or right corner of the node and
dragging it.

Decrement
Subtracts 1 from the input value.

Divide
Computes the quotient of the inputs.

e
y w

Increment
Adds 1 to the input value.

H—IE—H{I

© MNational Instruments Corporation 4-5 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

Multiply

Returns the product of the inputs.

Multiply Array Elements

Returns the product of all the elementsiimeric array.

NUmMEric array {b product

Negate

Negates the input value.

e D X

Quotient & Remainder
Computes the integer quotient and the remainder of the inputs.

Y [R} sy floar=Ay]
¥ —'_ml_‘— flar=dy]

If the integer input value gf is zero, the quotient is zero and the remainder is divideRdr
floating point inputs, ify is zero, the quotient is infinity and the remainder defaults to NaN.

Random Number (0-1)

Produces a double-precision floating-point number between 0 and 1 exclusive, or not
including 0 and 1. The distribution is uniform.

number; 0to 1

LabVIEW Function and VI Reference Manual 4-6 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Reciprocal
Divides 1 by the input value.

X % 1/

Round To +Infinity

Rounds the input to the next highest integer. For example, if the input is 3.1, the result is 4.
If the input is —3.1, the result is —3.

¥ D ceill] smallest int >= =

Round To —Infinity

Rounds the input to the next lowest integer. For example, if the input is 3.8, the result is 3.
If the input is —3.8, the result is —4.

X E]} floar(=]: largest int <=«

Round To Nearest

Rounds the input to the nearest integer. If the value of the input is midway between two
integers (for example, 1.5 or 2.5), the function returns the nearest even integer (2).

number ED nearest integer value

Scale By Power Of 2

Multiplies one inputX) by 2 raised to the power of the other inpyt (f n is a floating-point
number, this function roundsprior to scaling (0.5 rounds to 0; 0.51 rounds to 1)xli§ an
integer, this function is the equivalent of an arithmetic shift.

n :E}‘/\,_ W
X

© MNational Instruments Corporation 4-7 LabVIEW Function and VI Reference Manual

Chapter 4

Numeric Functions

Sign
Returns 1 if the input value is greater than O, returns 0 if the input value is equal to 0, and

returns —1 if the input value is less than 0. Other programming languages typically call this
function thesignum orsgn function.

[z,
number ek 1,01

Square Root

Computes the square root of the input valug.iff negative, the square root is NaN unless
X is complex.

X & aart[x]

Subtract
Computes the difference of the inputs.

bt
i
¥

User Definabhle Arithmetic Constants

You can define the following constants.

Numeric Constant

Use this constant to supply a constant numeric value to the block diagram. Set this value by
clicking in the constant with the Operating tool and typing a value. You can change the data
format and representation.

The value of the numeric constant cannot be changed while the VI executes. You can assign
a label to this constant.

Enumerated Constant

Enumerated values associate unsigned integers to strings. If you display a value from an
enumerated constant, the string is displayed, instead of the number associated with it. If you
need a set of strings that do not change, then use this constant. Set the value by clicking in the
constant with the Operating Tool. Set the string with the Labeling Tool and enter the string.
To add another item, click the constant and chéakkltem Before or Add Item After.

LabVIEW Function and VI Reference Manual 4-8 © MNational Instruments Corporation

Chapter 4 Numeric Functions

The value of the enumerated constant cannot be changed while the VI executes. You can
assign a label to this constant.

Ring Constant

Rings associate unsigned integers to strings. If you display a value from a ring constant, the
number is displayed, instead of the string associated with it. If you need a set of strings that
do not change, then use this constant. Set the value by clicking the constant with the Operating
tool. Set the string with the Labeling tool and enter the string. To add another item, pop up on
the constant and chooéed Item Before or Add Item After.

The value of the Ring constant cannot be changed while the VI executes. You can assign a
label to this constant.

Conversion Functions Descriptions

The following illustration shows the options that are available o€tmyersionsubpalette.

—IHConverzion

11g) J116) J132) Jug) Juiel Ju32)

I5GL) JDBEL) JEXT) IGSG| exT)

The following functions convert a numeric input into a specific representation:
« To Byte Integer

* To Double Precision Complex
* To Double Precision Float

« To Extended Complex

» To Extended Precision Float
e To Long Integer

e To Single Precision Complex
» To Single Precision Float

* To Unsigned Byte Integer

e To Unsigned Word Integer

* To Unsigned Long Integer

* To Word Integer

© MNational Instruments Corporation 4-9 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

When these functions convert a floating-point number to an integer, they round the output to
the nearest integer, or the nearest even integer if the fractional part is 0.5. If the result is out
of range for the integer, these functions return the minimum or maximum value for the integer
type. When these functions convert an integer to a smaller integer, they copy the
least-significant bits without checking for overflow. When they convert an integer to a larger
integer, they extend the sign of a signed integer and pad an unsigned integer with zeros.

Use caution when you convert numbers to smaller representations, particularly when
converting integers, because the G conversion routines do not check for overflow.

Boolean Array To Number

ConvertsBoolean array to an unsigned long integer by interpreting it as the two’s
complement representation of an integer, with tAeement of the array being the
least-significant bit.

Boolean amay number

Boolean To (0,1)

Converts a Boolean value to a word integer— 0 and 1 for the input values FALSE and TRUE,
respectively.

Boolean TFo:1} 0.1

Booleancan be a scalar, an array, or a cluster of Boolean values, an array of clusters of
Boolean values, and so on. SeeRbiymorphism for Boolean Functiossction in Chapter 5,
Boolean Functions

Byte Array To String

Converts an array of unsigned bytes into a string.

unsigned byte array ztring

LabVIEW Function and VI Reference Manual 4-10 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Cast Unit Bases
Changes the units associated with the input to the units associatedivi#md returns the
results at the output terminal. Use this function with extreme caution. Because the Cast Unit
Bases function works with bases, you must understand the conversion from an arbitrary unit
to its bases before you can use this function effectively. This function can change base units,
such as changing meters to grams.

unit [none] —‘_|
X Lo

Convert Unit

Converts a physical number (a number that has a unit) to a pure number (a number with no
units), or a pure number to a physical number.

*—m 7=

You can edit the string inside the unit by highlighting the string with the Operating tool then
entering the text.

If the input is a pure number, the output receives the specified units. For example, given an
input of 13 and a unit specification of seconds(s), the resulting value is 13 seconds.

If the input is a physical number andit is a compatible unit, the output is the input measured
in the specified units. For example, if you specify 37 meters(m)y@ihds meters, the result
is 37 with no associated units.ulfit is feet (ft), the result is 121.36 with no associated units.

Number To Boolean Array
Converts an integerumber to a Boolean array of 8, 16, or 32 elements, wherefreednent
corresponds to the least-significant bit (LSB) of the two’s complement representation of the
integer.

number Boolean aray

String To Byte Array

Convertsstring into an array of unsigned bytes.

glring unzigned byte array

© MNational Instruments Corporation 4-11 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

To Byte Integer

Convertsnumber to an 8-bit integer in the range —128 to 127.

number 118} abit integer

To Double Precision Complex
Convertsnumber to a double-precision complex number.

number ICDE} double precizion complex

To Double Precision Float
Convertsnumber to a double-precision floating-point number.

numhber 1DEL} double precision float

To Extend Precision Complex
Convertsnumber to an extended-precision complex number.

number JCET) extended precizion comples

To Extended Precision Float
Convertsnumber to an extended-precision floating-point number.

number EXT) extended precizion float

To Long Integer
Convertsnumber to a 32-bit integer in the range®20 21-1

number 1132} 32bit integer

LabVIEW Function and VI Reference Manual 4-12 © MNational Instruments Corporation

Chapter 4 Numeric Functions

To Single Precision Complex
Covertsnumber to a single-precision complex number.

numher 1CSG} gingle precizion comples

To Single Precision Float
Convertsnumber to a single-precision floating-point number.

number ISGL} gingle precizion float

To Unsigned Byte Integer

Convertsnumber to an 8-bit unsigned integer in the range 0 to 255.

numhber 108} unzigned Bhit integer

To Unsigned Long Integer
Convertsnumber to a 32-bit unsigned integer in the range 0%o-21.

number 132} = unsigned 32bit integer

To Unsigned Word Integer

Convertsnumber to a 16-bit unsigned integer in the range 0 to 65,535.

number 1U16} unzigned 16kt integer

To Word Integer
Convertsnumber to a 16-bit integer in the range —32,768 to 32,767.

numher 1116} 16hit integer

© MNational Instruments Corporation 4-13 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

Trigonometric and Hyperbolic Functions Descriptions

The following illustration shows the options for fiigonometric subpalette.

iis! Trigonometric X |
----- x ﬁ ' ﬁ':'?"\\'r 1}2:-"'“
R P Jfl.;.;:.sl'k. | i irem --?E’-“i,., N i

ii B | e ok
STHH i) | Fari] | ACOGH-_] [{ATh N
R H P] [: :

E :; . (R
| I s H : FAEE H
CoC| [y SEC | 1 YT -JI{J':':'s ATAME| | SINE

Cosecant
Computes the cosecantxafwherex is in radians. Cosecant is the reciprocal of sine.

1zin)

Cosine
Computes the cosine f wherex is in radians.

X ngk coE(x]

Cotangent
Computes the cotangentxafwherex is in radians. Cotangent is the reciprocal of tangent.

IGJ 1/tanx]

ST

Hyperbolic Cosine
Computes the hyperbolic cosinexof

)

Lo

cozhlx]

LabVIEW Function and VI Reference Manual 4-14 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Hyperbolic Sine

Computes the hyperbolic sinexf

X EIEHH zinki[x]

Hyperbolic Tangent
Computes the hyperbolic tangentof

X : ; tarilx]

Inverse Cosine

Computes the arccosinesfn radians. I is not complex and is less than —1 or greater
than 1, the result is NaN.

X 5o arcoog(x)]

Inverse Hyperholic Cosine
Computes the hyperbolic argcosinexoff x is not complex and is less than 1, the result

is NaN.
X ;"/. argeozhifx]
[ACOSH-
Inverse Hyperbolic Sine
Computes the hyperbolic argsinexof
X - argzinh(x]

© MNational Instruments Corporation 4-15 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions
Computes the hyperbolic argtangenkoff x is not complex and is less than —1 or greater

Inverse Hyperbolic Tangent
than 1, the result is NaN.

: “Jl[' argtanh(]

Computes the arcsine win radians. I is not complex and is less than —1 or greater than 1,

Inverse Sine

the result is NaN.
:’r’nsm

arczin(x]

Inverse Tangent
L arctan(s]

Computes the arctangent>ofn radians (which can be betweean'2-andrv?2).
ﬁﬂﬁh:TﬁN

Inverse Tangent (2 Input)
computes the arctangent in only two quadrants.
y —T

EAEF
ATANZ

Computes the arctangentygk in radians. This function can compute the arctangent for
angles in any of the four quadrants of #agplane, whereas the Inverse Tangent function

atanzw.y

Secant
Computes the secantxfwherex is in radians.
ol
o 1/cogx]

o T
[wsECy]

4-16 © MNational Instruments Corporation

LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

Sinc
Computes the sine afdivided byx, wherex is in radians.
X e zin[®]
SINE
Sine
Computes the sine af wherex is in radians.
X [ginx]
a1 1 |

Sine & Cosine
Computes both the sine and cosing,ofvherex is in radians. Use this function only when
you need both results.

P ginx]
H i,
i cos(x]

Tangent
Computes the tangent xf wherex is in radians.

ERESE

karx]

-y
£

Logarithmic Functions Descriptions
The following illustration shows the options for thegarithmic subpalette.

it» Logarithmic |

_
ik
K
1

|

© MNational Instruments Corporation 4-17 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

Exponential
Computes the value efraised to thex power.

explx]

Exponential (Arg) -1
Computes 1 less than the valueeodised to the power. Wherx is very small, this function
is more accurate than using the Exponential function then subtracting 1 from the output.

B-ficy

exp(#] -1

—..i1
EXP-1

Logarithm Base 2

Computes the base-2 logarithmxoff x is 0,l0g2(x) is —o. If X is not complex and is less
than 0,Jog2(x) is NaN.

1

¥ |{-:-2-:u log2{x]

Logarithm Base 10

Computes the base-10 logarithmxoff x is 0,log(x) is —o. If X is not complex and is less
than 0,og(x) is NaN.

X fii loglx]
Lo

Logarithm Base X

Computes the basdogarithm ofy (x>0,y>0). Ify is 0, the output ises. Whenx andy are
both not complex and is less than or equal to 0, wis less than 0, the output is NaN.

1
y— i
i lagxiv]

X

LabVIEW Function and VI Reference Manual 4-18 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Natural Logarithm

Computes the natural baségarithm ofx. If x is 0,In(x) is —o. If x is not complex and is
less than On(x) is NaN.

X] i In[x]

Natural Logarithm (Arg +1)
Computes the natural logarithm af€ 1). Wherx is near 0, this function is more accurate
than adding 1 ta then using the Natural Logarithm functionxlis equal to —1, the result is
—oo. If X is not complex and is less than —1, the result is NaN.

X 1;:: In[=+1]
LHgeHy
Power Of 2
Computes 2 raised to tlxepower.
X Moz 2
exid
Power Of 10
Computes 10 raised to tlgpower.
H P 107
T EHE]

Power Of X
Computex raised to thg power. Ifx is not complex, it must be greater than zero unjéss
an integer value. Otherwise, the result is NaN.iff zerox”y is 1 for all values oX,
including zero.

Wy

© MNational Instruments Corporation 4-19 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

Complex Function Descriptions

The following illustration displays the options available onGloenplex subpalette.

sl Complex e

2 B2kl B R

The functions Polar To Complex and Re/Im To Complex create complex humbers from two
values given in rectangular or polar notation. The functions Complex To Polar and Complex
To Re/lm break a complex number into its rectangular or polar components.

Complex Conjugate
Produces the complex conjugatexof iy.

X+ iy Lz_.mf.- -y

Complex To Polar
Breaks a complex number into its polar components.

[* e"(i"theta) .

Complex To Re/Im
Breaks a complex number into its rectangular components.

Polar To Complex
Creates a complex number from two values in polar notation.

theta: & r* e”[i*theta)

LabVIEW Function and VI Reference Manual 4-20 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Re/Im To Complex
Creates a complex number from two values in rectangular notation.

— Y
¥

Additional Numeric Constants Descriptions

The following illustration shows the options available orAtiditional Numeric Constants
subpalette.

ifs! Additional Numeric Constants |

[A b kg b2 E
EEGEERBME

Additional User Definable Constants
You can define the following constants.

—y] Listbox Symbol Ring Constant

This ring constant assigns symbols to items in a listbox control. Typically, you wire this
constant to the Iltem Symbols attribute.

Color Box Constant

Use this constant to supply a constant color value to the block diagram. Set this value by
clicking the constant with the Operating tool and choosing the desired color.

The value of the Color Box constant cannot be changed while the VI executes. You can assign
a label to this constant.

© MNational Instruments Corporation 4-21 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

Error Ring Constant

This constant is a predefined ring of errors specific to memory usage, networking, printing,
and file 1/O. Errors related to DAQ, GPIB, VISA, and Serial VIs and functions are not options
in this ring.

Fixed Constants
The following constants are fixed.

Avogadro Constant (1/mol)
Returns the value 6.02828.

7] Base 10 Logarithm of e
Returns the value 0.43429448190325183.

Elementary Charge (c)
Returns the value 1.60218929.

Gravitational Constant (Nm2/kg?)
Returns the value 6.67&011.

[E] Molar Gas Constant (J/mol K)
Returns the value 8.31441.

3| e

Returns the value 2.7182818284590&52

Natural Logarithm of Pi
Returns the value 1.14472988584940020.

H

Natural Logarithm of 2
Returns the value 0.69314718055994531.

3
[

Natural Logarithm of 10
Returns the value 2.30234095236904570.

—] Negative Infinity
Returns the valueos,

LabVIEW Function and VI Reference Manual 4-22 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Pi
Returns the value 3.14159265358979320.

El

Pi divided by 2
Returns the value 1.57079632679489660.

B

Pi multiplied by 2
Returns the value 6.28318530717958650.

5]

Planck’s Constant (J/Hz)
Returns the value 6.626234.

1

=] Positive Infinity
Returns the value.

l

=] Reciprocal of e
Returns the value 0.36787944117144232.

-] Reciprocal of Pi
Returns the value 0.31830988618379067.

= Rydberg Constant (/m)
Returns the value 1.097373¥77

Speed of Light in Vacuum (m/sec)
Returns the value 299,792,458.

© MNational Instruments Corporation 4-23 LabVIEW Function and VI Reference Manual

Boolean Functions

This chapter describes the functions that perform logical operations.

The following illustration shows thBooleanpalette, which you access by
selectingFunctions»Boolean

s Functions

@’ }|

123

[

= ..—D:UBuulean

el B o

w

[=]=]
=
[=]r]

[1]
£ HE
o)

i

3 3
=)
=1L o]

EYERE 'hE'.-I e Jive [3

i S

Inskr Liky

L, B | E=
s

i [
% ,m| ||

For examples of some of the Boolean functions egemples\
general\structs.llb

Polymorphism for Boolean Functions

The logical functions take either Boolean or numeric input data. If the input
is numeric, G performs a bit-wise operation. If the input is an integer, the

output has the same representation. If the input is a floating-point number,
G rounds it to a long integer, and the output is a long integer.

The logical functions work on arrays of numbers or Boolean values,
clusters of numbers or Boolean values, arrays of clusters of numbers or
Boolean values, and so on.

© MNational Instruments Corporation 5-1 LabVIEW Function and VI Reference Manual

Chapter 5 Boolean Functions

A formal and recursive definition of the allowable input type is as follows:

Logical type= Boolean scalar || numeric scalar || artagi¢al typ4q ||
cluster [ogical type$

except that complex numbers and arrays of arrays are not allowed.

Logical functions with two inputs can have the same input combinations as
the arithmetic functions. However, the logical functions have the further
restriction that the base operations can only be between two Boolean values
or two numbers. For example, you cannot have an AND between a Boolean
value and a number. See the example below for an illustration of some
combinations of Boolean values for the And function.

Similar One Scalar
Boolean sealar - A Boolean scalar
Boolean scalar -
Boalean array Boolean array
Boalean array

cluster
cluster

Boolean scalar ...
Boalean array
Boalean array

Boalean scalar
Boolean cluster oo

= Boolean closter

array of clusters
cluster

Boolean Function Descriptions

The following Boolean functions are available.

And
Computes the logical AND of the inputs.
X w.and. u?
-
Note This function performs bit-wise operations on humeric inputs.

LabVIEW Function and VI Reference Manual 5-2 © MNational Instruments Corporation

Chapter 5 Boolean Functions

And Array Elements
Returns TRUE if all the elementsBoolean array are true; otherwise it returns FALSE.

Boolean array I‘-:-" logical AMD

Boolean Array To Number

ConvertsBoolean arrayto an unsigned long integer by interpreting it as the two’s
complement representation of an integer with the Oth element of the array being the least
significant bit.

Boolean array rrmber

Boolean To (0,1)

Converts a Boolean value to a word integer — 0 and 1 for the input values FALSE and TRUE,
respectively.

Boolean 1201} 0.1

Compound Arithmetic
Performs arithmetic on two or more numeric, cluster, or Boolean inputs.

waluel
va]l._|e1

surn, product,
AMD or OF of
walues

'-.-'a‘:i!e n-i

You choose the operation (multiply, AND, or OR) by popping up on the function and selecting
Change Mode

You can invert the inputs or the output of this function by popping up on the individual
terminals and selectirigvert. For Add, selecinvert to negate an input or the output. For
Multiply, selectinvert to use the reciprocal of an input or to produce the reciprocal of the
output. For AND or OR, seletivert to logically negate an input or the output.

Note You add inputs to this node by popping up on an input and selechdd Input or
by placing the Positioning tool in the lower left or right corner of the node and
dragging it.

© MNational Instruments Corporation 5-3 LabVIEW Function and VI Reference Manual

Chapter 5 Boolean Functions

Exclusive Or

Computes the logical exclusive OR of the inputs.

Implies

Computes the logical OR gfand of the logical negation &f The function negatesthen
computes the logical OR gfand of the negated

X w implies, y?
y
Not
Computes the logical negation of the input.
¥ a|;> .hot, =7
Not And

Computes the logical NAND of the inputs.

Not Exclusive Or

""" :: ok, [.and. u]?

Computes the logical negation of the logical exclusive OR of the inputs.

Not Or

chiat, [waor, w]?

Computes the logical NOR of the inputs.

LabVIEW Function and VI Reference Manual

................. hot. [H ol _'r']?

54

© National Instruments Corporation

Chapter 5 Boolean Functions

Number To Boolean Array
Convertsnumber to a Boolean array of 8, 16, or 32 elements, wherefredément
corresponds to the least significant bit (LSB) of the two's complement representation of the
integer.

number Boolean array

Or
Computes the logical OR of the inputs.

Or Array Elements
Returns FALSE if all the elementsBoolean array are false; otherwise it returns TRUE.

Boolean amray Iﬁl/\ logical OR

Boolean Constant

Use this function to supply a constant TRUE/FALSE value to the block diagram. Set this
value by clicking th@ or F portion of the constant with the Operating tool. This value cannot
be changed while the VI executes. You can assign a label to this constant.

© MNational Instruments Corporation 5-5 LabVIEW Function and VI Reference Manual

String Functions

This chapter describes the string functions, including those that convert
strings to numbers and numbers to strings.

The following illustration shows thgtring palette, which you access by
selectingFunctions»String.

s Functions

EIE , m- 4
Insl:rLiH . b ! ’ r
H“;"I'*

7 il O 1 S 7 O 2

Overview of Polymorphism for String Functions

This section provides descriptions of polymorphism for String functions,
Additional String to Number functions, and String Conversion functions.

Polymorphism for String Functions

String Length, To Upper Case, To Lower Case, Reverse String, and Rotate
String accept strings, clusters, arrays of strings, and arrays of clusters.
To Upper Case and To Lower Case also accept numbers, clusters of

© MNational Instruments Corporation 6-1 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

numbers, and arrays of numbers, interpreting them as ASCII codes for
characters (refer to the Appendix@R1B Multiline Interface Messagésr

the numbers that correspond to each character). Width and precision inputs
must be scalar.

Polymorphism for Additional String to Number Functions

To Decimal, To Hex, To Octal, To Engineering, To Fractional, and

To Exponential accept clusters and arrays of numbers and produce clusters
and arrays of strings. From Decimal, From Hex, From Octal, and From
Exponential/Fract/Sci accept clusters and arrays of strings and produce
clusters and arrays of numbers. Width and precision inputs must be scalar.

Polymorphism for String Conversion Functions

The Path To String and String To Path functions are polymorphic. They
work on scalar values, arrays of scalars, clusters of scalars, arrays of
clusters of scalars, and so on. The output has the same composition as the
input but with the new type.

Format Strings Overview

Many G functions acceptfarmat string input, which controls the

behavior of the function. A format string is composed of one or more
format specifiers, which determine what action to take to process a given
parameter. The Format Into String and Scan From String functions can use
multiple format specifiers in the format string, one for each resizable input
or output to the function. Characters in the string that are not part of the
format specifier are copied verbatim to the output string (in the case of
Format Into String) or are matched exactly in the input string (in the case
of Scan From String), with the exception of special escape codes. You can
use these codes to insert nondisplayable characters, the backslash, and
percent characters within any format string. These codes are similar to
those used in the C programming language.

Table 6-1 displays the special escape codes. A code does not exist for the
platform-dependent end-of-line (EOL) character. If you need to append
one, use the End-of-Line constant from $teng palette.

LabVIEW Function and VI Reference Manual 6-2 © MNational Instruments Corporation

Chapter 6 String Functions

Table 6-1. Special Escape Codes

Code Meaning
\r Carriage Return
\t Tab
\b Backspace
\n Newline
\f Form Feed
\s space
\xx character with hexadecimal ASCII coxle
(using 0 through 9 and upper case A through F)
\\ \
%% %

Notice that for the Scan From String and Format & Strip functions, a space
in the format string matches any amount of whitespace (spaces, tabs, and
form feeds) in the input string.

The Format & Append, Format & Strip, Array To Spreadsheet String, and
Spreadsheet String To Array functions use only one format specifier in the
format string because these functions have only one input that can be
converted. Any extraneous specifiers inserted into these functions are
treated as literal strings with no special meaning.

For functions that produce a string as output, such as Format Into String,
Format & Append, and Array To Spreadsheet String, a format specifier has
the following syntax. Double bracket§ () enclose optional elements.

%[-][+]["[0][Width][.Precision][{unit}]Conversion Code

For functions that scan a string, such as Scan From String, Format & Strip,
and Spreadsheet String to Array, a format specifier has the following,
simplified syntax:

%[Width]Conversion Code

© MNational Instruments Corporation 6-3 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

Table 6-2 displays the string syntax available.

Table 6-2. String Syntax

Syntax Element

Description

%

Begins the formatting specification.

— (optional)

Causes the parameter to be left justified rathg
than right justified within its width.

+ (optional)

For numeric parameters, includes the sign even

when the number is positive.

~ (optional)

When used with the org conversion codes, use
engineering notation (exponent is always a
multiple of 3).

0 (optional)

Pads any excess space to the left of a numeri
parameter with Os rather than spaces.

Width (optional)

When scanning, specifies an exact field width
use. G scans only the specified number of
characters when processing the parameter.

When formatting, specifies the minimum
character field width of the output. This width
not a maximum width; G uses as many charac
as necessary to format the parameter without
truncating it. G pads the field to the left or righ
of the parameter with spaces, depending on
justification. IfWidth is missing or zero, the
output is only as long as necessary to contain
converted input parameter.

=

%)

ers

—

the

Separatesvidth from Precision

Precision
(optional)

For floating-point parameters, specifies the
number of digits to the right of the decimal poirn
If width is not followed by a period, G inserts
fractional part of six digits. Mvidth is followed
by a period, an@recision is missing 00,

G does not insert a fractional part.

For string parameters, specifies the maximumi
width of the field. G truncates strings longer th
this length.

—

LabVIEW Function and VI Reference Manual

6-4

© National Instruments Corporation

Chapter 6 String Functions

Table 6-2. String Syntax (Continued)

Syntax Element

Description

{unit} (optional)

Overrides the choice of unit of a VI when
converting a physical quantity (a value with ar
associated unit). Must be a valid unit.

Conversion Codes

Single character that specifies how to scan or
format perimeter, as follows:

decimal integer

hex integer

octal integer

binary integer

floating-point number with

fractional format

- T O X Qo

e floating-point number with
scientific notation

g floating-point number using format
if the exponential is less than —4 or greater
than Precision, dr format otherwise

s string

An | (lowercase L) preceding the conversion

Localization Codes

Codes used as format separators for localizat
as follows:

%,; comma decimal separator

%.; period decimal separator

%; system default separator

The conversion codes used in G are similar to those used in the

C programming language. However, G uses conversion codes to determine

the textual format of the parameter, not the datatype of the parameter.

You can use thé, x, 0, b, f, e, andg conversion codes to process any

numeric G data type,

For complex numbers, you can use the format specifier to process both the

including complex numbers and enums.

real and imaginary parts as a single parameter.

You can use the conversion code to process string or path parameters or

enums.

© MNational Instruments Corporation

6-5

LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

Notice that you can use either a numeric or string conversion code with an
enum, depending on whether you want the numeric value or symbolic
(string) value of the enum.

For compatibility with C, G treatswaconversion code (unsigned integer)
the same as@ and ignores ah or L preceding the conversion code.
However, in G, the datatype of the parameter determines the size of an
integer and whether the integer is signed or unsigned.

For examples of format string usage, see the Format Into String and Scan
From String function descriptions later in this chapter.

String Function Descriptions

The following string functions are available.

Array To Spreadsheet String
Converts ararray of any dimension tepreadsheet stringspreadsheet strings a table in
string form, containing delimiter-separated column elements, a platform-dependent EOL
character separating rows, and, for arrays of three or more dimensions, separated pages.

delimiter [T ah)
format string EEE .
array - spreadsheet shing

Concatenate Strings

Concatenates input strings and one-dimensional arrays of strings into a single, output string.
For array inputs, this function concatenates each element of the array.

string 0 :||:|+ concatenation of
3 18559
stri'mg ! m;g+; i string0, stringl, ., string n-1
atring -l i@ |

Format Into String
Converts input arguments intesulting string, whose format is determined fiyrmat
string. You increase the number of parameters by popping up on the node and sakitting
Parameter or by placing the Positioning tool over the lower left or right corner of the node,
then stretching it until you reach the desired number of arguments.

LabVIEW Function and VI Reference Manual 6-6 © MNational Instruments Corporation

Chapter 6 String Functions

forrat string
initial string

error in (na errar)
argurment 1000

resulting string
error aut

R
LR

arfumeny!

Table 6-3 shows the errors that can appearrior out by the Format Into String function.

Table 6-3. Possible Format into String Errors

Error Code Description

Format specifier typel 81 The datatype of a format specifier in the format string
mismatch does not match the datatype of the corresponding
input argument.

Unknown format 82 The format string contains an invalid format specifier.

specifier

Too few format 83 There are more arguments than format specifiers.

specifiers

Too many format 84 There are more format specifiers than arguments,

specifiers

Note If an error occurs, the source component of the error out cluster contains a string

of the form“Format Into String (arg n),” where n is the first argument

for which the error occurred.

If you wire a block diagram constant stringféeemat string, G checks for errors iformat
string at compile time. You must correct these errors before you can run the VI. In this case,
Nno errors can occur at run time.

Format Specifier Examples

In Table 6-4, the underline character (_) represent spaces in the output. The last three entries
are examples of physical quantity inputs.

Table 6-4. Format Specifiers

Format String Argument(s) Resulting String
score = %2d%% 87 score = 87%
level =\n%—7.2e V 0.03642 level =
3.64e-2V
Name: %s, %s. Smith John Name: Smith, John.

© MNational Instruments Corporation 6-7 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

Table 6-4. Format Specifiers (Continued)

Format String

Argument(s)

Resulting String

Temp: %05.1f %s

96.793 Fahrenheit

Temp: 096.8 Fahrenheit

String: %10.5s. Hello, World String:____ Hello.
%5.3f 5.67 N 5.670 N
9%5.3{mN}f 5.67 N 5670.000 mN
%5.3{kg}f 5.67 N 5.670 ?kg

The last table entry shows the output when the unit in the format specifier is in conflict with
the input unit.

Index & Append

Selects a string specified mdex from string array and appends that stringgtring.

string array
string [E%
<

index .

aLtput string

Index & Strip
Compares each string @tring array with the beginning oétring until there is a match.
shring |r~§_..=' indes
string array %g: oLtput ztring

Match Pattern

Searches foregular expressionin string beginning abffset, and if it finds a match, splits
string into three substrings.

before substing
match substring
after substring
offzet past match

reqular expression
gtring ~
offzet (0]

LabVIEW Function and VI Reference Manual 6-8 © MNational Instruments Corporation

Chapter 6 String Functions

Table 6-5. Special Characters for Match Pattern

Special Character

Interpreted by the Match Pattern Function as...

Matches any character.

Matches zero or one instances of the expression preceding

Cancels the interpretation of special characters (for example,
\? matches a question mark). You can also use the following
constructions for the space and non-displayable characters:
\b backspace

\f form feed

\n newline

\s space

\r carriage return

\ xx any character, where s the hex code using O through 9
and upper case A through F

\t tab

If ~ is the first character oégular expression it anchors the match
to theoffsetin string. The match fails unlegggular expression
matches that portion atring that begins with the character at
offset If 2 is not the first character, it is treated as a regular
character.

Encloses alternates. For examfidéc] matches, b, orc.
The following character has special significance when used wi
the brackets:

— (dash) Indicates a range when used between digits, or lowe
or uppercase letters (for example, [0-5],[a—g], or [L—Q])

The following characters have significance only when they are
first character within the brackets:

~ Excludes the set of characters, including nondisplayable
characters. [~0—9] matches any character other than 0 throug

~ Excludes the set with respect to all the displayable characte
(and the space characters). [*0—9] gives the space characters
displayable characters except 0 through 9.

thin

case

the

h 9.

(S
and all

© MNational Instruments Corporation

6-9 LabVIEW Function and VI Reference Manual

Chapter 6

LabVIEW Function and VI Reference Manual

String Functions

Table 6-5. Special Characters for Match Pattern (Continued)

Special Character

Interpreted by the Match Pattern Function as...

+

match.

Matches the longest number of instances of the expression
precedingt+; there must be at least one instance to constitute a

* Matches the longest number of instances of the expression
preceding in regular expression including zero instances.

If $ is the last character odgular expression it anchors the
match to the last element siring. The match fails unless
regular expressionmatches up to and including the last charag
in the string. If$ is not last, it is treated as a regular character.

Table 6-6 shows examples of the Strings for the Match Pattern functions.

Table 6-6. Strings for the Match Pattern Examples

Characters to Be Matched

Regular Expression

VOLTS

VOLTS

All uppercase and lowercase versions 0
volts, that is, VOLTS, Volts, volts, and
soon

[VWI][Oo][LI[Tt][Ss]

A space, a plus sign, or a minus sign

[+-]

A sequence of one or more digits

[0-9]+

Zero or more Spaces

\s* or* (thatis, a space followed by an
asterisk)

One or more Spaces, Tabs, New Lines,
Carriage Returns

[MAr\n\s]+

One or more characters other than digit

[-0-9]+

The word Level only if it begins at the
offset position in the string

Level

The word Volts only if it appears at the er]
of the string

Volts$

The longest string within parentheses

("

6-10

© National Instruments Corporation

ter

Chapter 6 String Functions

Table 6-6. Strings for the Match Pattern Examples (Continued)

Characters to Be Matched Regular Expression

The longest string within parentheses by ([~()I*)
not containing any parentheses within it

The charactef [[]

Pick Line & Append

Chooses a line frommulti-line string and appends that line $tring.

multi-line string
stritg) WS E|
" <

line index . output string

Reverse String
Produces a string whose characters are in reverse order of tistsegn

ztring Jab-bal reversed

Rotate String

Places the first character sifing in the last position dirst char last, shifting the other
characters forward one position. For example, the siting becomescda .

string LI]II firzt char last

Scan From String

Scans the input string and converts the string accordifayr@at string. You increase the
number of parameters by popping up on the node and selAdiihgarameter or by placing

the Positioning tool over the lower left or right corner of the node, then stretching it until you
reach the desired number of parameters.

Use Scan From String when you know the exact format of the input string.

format string

input string []wald remaining string
initial search location .t offzet past scan
error in [no error) [error out
default 1 (0 db1) & [autput 1
i eesiens =

© MNational Instruments Corporation 6-11 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

Table 6-7 lists the Scan from String errors.

Table 6-7. Scan from String Errors

Error Code Description

Format specifier type mismatch 81 The datatype of a format specifie
in the format string does not match
the datatype of the corresponding

output.

Unknown format specifier 82 The format string contains an

invalid format specifier.

Too few format specifiers 83 There are more arguments than

format specifiers.

Too many format specifiers 84 There are more format specifiers

than arguments.

Scan failed 85 Scan From String was unable to
convert the input string into the
datatype indicated by the format

specifier.

Note If an error occurs, the source component of teeror out cluster contains a string
of the form“Scan From String (arg n),” wheren is the first argument for

which the error occurred.

If you wire a block diagram constant string to format string, G checks for errors in format
string at compile time. You must correct these errors before you can run the VI. In this case,

only the Scan-failed error can occur at run time.

Table 6-8 lists Scan From String examples.

Table 6-8. Scan from String Examples

Format Remaining
Input String String Default(s) Output(s) String
abc xyz %s — abc 00
12.3+56i 7200 %s%f%2d — Xyz
0&0i (CDB) 12.3+56i
— 72
Q+1.27E-3 tall QY%f t — 1.27E-3 ail
LabVIEW Function and VI Reference Manual 6-12 © MNational Instruments Corporation

Chapter 6 String Functions
Table 6-8. Scan from String Examples (Continued)
Format Remaining
Input String String Default(s) Output(s) String
0123456789 %3d%3d — 12 6789
345
X:9.860 Z:3.450 | X:%fY:%f 100 (132) 10 Z: 3450
100.0 (DBL) 100.0
set49.4.2 set%d — 49 4.2

Scan String for Tokens

Scandgnput string, starting abffset, and returns the next token found.

allowe empty tokens? [F)
input ztring
offzet

aperatars [hione] seed £

delimiters [ha,)

uze cached delimdoper data’...

dup ztring

taken zting
token index

offset past token

A tokenis a substring ahput string, which is surrounded tgelimiters, or which matches
an element iperators. Typically, tokens represent individual keywords, numeric values,
or operators found when parsing a configuration file or other text-based data format.

This function scansput string, starting abffset, returning the next token found.

See the online reference for more information about the Scan String for Tokens function and

parameters.

Select & Append

Selects eithefialse stringor true string according to a Booleaselectorand appends that

string tostring.

© MNational Instruments Corporation

falze stning
true stning

ghring "] memnnned

selector

outpLt string

6-13

LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

Select & Strip
Examines the beginning sfring to see whether it matchese string or false string This
function returns a Boolean TRUE or FALSE valusétection depending on whethstring
matchegrue string or false string.

. -]
sknng T zelection

I:.:I:E z::::g = autput string

Split String
Splits the string at offset or searches for the first occurrensean€hchar in string,
beginning abffset, and splits the string at that point.

substring before char
char subztring
offzet of char

search char [-]
zhring
aoffzet (0]

Spreadsheet String To Array
Convertsspreadsheet stringo a numeriarray of the dimension and representation of
array type. This function works for arrays of strings as well as arrays of numbers.

delirniter [T ah)
format string [
spreadsheet string - = ’ array
armay type [20 Dbl =T &
String Length

Returns inength the number of characters (bytesyiring.

ztring ',m»u length
String Subset
Returnssubstring of the originaktring beginning abffsetand containingength number of
characters.
length ——{m .
offzet (0] — &]ﬁ substring
string

LabVIEW Function and VI Reference Manual 6-14 © MNational Instruments Corporation

Chapter 6 String Functions

To Lower Case
Converts all alphabetic charactersiring to lowercase characters. This function does not

affect non-alphabetic characters.

string 1Aal all lower caze string

To Upper Case

Converts all alphabetic charactersstring to uppercase characters. This function does not
affect non-alphabetic characters.

ztring af all upper caze string

Additional String To Number Function Descriptions
For general information about Additional String to Number functions?egamorphism for
Additional String to Number Functionsarlier in this chapter.

The following illustration displays the options available onAHditional String to Number
Functions subpalette.

T #y #E *n |[FEm w2
sonnn| | Rz | Z[eose] e4[nnEZ] w[nnnn |eafnEnf
B 4 | E 4 4 | EE] . #
L] L] L]
]
= =

Format & Append

Convertswumber into a regular string according to the format specifiédrimat string, and

appends this tetring.
format string
string [?_‘mm?ﬁﬂ
[<

number [0 # output ztring

© MNational Instruments Corporation 6-15 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

= Note The Format Into String function has the same functionality as Format & Append
but can use multiple inputs, so you can convert information simultaneously.

Consider using Format Into String instead of this function to simplify your block
diagram.

Format & Strip

Looks forformat string at the beginning dftring, formats any number in this string portion
according to the conversion codegormat string, and returns the converted number in
number and the remainder sfring after the match ioutput string.

format ing 771 &I number
ormat ztnng _
default [0 dbl) 2 autput string

From Decimal
Converts the numeric characterstring, starting at offset, to a decimal integer and returns

it in number.
S“fifm‘:'t offzet past number
offze h
default [O0L] — =—— rumber

From Exponential/Fract/Eng

Interprets the characters 0 through 9, plus, minus, e, E, and the decimal point (usually period)
in string starting aoffsetas a floating-point number in engineering notation, or exponential
or fractional format and returns it mumber.

string offzet past nurmber
offzet p——
default [dbl)
7 & Note If you wire the characters Inf or NaN to string, this function returns the G values

Inf and NaN, respectively.

From Hexadecimal

Interprets the characters 0 through 9, A through F, and a throughrihig starting abffset
as a hex integer and returns inimmber.

St'fifngt offzet past number

ottze

default (0uL] umber

LabVIEW Function and VI Reference Manual 6-16 © MNational Instruments Corporation

Chapter 6 String Functions

From Octal

Interprets the characters O through 8titing starting abffsetas an octal integer and returns
itin number. This function also returns the indexsining of the first character following the

number.
strfifngt offzet past number
QrrEe
default [Qul) rumber
To Decimal
Convertsnumber to a string of decimal digitwidth characters wide, or wider if necessary.
number #) o .
[mnn]
width [-] ———{wa decimal integer string

To Engineering
Convertsnumber to an engineering format, floating-point striwgth characters wide, or

wider if necessary. Engineering format is similar to E format, except the exponent is a
multiple of three (-3, 0, 3, 6).

number #E
width [-] =] "*‘%
precision [B] —

E higineering string

To Exponential

Convertsnumber to an E-format (exponential notation), floating-point strvigth
characters wide, or wider if necessary.

number)
width [-] = {rngx E-format string

precision [B] —

To Fractional

Convertsnumber to an F-format (fractional notation), floating-point strimiglth characters
wide, or wider if necessary.

number e |
W"jth ['] H F-fDrmat St”ng
precizion (&) T

© MNational Instruments Corporation 6-17 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

To Hexadecimal
Convertsnumber to a string of hexadecimal digitgdth characters wide, or wider if

necessary.

number ‘*-_:%
'F LA

width [-] ——m

hex integer string

To Octal

Convertsnumber to a string of octal digiteidth characters wide, or wider if necessary.

number “-;%
'? Rl

width [-] ——w

octal integer sting

String Conversion Function Descriptions

For general information about String Conversion functionsOsegview of Polymorphism
for String Function®arlier in this chapter.

The following illustration shows th®tring Conversion subpalette.

i Conversion |

Array Of Strings To Path accepts one-dimensional (1D) arrays of strings, Path To Array Of
Strings accepts paths, Path To String accepts paths, and String To Path accepts strings.

LabVIEW Function and VI Reference Manual 6-18 © MNational Instruments Corporation

Chapter 6 String Functions

Array Of Strings To Path

Convertsarray of strings into a relative or absolufgath.

If you have an empty string in the array, the directory location before the empty string is
deleted in the path output. Think of this change as moving up a level in directory hierarchy.

rE—'lEIti"-"E

array of ztrings il) path

Byte Array To String

Converts an array of unsigned bytes into a string.

unszigned byte array string

Path To Array Of Strings
Convertspath into array of strings and indicates whether the pathiégative.
........................ fEl-EIti"."E
path T [) array of stings

Path To String

Convertspath into a string describing a path in the standard format of the platform.

path P abs shring

Refnum To Path

Returns the path associated with the speciididum.

refnum 101 % } path

String To Byte Array

Convertsstring into an array of unsigned bytes.

ztring unzigned byte array

© MNational Instruments Corporation 6-19 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

String To Path

Converts a string, describing a path in the standard format for the current platform, to a path.

string Jab "o} path

String Fixed Constants

The following String Fixed Constants are available.

String Constant

Use this constant to supply a constant ASCII string to the block diagram. Set this string by
clicking the constant with the Operating tool and typing the value. You can change the display
mode so you can see non-displayable characters or the hex equivalent to the characters.
You also can set the constant in password display mode so asterisks are displayed when you
type characters.

The value of the string constant cannot be changed while the VI executes. You can assign a
label to this constant.

Carriage Return
Consists of a constant string containing the ASCII CR value.

Empty String

El Consists of a constant string that is empty. Length is zero.

End of Line

Consists of a constant string containing the platform-dependent, end-of-line value. For
Windows, the value is CRLF; for Macintosh, the value is CR; and for UNIX, the value is LF.

Line Feed
Consists of a constant string containing the ASCII LF value.

Tab
Consists of a constant string containing the ASCII HT (horizontal tab) value.

LabVIEW Function and VI Reference Manual 6-20 © MNational Instruments Corporation

Array Functions

This chapter describes the functions for array operations.

The following illustration shows th&rray palette, which you access by
selectingFunctions»Array.

iix! Functions

k k
o 123
3 3
abc I-.I
. ; o—IlArray
eI oA

&, o ||z|
[HH

mt [J

=1 +|F]

o HI[H.

e e
—F

I@
[

&}
LB

{In

=

| |
T

o) Rl

+
B

Iy

Instr Likd

[

3
ary

[]
e

T
n

;

© MNational Instruments Corporation 7-1 LabVIEW Function and VI Reference Manual

Chapter 7 Array Functions

Some of the array functions also are available fronAthey Tools palette
of most terminal or wire pop-up menus. The illustration below shows this
pop-up menu.

| Array Tools) |

[E]E] = | [
=] || [t -t [b
CEEEE

= n—

If you select functions from this palette, they appear with the correct
number of terminals to wire to the object on which you popped up.

For examples of array functions, se@mples\general\arrays.llb

Array Function Overview

Some of the array functions have a variable number of terminals.

When you drop a new function of this kind, it appears on the block diagram
with only one or two terminals. You can add and remove terminals by using
Add Element Input or Add Array Input andRemove Inputpop-up
menucommands (the actual names depend on the function) or by resizing
the node vertically from any corner. If you want to add terminals by
popping up, you must place your pointer on the input terminals to access
the pop-up menu.

You can shrink the node if doing so does not delete wired terminals.

The Add Element Input or Add Array Input command inserts a terminal
directly after the one on which you popped up. Rieenove Input

command removes the terminal on which you popped up, even if it is wired.

LabVIEW Function and VI Reference Manual 7-2 © MNational Instruments Corporation

Chapter 7 Array Functions

The following illustration shows the two ways to add more terminals to the
Build Array function.

ra

[

1

: - I'= ¥ [0, =+
Online Help =] ! ! =
Description... ! ! |
Show » - ==
Replace]

Change to Arra
Add Array Input
Remove Input
Create Constant
Create Control
Create Indicator

Out-of-Range Index Values

Attempting to index an array beyond its bounds results in a default value
determined by the array element type.

Polymorphism for Array Functions

Most of the array functions accaptlimensional arrays of any type.
However, the wiring diagrams in the function descriptions show numeric
arrays as the default data type.

Array Function Descriptions

The following Array functions are available.

Array Max & Min

Searches for the first maximum and minimum values in a numeeyg. This function also
returns the index or indices where it finds the maximum and minimum values.

[WLE == maw value
array E' max index [indices)
riH_= mir value

min index [indices)

© MNational Instruments Corporation 7-3 LabVIEW Function and VI Reference Manual

Chapter 7

Array Functions

If a numericarray has one dimension, timeax indexandmin index outputs are scalar
integers. If a numeriarray has more than one dimension, these outputs are 1D arrays that
contain the indices of the maximum and minimum values.

The function compares each datatype according to the rules referred to in Chapter 9,
Comparison Functions

Array Size

Returns the number of elements in each dimensianray.

array 1 zizefs]

Array Subset

Returns a portion drray starting atndex and containingength elements.

array sub-array
indexi0) g+
length —fw+ I

AR Lo S
ol
I

Array To Cluster

Converts a 1D array to a cluster of elements of the same type as the array elements. Pop up
on the node to set the number of elements in the cluster. The default is nine. The maximum

cluster size for this function is 256.

array 15} cluster

For more information about clusters, see Chapt&ster Functions

Build Array

Appends any number of array or element inputs in top-to-bottom order to anegtavith
appended element

e]:rri:ur-;?-:ut :ﬁr'— array with appended element(s])

[oRicHH o

o icHAH oL s

To change an element input to an array input, pop up on the input an@éelege to Array.
In general, to build an array ofdimensions, eacérray input must be of the same
dimensionn, and eaclelementinput must have— 1 dimensions. To create a 1D array,

LabVIEW Function and VI Reference Manual 7-4 © MNational Instruments Corporation

Chapter 7 Array Functions

connect scalar values to the element inputs and 1D arrays to the array inputs. To build a
2D array, connect 1D arrays to element inputs and 2D arrays to the array inputs.

Cluster To Array
Converts a cluster of identically typed components to a 1D array of elements of the same type.

cluster =04 array

For more information about clusters, see Chapt@i@ter Functions

Decimate 1D Array
Divides the elements @frray into the output arrays.

array of elernents 0, n, 2Zn, ...

array array of elernents 1, n+1, 2n+1, ..

Index Array

Returns thelementof array atindex. If array is multidimensional, you must add additional
index terminals for each dimension afray.

n-dimension array + o elernent ar
indesx 0 —— =t | sub-array
-;n-j.;:\-::: [T SRR Al

In addition to extracting an element of the array, you can slice out a higher-dimensional
component by disabling one or more of the index terminals.

Initialize Array
Creates an-dimensional array in which every element is initialized to the valaéeofient

] ~ elerent—{=4 initialized
dimension 51.29'1:' b+ n—-dimension array
H sized . H

© MNational Instruments Corporation 7-5 LabVIEW Function and VI Reference Manual

Chapter 7 Array Functions

Interleave 1D Arrays
Interleaves corresponding elements from the input arrays into a single output array.

arrayd
arrayil

interleaved array

Interpolate 1D Array
Uses the integer part &fictional index or x to index the array and the fractional part of
fractional index or x to linearly interpolate between the values of the indexed element and
its adjacent element.

array of numbers or points et
- - P H
fractional index or x * iTere

yvalue

Replace Array Element
Replaces the elementémray atindex with thenew element

arrau [—b [3112w ith mew elernent
news elerment g!:] !

index—lm-t

Reshape Array
Changes the dimension of an array according to the valliemehsion size The function is
resizablem-dim array has one dimension for eadimension sizeinput. For example, you
can use this function to change a 1D array into a 2D array or vice versa. You also can use it
to increase and decrease the size of a 1D array.

n-dirn artay +|§|— rn-dirn array
dimension size — w4

Reverse 1D Array
Reverses the order of the elementariray.

F o
amray K] [b. of reversed array

LabVIEW Function and VI Reference Manual 7-6 © MNational Instruments Corporation

Chapter 7 Array Functions

Rotate 1D Array

Rotates the elements afray by the number of places and in the direction indicatad by

n [‘ooo#] array [last n elements first)
array

Search 1D Array
Searches foelementin 1D array starting astart index.
1D array [oozd]
element — *r,_tf_' index of element

start index [0] —

Sort 1D Array

Returns a sorted version afray with the elements arranged in ascending order. The rules
for comparing each datatype are described in Chap@o@parison Functions

array || Eﬁﬁ zorted array

Split 1D Array

Dividesarray atindex and returns the two portions.

array == i___le first subarray
index o T zecond subarrap

Threshold 1D Array

Compareghreshold y to the values imrray of numbers or points starting atstart index
until it finds a pair of consecutive elements such thiashold y is greater than the value of
the first element and less than or equal to the value of the second element.

The function then calculates the fractional distance between the first valtteesiwld y
and returns the fractional index at whibtineshold y would be placed withiarray of
numbers or pointsusing linear interpolation.

array of numbers or points n))
threzhold y — oty fractional index or x
start index [0] — SHeest

© MNational Instruments Corporation 7-7 LabVIEW Function and VI Reference Manual

Chapter 7 Array Functions

For example, supposearay of numbers or pointsis an array of four numbers [4, 5, 5, 6],

start index is 0, andhreshold y is 5. Thefractional index or x is 1, corresponding to the

index of the first value of 5 the function finds. Suppose the array elements are 6, 5, 5, 7, 6, 6,
thestart index is 0, and th¢hreshold yis 6 or less. The output is Otlfreshold y is greater

than 7 for the same set of numbers, the output istBrd$hold y is 14.2 start index is 5,

and the values in the array starting at index 5 are 9.1, 10.3, 12.9, antthEsiold y falls
between elements 7 and 8 because 14.2 is midway between 12.9 and 15.5. The value for
fractional index or x is 7.5, that is, halfway between 7 and 8.

If the array input consists of an array of points where each point is a clugtendy
coordinates, the output is the interpolatadlue corresponding to the interpolated position
of threshold y rather than the fractional index of the array. If the interpolated position of
threshold y is midway between indices 4 and 5 of the array withlues of —2.5 and O
respectively, the output is not an index value of 4.5 as it would be for a numeric array, but
rather arx value of —1.25.

Transpose 2D Array

Rearranges the element@f array such thaD array[i,j] becomesransposed arrayj,i].

2D amray tranzpozed array

LabVIEW Function and VI Reference Manual 7-8 © MNational Instruments Corporation

Cluster Functions

This chapter describes the functions for cluster operations.

The following illustration shows th€luster palette that you access by
selectingFunctions»Cluster.

2]
3 3 I
s o
— LB
I T = | S [mecl it
I 2
piain N[l == | <
* B L -.!-?-!-?-!-. :IE :::Ig
B[R (@) =
T .‘I - ...Ill

© MNational Instruments Corporation 8-1 LabVIEW Function and VI Reference Manual

Chapter 8

Cluster Functions

Some of the cluster functions also are available fronCthster Tools
palette of most terminal or wire pop-up menus. The following illustration
shows the pop-up menu.

[M

Cnline Help
Description...
Show 3
Feplace 3

Cluster Tools

Create Constant
Create Control
Create Indicatar
Hide Full Mames =

If you select the functions from this palette, they appear with the correct
number of terminals to wire to the object on which you popped up.

Cluster Function Overview

Some of the cluster functions have a variable number of terminals.

When you drop a new function of this kind, it appears on the block diagram
with only one or two terminals. You can add and remove terminals by using
theAdd Input or Remove Inputpop-up menu options or by resizing the
node using the Positioning tool. If you want to add terminals by popping
up, place your cursor on the input terminal to access the pop-up menu.

You can shrink the node if doing so does not delete wired terminals.
TheAdd Input option inserts a terminal directly after the one on which
you popped up. ThRemove Inputoption removes the terminal on which
you popped up, even if it is wired.

LabVIEW Function and VI Reference Manual 8-2 © National Instruments Corporation

Chapter 8 Cluster Functions

The following illustration shows the two ways to add more terminals to the
Bundle function.

ra

=-n = CR:

Online Help _'+ | i]
Description... | | N
Show [! !]
Replace b L —
Add Input k

Remove Input
Create Constant
Create Control
Create Indicator

Polymorphism for Cluster Functions

The Bundle and Unbundle functions do not show the datatype for their
individual input or output terminals until you wire objects to these
terminals. When you wire them, these terminals look similar to the
datatypes of the corresponding front panel control or indicator terminals.

Setting the Order of Cluster Elements

Cluster elements have a logical order that is unrelated to their positions
within the shell. The first object you insert in the cluster is element 0,
the second is 1, and so on. If you delete an element, the order adjusts
automatically. You can change the current order by selectingltister
Order... option from the cluster pop-up menu.

Clicking an element with the cluster order cursor sets the place of the
element in the cluster order to the number displayed inside the Tools
palette. You change this order by typing a new number into that field.
When the order is as you want it, click t&eter button to set it and exit
the cluster order edit mode. Click thebutton to revert to the old order.

The cluster order determines the order in which the elements appear as
terminals on the Bundle and Unbundle functions in the block diagram.

The Bundle By Name and Unbundle By Name functions give you more
flexible access to data in clusters. With these functions, you can access

© MNational Instruments Corporation 8-3 LabVIEW Function and VI Reference Manual

Chapter 8 Cluster Functions

specific elements in clusters by name and access only the elements you
want to access. Because these functions reference components by name and
not by cluster position, you can change the data structure of a cluster
without breaking wires, as long as you do not change the name of or remove
the component you reference on the block diagram.

Cluster Function Descriptions

The following cluster functions are available.

Array To Cluster
Converts a 1D array to a cluster of elements of the same type as the array elements. Pop up
on the node or resize it to set the number of elements in the cluster. The default is nine.
The maximum cluster size for this function is 256.

array =], cluzter

Build Cluster Array
Assembles all theomponentinputs in top-down ordeénto an array of clusters of that
component If the input is four, single-precision, floating-point components, the output is a
four-element array of clusters containing one single-precision, floating-point number.
Element 0 of the array has the value of the top component, and so on.

artay of clusters of cornponent

Bundle

Assembles all the individual input components into a single cluster.

cluster
cnmpnnent%m
carmponent cluster

LabVIEW Function and VI Reference Manual 8-4 © MNational Instruments Corporation

Chapter 8 Cluster Functions

Bundle By Name
Replaces components in an existing cluster. After you wire the node to a cluster, you pop up
on the name terminals to choose from the list of components of the cluster.

cluster
camponent 1 —— a1
cluster
cornponent 2 —name 2

You must always wire theluster input. If you are creating a cluster for a cluster indicator,
you can wire a local variable of that indicator to¢hester input. If you are creating a cluster

for a cluster control of a subVI, you can place a copy of that control (possibly hidden) on the
front panel of the VI and wire the control to ttlaster input.

Cluster To Array
Converts a cluster of identically typed components to a 1D array of elements of the same type.

cluster B} array!

Index & Bundle Cluster Array
Indexes a set of arrays and creates a cluster array in whii¢heteenent contains thé®
element of each input array.

array of ¥ Jm¥ =
array of y m array of cluster of ¢, , U, ., %;)

weed

-‘.|!"!"-:‘.|l=i o x o

This function is equivalent to the following block diagram and is useful for converting a
cluster of arrays to an array of clusters.

© MNational Instruments Corporation 8-5 LabVIEW Function and VI Reference Manual

Chapter 8 Cluster Functions

Unbundle

Disassembles a cluster into its individual components.

cornpanent
I:]"'Et'alrI““EE:m:-mFu:-n-ent

Unbundle By Name
Returns the cluster elements whose names you specify. You select the element you want to
access by popping up on the name output terminals and selecting a name from the list of
elements in the cluster.

= [name 1 cornponent 1

cluster

" |name 2 component 2

LabVIEW Function and VI Reference Manual 8-6 © MNational Instruments Corporation

Comparison Functions

This chapter describes the functions that perform comparisons or
conditional tests.

The following illustration shows theéomparison palette that you access
by selecting-unctions»Comparison

s Functions |

123

ol

BJE)
-
-

[=]=]
o]
+|E=

el

10 [ag] | &

e w
ey
|

=
T

Comparison

B

il
g

22

I
W W W

g
=
z

Bl

N

WO N W
WO W W
AT

Y

SAEENAV,

Comparison Function Overview

This section introduces the Comparison functions.

Boolean Comparison
The Comparison functions treat the Boolean value TRUE as greater than
the Boolean value FALSE.

© MNational Instruments Corporation 9-1 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

String Comparison

These functions compare strings according to the numerical equivalent of
the ASCII characters. Therefoee(with a decimal value of 97) is greater
thanA (65), which is greater than the numerg#8), which is greater than

the space characted?(). These functions compare characters one by one
from the beginning of the string until an inequality occurs, at which time
the comparison ends. For example, LabVIEW compares the sitiog)s
andabef until it findsc, which has a value less than the value.of

The presence of a character is greater than the absence of one. Therefore,
the stringabed is greater thaabc because the first string is longer.

The functions that test the category of a string character (for example, the
Decimal Digit? and Printable? functions) evaluate only the first character
of the string.

Numeric Comparison

Most of the Comparison functions test one input or compare two inputs
and return a Boolean value. The functions convert numbers to the same
representation before comparing them. Comparisons with a value of
not a number (NaN) return a value that indicates inequality.

Cluster Comparison

The Comparison functions compare clusters the same way they compare
strings, one element at a time starting with tHee@ment until an

inequality occurs. Clusters must have the same number of elements, of
the same type, and in the same order if you want to compare them.

Comparison Modes

Some of the Comparison functions have two modes for comparing arrays
or clusters. In th€ompare Aggregatesnode, if you compare two arrays

or clusters, the function returns a single value. Ibmpare Elements
mode, the function compares the elements individually. Then returns an
array or cluster of Boolean values. The following illustration shows the
two modes.

LabVIEW Function and VI Reference Manual 9-2 © MNational Instruments Corporation

Chapter 9 Comparison Functions

Ext drray 1 e Arr’ags Eiua]?

=0l _E}

Ext drray 2 Elernent By Elernent Equalit
[ExT] _i>“‘“”‘ [TF]

You change the comparison mode by selediogpare Elementsor
Compare Aggregatesn the pop-up menu for the node, as shown in the
following illustrations.

Exct Array 1 [re Arrays Equal?]
[E=1]} [el
1 —| Online Help
Description...
Show b
Ext drray 2 Replace 4
()

Array Tools b
Create Constant
Create Control
Create Indicator
Compare Aggreqgates |.

Exet ArFay 2 |E'Iement Ey Elernent Equa'litgl

P [Teel
[(ex}——L=niine Help

Description...
Show]
Replace]

Create Constant
Create Control

Create Indicator
Compare Elements |

When you compare two arrays of unequal lengths iiCtirapare
Elementsmode, LabVIEW ignores each element in the larger array whose
index is greater than the index of the last element in the smaller array.

© MNational Instruments Corporation 9-3 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

When you use th€ompare Aggregatesnode to compare two arrays, the
following occurs: (1) LabVIEW searches for the first set of corresponding
elements in the two inputs that differ, and uses those to determine the
results of the comparison. (2) If all elements are identical except that one
has more elements, LabVIEW considers the longer array to be greater than
the shorter array. (3) If no elements of the two arrays differ and the arrays
have the same length, the arrays are equal. Therefore, LabVIEW considers
the array [1, 2, 3] to be greater than the array [1, 2] and returns a single
Boolean value in th€ompare Aggregatesnode.

Arrays must have the same number of dimensions (for example, both
two-dimensional), and, for the comparison between multidimensional
arrays to make sense, each dimension must have the same size.

For clusters using theompare Aggregatesnode, LabVIEW compares
using cluster order. The two clusters LabVIEW compares must have the
same number of elements.

The Comparison functions that do not haveGloenpare Aggregates

or Compare Elementsmodes compare arrays in the same manner as
strings—one element at a time starting with tiee@ment until an
inequality occurs.

Character Comparison

You can use the functions that compare characters to determine the type of
a character. The following functions are character-comparison functions.

« Decimal Digit?

e Hex Digit?
e Lexical Class
e Octal Digit?

e Printable?
¢ White Space?

If the input is a string, the functions test the first character. If the inputis an
empty string, the result is FALSE. If the input is a number, the functions
interpret it as a code for an ASCII character.

See Appendix CGPIB Multiline Interface Messaggefor the numbers that
correspond to each ASCII character.

LabVIEW Function and VI Reference Manual 9-4 © MNational Instruments Corporation

Chapter 9 Comparison Functions

Polymorphism for Comparison Functions

The functions Equal?, Not Equal?, and Select take inputs of any type, as
long as the inputs are the same type.

The functions Greater or Equal?, Less or Equal?, Less?, Greater?,

Max & Min, and In Range? take inputs of any type except complex, path,
or refnum, as long as the inputs are the same type. You can compare
numbers, strings, Booleans, arrays of strings, clusters of numbers, clusters
of strings, and so on. You cannot, however, compare a number to a string or
a string to a Boolean, and so on.

The functions that compare values to zero accept numeric scalars, clusters,
and arrays of numbers. These functions release Boolean values as output in
the same data structure as the input.

The Not A Number/Path/Refnum function accepts the same input types as
functions that compare values to zero. This function also accepts paths and
refnums. Not A Number/Path/Refnum outputs Boolean values in the same
data structure as the input. See ChapteFild Functions and Chapter 31,
Introduction to LabVIEW Instrument I/O Vifor more information about
these functions.

The functions Decimal Digit?, Hex Digit?, Octal Digit?, Printable?, and
White Space? accept a scalar string or number input, clusters of strings or
non-complex numbers, arrays of strings or non-complex numbers, and

so on. The output consists of Boolean values in the same data structure as
the input.

The function Empty String/Path? accepts a path, a scalar string, clusters of
strings, arrays of strings, and so on. The output consists of Boolean values
in the same data structure as the input.

You can use the Equal?, Not Equal?, Not A Number/Path/Refnum?, Empty
String/Path?, and Select functions with paths and refnums, but no other
comparison functions accept paths or refnums as inputs.

Comparison functions that use arrays and clusters normally produce
Boolean arrays and clusters of the same structure. You can pop-up and
change taCompare Aggregatesin which case the function releases a

single Boolean value as output. The function compares aggregates by
comparing the first set of elements to produce the output, unless the first
elements are equal, in which case the function compares the second set of
elements, and so on.

© MNational Instruments Corporation 9-5 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

Comparison Function Descriptions

The following Comparison functions are available.

Decimal Digit?
Returns TRUE ithar is a decimal digit ranging from 0 through 9. Otherwise, this function
returns FALSE.

char 82 digit?
Empty String/Path?
Returns TRUE istring/path is an empty string or path. Otherwise, this function returns
FALSE.
ztring/path l:% Empty?
Equal?

Returns TRUE ik is equal toy. Otherwise, this function returns FALSE.

Equal To 0?
Returns TRUE ik is equal to 0. Otherwise, this function returns FALSE.

X Eﬁ} w=107

Greater?
Returns TRUE ik is greater thag. Otherwise, this function returns FALSE.

LabVIEW Function and VI Reference Manual 9-6 © MNational Instruments Corporation

Chapter 9 Comparison Functions

Greater Or Equal?
Returns TRUE ik is greater than or equal yoOtherwise, this function returns FALSE.

Greater Or Equal To 0?

Returns TRUE ik is greater than or equal to 0. Otherwise, this function returns FALSE.

Greater Than 0?
Returns TRUE ik is greater than 0. Otherwise, this function returns FALSE.

X @ w07

Hex Digit?
Returns TRUE ithar is a hex digit ranging from O through 9, A through F, or a through f.
Otherwise, this function returns FALSE.

char % e

In Range?
Returns TRUE ik is greater than or equallmand less thahi. Otherwise, this function

returns FALSE.
h’: lo<=x < hi?

lo

Note This function always operates in theompare Aggregatesnode. To produce a
Boolean array as an output, you must execute this function in a loop structure.

© MNational Instruments Corporation 9-7 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

Less?

Returns TRUE ik is less thary. Otherwise, this function returns FALSE.

Less Or Equal?

Returns TRUE ik is less than or equal yo Otherwise, this function returns FALSE.

Less Or Equal To 0?

Returns TRUE ik is less than or equal to 0. Otherwise, this function returns FALSE.

Less Than 0?

X @ we=07

Returns TRUE ik is less than 0. Otherwise, this function returns FALSE.

Lexical Class

Returnsclass numberfor char.

char % clazz number

Table 9-1. Lexical Class Number Descriptions

Class
Number Lexical Class
0 Extended characters with a Command- or Option- key prefix
(codes 128 through 255)
1 Non-displayable ASCII characters (codes 0 to 31 excluding 9 throug
2 White space characters: Space, Tab, Carriage Return, Form Feed,
Newline, and Vertical Tab (codes 32, 9, 13, 12, 10, and 11, respect

LabVIEW Function and VI Reference Manual 9-8

© National Instruments Corporation

h 13)

vely)

Chapter 9 Comparison Functions

Table 9-1. Lexical Class Number Descriptions (Continued)

Class
Number Lexical Class
3 Digits 0 through 9
4 Uppercase characters A through Z
5 Lowercase characters a through z
6 All printable ASCII non-alphanumeric characters

Max & Min

Comparex andy and returns the larger value at the top output terminal and the smaller value
at the bottom output terminal.

% EENTEY rnas(x.y]
EE] | it .y]

Not A Number/Path/Refnum?
Returns TRUE ihumber/path/refnum is not a number (NaN), not a path, or not a refnum.
Otherwise, this function returns FALSE. NaN can be the result of dividing by 0, calculating
the square root of a negative number, and so on.

number/path/refnum [@? M atl /Path/R efnurn?

Not Equal?
Returns TRUE ik is not equal ty. Otherwise, this function returns FALSE.

Not Equal To 0?
Returns TRUE ik is not equal to 0. Otherwise, this function returns FALSE.

% i 4 1= 07

© MNational Instruments Corporation 9-9 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

Octal Digit?
Returns TRUE ithar is an octal digit ranging from 0 through 7. Otherwise, this function
returns FALSE.

char % octal?
Printable?
Returns TRUE ithar is a printable ASCII character. Otherwise, this function returns
FALSE.
char s printable 45117
Select

Returns the value connected totlgout orf input, depending on the valueff sis TRUE,
this function returns the value connected.tth s is FALSE, this function returns the value

connected td.
g %7 7 uf
F—

White Space?
Returns TRUE ithar is a white space character, such as Space, Tab, Newline,
Carriage Return, Form Feed, or Vertical Tab. Otherwise, the function returns FALSE.

char & gpace, hdv tab, or, If, {7

LabVIEW Function and VI Reference Manual 9-10 © MNational Instruments Corporation

Time, Dialog, and
Error Functions

This chapter describes the timing functions, which you can use to get the
current time, measure elapsed time, or suspend an operation for a specific
period of time. Error Handling also is covered in this chapter.

The following illustration shows thHEme & Dialog palette that you access
by selecting-unctions»Time & Dialog.

5 Functions 3|
Time & Dialog

mJHN
T =01
12:01

© MNational Instruments Corporation 10-1 LabVIEW Function and VI Reference Manual

Chapter 10 Time, Dialog, and Error Functions

Time, Dialog, and Error Functions Overview

This section introduces the Timing, Dialog, and Error functions.

Timing Functions

The Date/Time To Seconds and the Seconds To Date/Time functions have
a parameter calledte time rec,which is a cluster that consists of signed
32-bit integers in the following order.

Table 10-1. Valid Value of Elements for Date/Time Cluster

Element Valid Values

0 | (second) 0to 59

1| (minute) 0to 59

2 | (hour) Oto 23

3 | (day of month)| 1 tq 31 as output from the function; 1 to 366
as input

4 | (month) 1to12

5| (year) 1904 to 2040

6 | (day of week) | 1to 7 (Sunday to Saturday)

7 | (day of year) | 1to 366

8| (DST) 0 to 1 (O for Standard Time, 1 for Daylight
Savings Time)

The Wait (ms) and Wait Until Next ms Multiple functions make
asynchronous system calls, but the nodes themselves function
synchronously. Therefore, they do not complete execution until the
specified time has elapsed. The functions use asynchronous calls, so other
nodes can execute while the timing nodes wait.

Note Time values outside the range 2082844800 to 4230328447 seconds or 12:00 a.m.,
Jan. 1, 1970, Universal Time to 3:14 a.m., Jan. 19, 2038, Universal Time might not
convert to the same date on all platforms. This exception primarily exists on
Windows 3.x, which does not support dates prior to Jan. 1, 1970, Universal Time.

LabVIEW Function and VI Reference Manual 10-2 © MNational Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

Error Handling Overview

Every time you design a program, consider the possibility that something
can go wrong and, if it does, you should consider how your program can
manage the problem. LabVIEW automatically notifies you with a dialog
box only when a few run-time errors occur, mostly for file-dialog
operations. LabVIEW does not report all errors. If it reported all errors, you
would lose the flexibility to determine what to do when an error occurs and
how and when to inform the user of the error in your program.

Rigorous error checking, especially for 1/O operations (file, serial, GPIB,
data acquisition, and communication), is invaluable in all phases of a
project. This section describes three 1/O situations in which errors can
occur.

The first type of error can occur when you have initialized your
communications incorrectly or have written improper data to your external
device. This type of problem usually occurs during program development
and disappears once you finish debugging your program. However, you can
spend a lot of time tracking down a simple programming mistake because
you have not incorporated error checks. Without error checks, you only
know that your program does not work. You do not know why the error
occurred or where it is.

The second type of error can occur because your external device might be
powered off, broken down, or otherwise unable to complete its normal
tasks. This type of problem can occur at any time, but if you have
incorporated error checking, your program notifies you immediately

when such operational failures occur.

The third kind of error can occur when you upgrade LabVIEW or your
operating system software and you notice a bug in either a G program or a
system program. This type of error means you should check errors that you
might have felt safe ignoring, such as those from functions that close files
or clear DAQ operations. Be sure to check all I/O operations for errors.

It might seem easier to ignore error checking when you must add error
handling code to test and report errors. The Vs described here are designed
to make it easier for you to create programs with error checking and
handling.

G functions and library VIs return errors in one of two ways—uwith numeric
error codes or with an error state cluster. Typically, functions release output
error codes while VIs incorporate the error cluster, usually within a
framework called error input/output (error 1/O).

© MNational Instruments Corporation 10-3 LabVIEW Function and VI Reference Manual

Chapter 10

Time, Dialog, and Error Functions

Error 1/0 and the Error State Cluster

The concept of error I/O is logical for the G dataflow architecture. If data
information can flow from one node to another, so can error state
information. Each node that needs information about errors tests the
incoming error state and responds appropriately. If no error exists, the node
executes normally. If an error does exist, the node detects an error, skips
execution, then passes its error state out to the next node, which responds
in the same way. In this fashion, notice of the first error that occurs in a
sequence of operations is passed through all the nodes, with each node
responding to the error. At the end of the flow, your program reports the
error to the user.

Error 1/0 has an additional benefit—you can use it to control the execution
order of independent operations. While you can use the DAQ taskID to
control the order of DAQ operations for one group, you cannot use it to
control the order for multiple groups. The DAQ taskID does not work with
other types of I/O operations such as file operations.

The following diagram from the File Utility VRead Characters From
File.vi , shows how error I/O is implemented in a simple VI.

{F—=1| [new file path (Not&Path if cancelled)]
......{ character string

||:-r-:-mpt|ll3hc-use file to read.

|cu:-nt1'nue or stop ressage on an error|

[fite path (dialog if erpty)]

Read File+ (ztring).vi General Error Handler i

=

Close Filet vi

oz mode Crel. to begin)|J0)

[rark after read (chars.)|

[start of read offset (chars.: 00 [(T22]

filg =ize

nurnber of characters Call:-13j[132 %}—

The operation starts @pen File+.vi . If it opens the file successfully,
ReadFile+(string).vi reads the file andloseFile+.vi closes the
file. If you pass in an invalid patpen File+.vi detects the error and
passes the error state through the other two VIs to the General Error
Handler, which reports it. Notice that the only presence of error handling

LabVIEW Function and VI Reference Manual 10-4 © MNational Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

on this block diagram is the error wire and the General Error Handler. It is
neither cumbersome nor distracting.

The error state consists of three pieces of information that are combined
into the error cluster. Thetatusis a Boolean value—TRUE if an error
exists, FALSE if it does not. Theodeconsists of a signed 32-bit integer
that identifies the error. A non-zero ergmdecoupled with a FALSE
errorstatus signals a warning rather than a fatal error. For example, a
DAQ timeout event (code 10800) typically is reported as a warning. The
sourceconsists of a string that identifies where the error occurred.

Theerror in anderror out state clusters for thepen File+.vi , Where
the error shown in the preceding example originated, are shown in the
following illustration. Theerror in cluster, whose default valueris

error does not need to be wired if it is the first in the chain.

ernor in [no eror) error out

shatuis code shatus code
no errar I g] o errar I |EI

FOLICE FOLMCE

J i

You can find theerror in anderror out clusters by selecting
Controls»Array & Cluster on the front panel.

The following illustration shows the message you receive from the General
Error Handler if you pass an invalid path.

Error 7 occurred at Open File in
Untitled 2.

Possible reasons:
LabUIEWD: File not found.
GPIB ENEB: Mon-existent board.

“
L]

© MNational Instruments Corporation 10-5 LabVIEW Function and VI Reference Manual

Chapter 10 Time, Dialog, and Error Functions

The General Error Handler is one of the three error-handling utility VIs.

It contains a database of error codes and descriptions, from which it creates
messages like the previous one. The Simple Error Handler performs the
same basic operation but has fewer options. The third VI, Find First Error,
creates the error I/O cluster from functions or VIs that output only scalar
error codes.

Time and Dialog Function Descriptions

The following Time and Dialog functions are available.

Date/Time To Seconds
Converts a cluster of nine, signed 32-bit integers assumed to specify the local time (second,
minute, hour, day, month, year, day of the week, day of the year, and Standard or Daylight
Savings Time) in the configured time zone for your computer into a time-zone-independent
number ofsecondghat have elapsed since 12:00 a.m., Friday, January 1, 1904,
Universal Time.

date time rec seconds

The day of week, day of year, and DST integers are ignored. If any of the other integers are
out of the ranges specified in Table 10-1, the results are unpredictable.

When used as an integer, the day of month integer has a valid range of 1 to 366. Thus, you
can specify Julian dates by setting the month to January and the current day to the day of the
year. For example, use January 150 for théh]dﬂy of the year.

Format Date/Time String Function
Gives you the ability to display the date and time in a format you specify.

time format string [%c) EEd 1 . .
01
geconds [how] 10l datedtime sting

Thedate/time stringis determined from th&econds (now)which is the number of seconds
since 12:00 a.m., January 1, 1904, Universal Timetiarelformat string is the format of
the output string.

If secondsds not wired, the current time is usedinie format string is not wired, the default
is %¢ which corresponds to the date/time representation appropriate for the current locale.

LabVIEW Function and VI Reference Manual 10-6 © MNational Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

The Format Date/Time String function calculadese/time string by copyingtime format
string and replacing each of the format codes with the corresponding values in the following

table.
Table 10-2. Format Codes for the Time Format String
Format Code Value
%% a single percent character
%a abbreviated weekday name (e.g. Wed)
%A full weekday name (e.g. Wednesday)
%b abbreviated month name (e.g. Jun)
%B full month name (e.g. June)
%c locale’s default date and time representation
%d day of month (01-31)
%H hour (24-hour clock) (00-23)
%l hour (12-hour clock) (01-12)
%j day number of year (001—-366)
%m month number (01-12)
%M minute (00-59)
%p AM or PM flag
%S seconds (00-59)
%U week number of the year (00—53), with Sunday as the first day of
the week
%W weekday as a decimal number (0-6), with O representing Sunday
%W week number of the year (00—53), with Monday as the first day of
the week
%X date representation of locale
%X time representation of locale
%y year within century (00—99)
%Y year, including the century (for example, 1997)
%Z time zone name or abbreviation

© MNational Instruments Corporation 10-7 LabVIEW Function and VI Reference Manual

Chapter 10 Time, Dialog, and Error Functions

Characters appearing time format string that are not part of a format code are copied to
the output string verbatim. Time format codes (beginning %itihat are not recognized
output the character literally.

Time format codes always have leading zeros as necessary to ensure a constant field width.
An optional# modifier before the format code letter removes the leading zeros from the
following format codes:

%#d, %#H %#|, %#j, YoM %HEM %HS %o#S Yol Yoty YoH WX Yoiy, Yo#tY
The # modifier does not modify the behavior of any other format codes.

Note The %c %x %X and%zformat codes depend on operating system locale support;
the output of these codes is platform dependent. Interpretation of the Daylight
Savings Time rule also can vary per platform.

Get Date/Time In Seconds

Returns a time-zone independent number containing the number of seconds that have elapsed
since 12:00 a.m., Friday, January 1, 1904, Universal Time.

seconds since 1Jan13904

Get Date/Time String
Converts a time-zone independent number calculated to be the number of seconds that have
elapsed since 12:00 a.m., Friday, January 1, 1904, Universal Time, to a date and time string
in the configured time zone for your computer.

date farmat [0] —
geconds [now)
waht seconds? [F] -

date string
time ztring

T

s [0

One Button Dialog Box
Displays a dialog box that contains a message and a single buttdsut@irename control
is the name displayed on the dialog box button.

meszage m__:
buttan name [MOK"] wmneeeend T

LabVIEW Function and VI Reference Manual 10-8 © MNational Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

Seconds To Date/Time
Converts a time-zone-independent number calculated to be the numnsbeonfighat have
elapsed since 12:00 a.m., Friday, January 1, 1904, Universal Time, to a cluster of nine, signed
32-bit integers that specify the local time (second, minute, hour, day of the month, month,
year, day of the week, day of the year, and Standard or Daylight Savings Time) in the
configured time zone for your computer. The Standard or Daylight Savings time parameter
is set according to the operating system setting for Daylight Savings and indicates whether
the date/time cluster was adjusted due to Daylight Savings Time.

zeconds [now] date time rec

Tick Count (ms)
Returns the value of the millisecond timer. The base reference time (millisecond zero)
is undefined; therefore, you cannot conveilisecond timer valueto a real-world time
or date. Be careful when you use this function in comparisons because the value of the
millisecond timer wraps fror23?-1 t0 0.

rilizecond bimer value

Two Button Dialog Box

Displays a dialog box that containe@ssageand two buttonsl button nameandF button
name are the names displayed on the buttons of the dialog box.

message T
T button name ['OK"] T T buttan?
F button name ["Cancel"] "

Wait (ms)

Waits the specified number of milliseconds then returns the value of the millisecond timer.

milhizeconds to wait millizecond timer value

© MNational Instruments Corporation 10-9 LabVIEW Function and VI Reference Manual

Chapter 10 Time, Dialog, and Error Functions

Wait Until Next ms Multiple

Waits until the value of the millisecond timer becomes a multiple of the speuifiescond
multiple. Use this function to synchronize activities. You can call this function in a loop
to control the loop execution rate. However, it is possible that the first loop period might
be short.

millizecond multiple millizecond timer value

Error Handling VI Descriptions

The following Error Handling Vs are available.

Find First Error

Tests the error status of one or more low-level functions or subVIs that produce a numeric
error code as output.

Firud 7
el codes find BIrors
ermar in [ho ermar] Error &rror out

SOUNCE meszages

If this VI finds an error, it sets the parameters irgitier out cluster. You can wire this cluster
to the Simple or General Error Handler to identify the error and describe it to the user.

The following illustration shows how you can use Find First Error in the example VI Write
Binary File. Find First Error creates the error cluster from individual error numbers, and
Simple Error Handler reports any errors to the user.

IEnter Fi1ename}!

ermit Fead, deny write|

Write Filel |Clase File
- FILE CLOSE?
lect fileff1 =
Select new 1118 - AT

Find First Error.wi| [Simple Error Handler vi

Find
First
Errar

-t

[|

+*
1

I

-+

Array of DEL

write Binary File :Mew File
‘Write Binaty File Mwrite File
‘write Binary File :Close File

LabVIEW Function and VI Reference Manual 10-10 © MNational Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

General Error Handler

Determines whether an error has occurred. If an error has occurred, this VI creates a
description of the error and optionally displays a dialog box.

[uzer-defined dezcrptionz]

[uzer-defined codez]
[eror code] (0] o, error?

[error source] [~ 914+) E....L.. code aut

twpe of dialog [OK mzg:1] f ‘“ﬂ goLrce out

error in [no ermor| message
[Exception action] [nane: 0] errar oLk
[Emception code]
[exception zource]

Simple Error Handler

Determines whether an error has occurred. If it finds an error, this VI creates a description of
the error and optionally displays a dialog box.

o code [no errar 0] F— erary

ermor gource [~ Ky L code out
twpe of dialog [OF meg:1] fw% goUrce ouk

ermar in [ho ermar] &ror out
meszage

Simple Error Handler calls General Error Handler and has the same basic functionality as
General Error Handler, but with fewer options.

© MNational Instruments Corporation 10-11 LabVIEW Function and VI Reference Manual

File Functions

This chapter describes the low-level Vis and functions that manipulate
files, directories, and paths. This chapter also describes file constants and
the high-level file Vls.

You access these functions, constants, and VIs by selecting
Functions»File I/0.

s Functions |
File 10

123

(]
el
w

TheFile I/O palette includes the following subpalettes:
» Advanced File Functions

* Binary File VIs

» Configuration File VIs

* File Constants

For examples of File functions and Vls, ssamples\file

© MNational Instruments Corporation 11-1 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

File 1/0 VI and Function Overview

This section introduces the high-level and low-level file VIs, and the File
functions.

High-Level File Vis

You can use the high-level file VIs to write or read the following types
of data:

e Strings to text files

e One-dimensional (1D) or two-dimensional (2D) arrays of
single-precision numbers to spreadsheet text files

e 1D or 2D arrays of single-precision numbers or signed word integers
to byte stream files

The high-level file Vis described here call the low-level file functions to
perform complete, easy-to-use file operations. These VIs open or create a
file, write or read to it, and close it. If an error occurs, these Vis display a
dialog box that describes the problem and gives you the option to halt
execution or to continue.

The high-level file Vis are located on the top row of the palette and consist
of the following VIs:

* Binary File ViIs—located in the subpalette
* Read Characters from File

¢ Read from Spreadsheet File

¢ Read Lines from File

* Write Characters to File

¢ Write to Spreadsheet File

Low-Level File VIs and File Functions

The low-level file VIs and functions perform one file operation at a time.
These Vls and functions perform error detection in addition to their other
functions. The most commonly used low-level file functions and Vls are
located on the second row of the palette. The remaining low-level functions
are located in thAdvanced File Functionssubpalette.

The principal low-level file operations involve a three-step process. First,
you create or open a file. Then you write data to the file or read data from
the file. Finally, you close the file. Other file operations include creating

LabVIEW Function and VI Reference Manual 11-2 © MNational Instruments Corporation

Chapter 11 File Functions

directories; moving, copying, or deleting files; flushing files; listing
directory contents; changing file characteristics; and manipulating paths.

When creating or opening a file, you must specify its location. Different
computers describe the location of files in different ways, but most
computer systems use a hierarchical system to specify the location of files.
In a hierarchical file system, the computer system superimposes a hierarchy
on the storage media. You can store files inside directories, which can
contain other directories.

When you specify a file or directory in a hierarchical file system, you must
indicate the name of the file or directory, as well as its location in the
hierarchy. In addition, some file systems support the connection of multiple
discrete media, called volumes. For example, Windows systems support
multiple drives connected to a system; for most of these systems, you must
include the name of the volume to create a complete specification for the
location of a file. On other systems, such as UNIX, you do not need to
specify the storage media locations for files because the operating system
hides the physical implementation of the file system from you.

The method of identifying the target of a file function varies depending on
whether the target is an open file. If the target is not an open file, or if it is
a directory, you specify a target using gagh of the target. The path
describes the volume containing the target, the directories between the
top-level and the target, and the name of the target. If the target is an open
file, you use dile refnumto identify the file to be manipulated. The file
refnum is an identifier associated with the file when you open it. When you
close the file, the file manager dissociates the file refnum from the file.

In other words, the refnum is obsolete once the file is closed.

Refer to the.abVIEW Online Tutorial: Introduction to LabVIE¥r more
information on path specification in G and for file function examples.

Byte Stream and Datalog Files

G can make and access two types of files—byte stream and datalog files.

A byte streanfile, as the name implies, is a file whose fundamental unit is

a byte. A byte stream file can contain anything from a homogeneous set
of one G datatype to an arbitrary collection of datatypes—characters,
numbers, Booleans, arrays, strings, clusters, and so on. An ASCI| text file,
a file containing this paragraph, for example, is perhaps the simplest byte
stream file. A similar byte stream file is a basic spreadsheet text file, which
consists of rows of ASCIl numbers, with the numbers separated by tabs and
the rows separated by carriage returns.

© MNational Instruments Corporation 11-3 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Another simple byte stream file is an array of binary 16-bit integers or
single-precision, floating point numbers, which you acquire from a data
acquisition (DAQ) program. A more complicated byte stream file is one in
which an array of binary 16-bit integers or single-precision, floating point
numbers is preceded by a header of ASCII text that describes how and when
you acquired the data. That header could alternatively be a cluster of
acquisition parameters, such as arrays of channels and scale factors, the
scan rate, and so forth.

An Excel worksheet file, as opposed to an Excel text file, is also a more
complicated form of byte stream file because it contains text interspersed
with Excel-specific formatting data that does not make sense when you
read it as text. In summary, you can make a byte stream file that consists of
one each of all of the G datatypes. Byte stream files can be created using
high-level File Vis and low-level File ViIs and functions.

A datalogfile, on the other hand, consists of a sequence of
identically-structured records. Like byte stream files, the components of a
datalog record can be any G datatype. The difference is that all the datalog
records must be the same type. Datalog files can only be created using
low-level file functions.

You write a byte stream file typically by appending new strings, numbers,

or arrays of numbers of any length to the file. You can also overwrite data
anywhere within the file. You write a datalog file by appending one record

at a time. You cannot overwrite the record.

You read a byte stream file by specifying the byte offset or index and the
number of instances of the specified byte stream type you want to read. You
read a datalog file by specifying the record offset or index and the number
of records you want to read.

You use byte stream files typically for text or spreadsheet data that other
applications may need to read. You can use byte stream files to record
continuously acquired data that you need to read sequentially or randomly
in arbitrary amounts. You use datalog files typically to record multiple test
results or waveforms that you read one at a time and treat individually.
Datalog files are difficult to read from non-G applications.

Flow-Through Parameters

Many file functions contaiflow-throughparameters, which return the

same value as an input parameter. You can use these parameters to control
the execution order of the functions. By wiring the flow-through output of
the first node you want to execute to the corresponding input of the next

LabVIEW Function and VI Reference Manual 11-4 © MNational Instruments Corporation

Chapter 11 File Functions

node you want to execute, you create artificial data dependency. Without
these flow-through parameters, you would often have to use Sequence
structures to ensure that file I/O operations take place in the correct order.

Error 1/0 in File 1/0 Functions

G uses error /O clusters, consistingeafor in anderror out, in all of its

file 1/O functions. With error 1/O clusters you can string together several
functions. When an error occurs in a function, that function passes the error
along to the next function. When the error passes to subsequent functions,
the subsequent function does not execute and passes the error along to the
following function, and so on. The following illustration displays an

example of therror in anderror out clusters.

[pattern]

prarnpt

file path

start path (Mot & Path)
function (open :0)
error in {not an error)
default name

adwvisory dialog? (display :T)

refnum

new file path
file zize (bytes)
error out

Although the error I/O clusters specify whether an error has occurred, you
may want to use error handlers to report the error to the user. For more
information on error I/O, see Chapter Tdmne, Dialog, and

Error Functions in this manual.

Permissions

Some of the file functions have a 32-bit integer parameter called
permissionsor new permissions These functions use only the least
significant nine bits of the 32-bit integer to determine file and directory
access permissions.

(Windows) The permissions are ignored for directories. For files, only bit 7
(the UNIX user write permission bit) is used. If this bit is clear, the file is
read-only. Otherwise, you can write to the file.

(Macintosh) All 9 bits of permissions are used for directories. The bits
that control read, write, and execute permissions, respectively, on a
UNIX system are used to control See Files, Make Changes, and

See Folders access rights, respectively, on the Macintosh. For files, only
bit 7 (the UNIX user write permission bit) is used. If this bit is clear, the
file is locked. Otherwise, the file is not locked.

© MNational Instruments Corporation 11-5 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

(UNIX) The nine bits of permissions correspond exactly to the nine UNIX
permission bits governing read, write, and execute permissions for users,
groups, and others. The following illustration shows the permission bits on
a UNIX system.

uset group others

permizsion R

bit 31 grye343210

r - read permission
W - Write permission
% - eRacUte permission

File 1/0 Function and VI Descriptions

The following functions and VIs are available from Hike I/O palette.

Build Path

Creates a new path by appending a name (or relative path) to an existing path.

baze path m:t
name or relative path

appended path

Close File
Writes all buffers of the file identified iefnum to disk, updates the directory entry of the
file, closes the file, and voidsfnum for subsequent file operations.

f KLISE- th
e nm.n . pa
EITar in 1, errar out
Note The Close File VI handles error 1/O differently than other file functions;

it executes even when i&ror in indicates that an error has occurred in a
preceding function.

LabVIEW Function and VI Reference Manual 11-6 © MNational Instruments Corporation

Chapter 11 File Functions

Open/Create/Replace File

Opens an existing file, creates a new file, or replaces an existing file, programmatically or
interactively using a file dialog box. You can optionally specify a diptognpt, default file
name start path, or filter pattern. Use this VI with the Write File or Read File functions.

[pattern]

prampt

file path

start path (Mot & Path)
function [open:0)
error in (not an error)
default name

advizsory dialog? (display :T)

refnum

new file path
file size [bytes)
error out

Read Characters From File

Reads a specified number of characters from a byte stream file beginning at a specified
character offset. The VI opens the file before reading from it and closes it afterwards.

CDFI"."E”: ED'? [r'ICI:F]
file path [dialog if empty] | Ebe... niew file path [MaotsPath it
number of characters [all-1] — _T * character zting

gtart of read offzet [chars... T mark after read [chars.)
rmrrrnrnmrm——— EDF‘?

Read File

Reads data from the file specified f@fnum and returns it idata. Reading begins at a
location specified bpos modeandpos offsetand depends on the format of the specified file.

corvert enl [F]
it mode [F]
refnum i dup refrium
pos made [0 2] = data
pos offget [I_:I] f = B offzet
efrar in efrar ot
caunk
byte stream type semmm—m——

Reading Byte Stream Files

If refnum is a byte stream file refnum, the Read File function reads data from the byte stream
file specified byrefnum. You can wire eitheline modeor byte stream typewhen you read

byte stream files, but you cannot wire both. If you do not te streamtype, Read File
assumes the data that begins at the designated byte offset is a string of characters. If you wire
byte stream type the function interpretdata starting at the designated byte offset to be

count instances of that type. Following the read operation, the function sets the file mark to
the byte following the last byte read. If the function encounters end of file before reading all

© MNational Instruments Corporation 11-7 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

of the requested data, it returns as many whole instances of the dediytattdeam type
as it finds.

Reading Characters

To read characters from a byte stream file (typically a text file), do not wike/testream
type. The following paragraphs describe the manner in whichirtbenode count, convert
eol, anddata parameters function when reading from a byte stream file.

line mode, in conjunction withcount, determines when the read stops.

If line modeis TRUE, and if you do not wireount or count equals 0, Read File reads until it
encounters an end of line marker—a carriage return, a line feed, or a carriage return followed
by a line feed, or it encounters end of fildine modeis TRUE, anccount is greater than O,

Read File reads until it encounters an end of line marker, it encounters end of file, or it reads
count characters.

If line modeis FALSE, Read File read®unt characters. In this case, if you do not wire
count, it defaults to Oline modedefaults to FALSE.

convert eol (F)determines whether the function converts the end of line markers it reads into
G end of line markers. The system-specific end of line marker is a carriage return followed
by a line feed on Windows, a carriage return on Macintosh, and a line feed on UNIX. The
G end of line marker is a line feed.

If convert eolis TRUE, the function converts all end of line markers it encounters into line
feeds. Ifconvert eolis FALSE, the function does not convert the end of line markers it reads.
convert eoldefaults to FALSE.

data is the string of characters read from the file.

Reading Binary Data

To read binary data from a byte stream file, wire the type of the dajdestream type
In this casegcount, anddata function in the manner described in the following paragraphs,
and you do not have to wilime modeor convert eol

byte stream typecan be any datatype. Read File interprets the data starting at the designated
byte offset to beount instances of that type. If the type is variable-length, that is, an array,

a string, or a cluster containing an array or string, the function assumes that each instance of
the type contains the length or dimensions of that instance. If they do not, the function
misinterprets the data. If Read File determines that the data does not match the type, it sets
the value oflata to the default value for its type and returns an error.

count is the number of instancesofte stream typeto read. Ifcount is unwired, the
function returns a single instancelgfte stream type

LabVIEW Function and VI Reference Manual 11-8 © MNational Instruments Corporation

Chapter 11 File Functions

If you wire count, it can be a scalar number, in which case the function returns a 1D array of
instances obyte stream type Or it can be a cluster of N scalar numbers, in which case the
function returns an N-dimension array of instancdsyté stream type

If the wiredcount is a scalar number and thgte stream typeis something other than an

array, the function returns that number of instances in a 1D array. For example, if the type is

a single-precision, floating point number awmdintis 3, the function returns an array of three,
single-precision, floating point numbers. However, if the type is an array, the function returns
the instances in a cluster array, because G does not have arrays of arrays. Therefore, if the type
is an array of single-precision, floating point numbers@nmat is 3, the function returns a

cluster array of three, single-precision, floating point number arrays.

If the wiredcount is a cluster of N numbers, the function returns an N-dimension array of
instances of the type. The size of each dimension is the value of the corresponding number
according to its cluster order. The number of instances returned in this manner is the product
of the N numbers. Thus, you can return 20, single-precision, floating point numbers as a

2D array of two columns and 10 rows by wiring a two-element cluster with element 0 = 2 and
element 1 = 10 toount.

data contains the data read from the file. Refer to the previous descriptionmtfor an
explanation of the structures data can have.

Reading Datalog Files

If refnum is a datalog file refnum, the Read File function reads records from the datalog file
specified byrefnum. If the data in the file does not match the datatype associated with the
datalog file, this function returns an error.

The number of records read can be less than specifismlioyif this function encounters the
end of the file. The function sets the file mark to the record following the last record read.
(You should never encounter a partial record; if you do, the file is corrupt.)

Do not wireconvert eol line mode, andbyte stream type They do not pertain to datalog
files. Thecount anddata parameters function in the following manner.

countis the number of records to read and may be wired or unwired. If you do nobwire

the function returns a single record of the datalog type specified when the file is created or
opened. For example, if the type is a 16-bit integer, the function returns one 16-bit integer.
If the type is an array of 16-bit integers, the functions returns one array of 16-bit integers.
(Your records typically consist of clusters of diverse elements, but the rules for simple types
used in these examples apply to those as well.)

If you wire count, it can be a scalar number, in which case the function returns a 1D array of
records. Or it can be a cluster of N scalar numbers, in which case the function returns an
N-dimension array of records.

© MNational Instruments Corporation 11-9 LabVIEW Function and VI Reference Manual

Chapter 11

File Functions

If the wiredcount is a scalar number, and the datalog type is something other than an
array, the function returns that number of records in a 1D array. For example, if the type

is a single-precision, floating-point number ar@iint is 3, the array contains three,
single-precision, floating-point numbers. However, if the type is an array, the function returns
the records in a cluster array because G does not have arrays of arrays. Therefore, if the
datalog type is an array of single-precision, floating-point numbersant is 3, the

function returns a cluster array of three, single-precision, floating-point number arrays.

If the wiredcount is a cluster of N numbers, the function returns an N-dimension array of
records. The size of each dimension is the value of the corresponding number according to its
cluster order. The number of records returned in this manner is the product of the N numbers.
Therefore, you can return 20 records as a 2D array of two columns and ten rows by wiring a
two-element cluster with element O = 2 and element 1 = t0uat.

Read From Spreadsheet File

Reads a specified number of lines or rows from a numeric text file beginning at a specified
character offset and converts the data to a 2D, single-precision array of numbers. Optionally,
you can transpose the array. The VI opens the file before reading from it and closes it
afterwards. You can use this VI to read a spreadsheet file saved in text format. This VI calls
the Spreadsheet String to Array function to convert the data.

format [%. 3] rie file path [Mak A Path...
file path [dialog if ermpty] all roves

rumber of rows [all-1] Firgt roms
zhart of read offzet [chars... rark. after read [chars.]
maw charactersrow [no lin... EOF?

tfanSpDSE [r'll:l: F]
delimiter [T ah)

Read Lines From File

Reads a specified number of lines from a byte stream file beginning at a specified character
offset. The VI opens the file before reading from it and closes it afterwards.

file path (dialog if empiy) new file path (Mot & Pathi...
number of lines (all:—-1) ";z. t--Tine string
start of read offzet (chars... = . mark after read (chars.)
[mmax characters per line] ...

LabVIEW Function and VI Reference Manual 11-10 © MNational Instruments Corporation

Chapter 11 File Functions

Strip Path

Returns themame of the last component of a path and ¢shvgpped path that leads to that

component.
EQ:; stripped path
narme

path

Write Characters To File

Writes a character string to a new byte stream file or appends the string to an existing file.
The VI opens or creates the file before writing to it and closes it afterwards.

file path (dialog if empty) new file path (Mot & Path if cancelled)
character string

append to file? (new file:F)

Write File
Writes data to the file specified logfnum. Writing begins at a location specified by
pos modeandpos offsetfor byte stream file and at the end of file for datalog filieda,
header, and the format of the specified file determine the amount of data written.

corerh gl [ey

header [F) -
refnum FILE dup refrum
pos mn?fe [D:[E% _,—-' offset
poz offeet L= error out
Efrar in mr
it mm—

Writing Byte Stream Files

If refnum is a byte stream file refnum, the Write File function writes to a location specified
by pos modeandpos offsetin the byte stream file specified bgfnum. If the top-level

datatype oflata is of variable length (that is, a string or an array), Write File can write a
headerto the file that specifies the size of the data. Write File sets the file mark to the byte
following the last byte writterconvert eoldetermines whether the function converts the
end-of-line markers it writes into system-specific end-of-line markers. You canomivert
eolonly if data is a string. The system-specific end-of-line marker is a carriage return
followed by a line feed on Windows, a line feed on UNIX, and a carriage return on Macintosh.
If headeris true, Write File ignoresonvert eol

© MNational Instruments Corporation 11-11 LabVIEW Function and VI Reference Manual

Chapter 11

File Functions

Writing Datalog Files

If refnum is a datalog file refnum, the Write File function writes data as records to the datalog
file specified byrefnum. Writing always starts at the end of the datalog file (datalog files

are append-only). Write File sets the file mark to the record following the last record written.
The convert eol header, pos mode andpos offsetparameters do not apply with datalog

files, and you cannot wire them. THata parameter functions in the following manner for
datalog files.

data must be either a datatype that matches the datatype specified when you open or create
the file, or an array of such datatypes. In the former case, this function dattess a single

record in the datalog file. Representation of numeric data is coerced to the representation of
the datatype if necessary. In the latter case, this function writes each elehztat ax a

separate record in the datalog file in row-major order.

Write To Spreadsheet File

Converts a 2D or 1D array of single-precision (SGL) numbers to a text string and writes the
string to a new byte stream file or appends the string to an existing file. You can optionally
transpose the data. This VI opens or creates the file before writing to it and closes it
afterwards. You can use this VI to create a text file readable by most spreadsheet applications.
This VI calls the Array to Spreadsheet String function to convert the data.

Format [, 3f] wrnennnenenny
file path [dialog if empty] (B } niew file path [Mak & Pathi..

F
20 data _|_kaqu

tfanSpDSE? [nD:F]-
delirniter [T ab)

Binary File VI Descriptions

The following VIs are available from th&inary File VIs subpalette.

! Binary File Vls X

EliEs

st]

j
TITE Ill‘_Ehl SEL

LabVIEW Function and VI Reference Manual 11-12 © MNational Instruments Corporation

Read From 116 File

Chapter 11 File Functions

Reads a 2D or 1D array of data from a byte stream file of signed, word integers (116). The VI
opens the file before reading from it and closes it afterwards. You can use this VI to read
unscaled or binary data acquired from data acquisition VIs and written to a file with Write To

116 File.

20 number of rows

dup refrumm
2D data

refnum

pos mode (rel. to mark:2)
pos offset (bytes:0)
error in (no error)

1D data

mark after read (bytes)
error out

EQF 7

20 number of columns F1D count

Read From SGL File

Reads a 2D or 1D array of data from a byte stream file of single-precision numbers (SGL).
The VI opens the file before reading from it and closes it afterwards. You can use this VI
to read scaled data acquired from data acquisition VIs and written to a file with Write To

SGL File.

file path [dialog if empty]

20 number af roves

rumber of columnz/ 10 cou,..
start of read offzet [hytes0]

-t file path Mok & Pathi.
;B 200 aray

10 array

rnark, after read [bytes]
EOF?

Write To 116 File

Writes a 2D or 1D array of signed word integers (116) to a new byte stream file or appends
the data to an existing file. The VI opens or creates the file before writing to it and closes it
afterwards. You can use this VI to write unscaled or binary data from data acquisition VIs.

file path [dialog if emply] Fiz
20 anay = — e
10 anray —IFH'E‘

mew file path (Mot & Path i,

© National Instruments Corporation 11-13

LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Write To SGL File

Writes a 2D or 1D array of single-precision numbers (SGL) to a new byte stream file or
appends the data to an existing file. The VI opens or creates the file before writing to it and
closes it afterwards. You can use this VI to write scaled data from data acquisition VIs without
changing the representation.

file path (dialeg i;[;!r::‘-:ga 123 new file path (Mot & Path if cancelled)

1D array —'_SH
append to file? (new file :F) - ’

Advanced File Function Descriptions

The following functions are available on tAdvanced File Functionssubpalette.

ii»! Advanced File Functions |

* +

SR eor| | [0 seen

OFEH][" tm-:m- FILE FILE
= =

]

pEI

FILE

,,
z
m
[

i
B
(&
3
AT

]

-

R

&) e [E
BEES

3

o m
B

mEL M LS 1] | [mEw
A | |l

cop

i

Access Rights

Sets and returns the owner, group, and permissions of the file or directory speqiféh.by
If you do not specifjnew owner, new group, or new permissions this function returns the
current settings unchanged.

path dup path
FiEs) Qe FILE CWMETET
MEW groLp "'E_I_ E graup
NEw PEFTIESI0NS mj‘“ PEIMISEI0NS
eI in error aut

LabVIEW Function and VI Reference Manual 11-14 © MNational Instruments Corporation

Chapter 11 File Functions

(Windows) The Access Rights function ignomesw ownerandnew groupand returns empty
strings forowner andgroup because Windows does not support owners and groups.

(Macintosh) If path refers to a file, the Access Rights function igneres ownerandnew
group and returns empty strings fowner andgroup because Macintosh does not support
owners or groups for files.

Array Of Strings To Path
Convertsarray of strings into a relative or absoluteath.
rElEIti"."E
array of stnngs T) path

Copy
Copies the file or directory specified bgurce pathto the location specified ligrget path.
If you copy a directory, this function copies all its contents recursively.
source path [copy[* hew path
target pat_h ‘@:@ -------- efrar ouk
Errar 1
Delete
Deletes the file or directory specified pgth. If path specifies a directory that is not empty
or if you do not have write permission for both the file or directory specifighthyand its
parent directory, this function does not remove the directory and returns an error.
path [DEL [dup path
EI1ar if ‘.EI efror auk
EOF

Sets and returns the logical EOF (end-of-file) of the file identifiegtinum. pos modeand

pos offsetspecify the new location of the EOF. If you do not spegify modeor pos offsetf

this function returns the current unchanged EOF. This function always returns the location of
the EOF relative to the beginning of the file.

refnum FLE dup reftium
pos rode [0:1] - o f offzet
pog offeet [I_ZI] f L errar auk
&Irar i

© MNational Instruments Corporation 11-15 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

You cannot set the EOF of a datalog filerefinum identifies a datalog file, you cannot wire
pos modeandpos offset However, you still can get the EOF of a datalog file, which tells you
how many records exist in the file.

File Dialog
Displays a dialog box with which you can specify the path to a file or directory. You can use
this dialog box to select existing files or directories or to select a location and name for a new
file or directory.

prompk meeeseeeoeny
ghart path path
select mode (2] - % """""" - epists
default narme wj""" """"" e cancelled
pattern
datalog hype s

File/Directory Info

Returns information about the file or directory specifiegath, including itssize its last
modification date, and whether it is a directory.

, difEDth'.-'
path FILE dup path

. 1] == 3lze
Error I s==m=f= 5 I a3t mod
errar out

Flush File

Writes all buffers of the file identified mefnum to disk and updates the directory entry of
the file associated wittefnum. The file remains open, amefnum remains valid.

refnum " dup refrum

20T i 1 errar aut

Data written to a file often resides in a buffer until the buffer fills up or until you close the file.
This function forces the operating system to write any buffer data to the file.

LabVIEW Function and VI Reference Manual 11-16 © MNational Instruments Corporation

Chapter 11 File Functions

List Directory
Returns two arrays of strings listing the names of all files and directories fodirddtory
path, filtering both arrays based uppattern and filtering thedile namesarray based upon
the specifiedlatalog type

directory path y Tl fl:_|||.4|:| directory path
pattern e flle narnes
datalog type f@% directary names
&frar in errar out

Lock Range
Locks or unlocks a range of a file specified&fnum. Locking a range of a file prevents both
reading and writing by other users, overriding permissions for the file, and the deny mode
associated witihefnum. See thé=ile 1/0 VI and Function Overviewection in this chapter
for a full discussion of permissions. Unlocking a range of a file removes the override caused
by locking a range, so that the file’s permissions and the deny mode associatredihwith
determine whether other users can read from or write to that range of the file.

= ||:":k [F]

refnum —rie[@
J— g dup refrum

pos mode [0:2] =
pos offset [0] f E 8 errar ot
Efrar in

count

You cannot lock a range of a datalog file.

Move
Moves the file or directory specified kpurce pathto the location specified lgrget path.

source path
target path -
EFror in ==

new path
errar out

New Directory
Creates the directory specified thyectory path. If a file or directory already exists at the
specified location, this function returns an error instead of overwriting the existing file or

directory.
directory path] INEWN dup directary path
grouip | "7.'5] [P @1l ot
PErmizsions mr“—
EIror in

© MNational Instruments Corporation 11-17 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

New File
Creates the file specified lfije path and opens it for reading and writing (regardless of
permissions.
datalog type
pefmizsions ———
file path HE L] refrium
e
dery rode (2] errar out
EITar in
it [F] e
Open File

Opens the file specified bife path for reading and/or writing.

datalog type s—
file path DFEH]"
open made [0] ﬁ
deny mode [2] f‘—

20T N

refrium
[P grror out

Path To Array Of Strings
Converts gath into anarray of strings and indicates whether the patheétative.
........................ relati'-.-'e
path fu'[“], array of gtrings

Path To String
Convertspath into a string describing a path in the standard format of the platform.
path 1P ats} zhring

Path Type
Returns the type of the specified path, indicating whether it is an absolute, relative, or
invalid path. This function checks only the format of the path, not whether the path refers
to an existing file or directory. Therefore, this function only indicates an invalid path for
Not A Path.

path l:% type

LabVIEW Function and VI Reference Manual 11-18 © MNational Instruments Corporation

Chapter 11 File Functions

Refnum To Path

Returns thgath associated with the specifieefnum.

refnum 101 % } path

Seek

Moves the current file mark of the file identified fnum to the position indicated by
pos offsetaccording to the mode chosengns mode

refnum FiLe dup refrium
pos maode [0:2] - - off et
pos offzet [0] f =ER errar out
&Iar in

String To Path

Convertsstring, describing a path in the standard format for the current platfonpatho

string Jatb= %} path

Type and Creator
Reads and sets the type and creator of the file specifipdtbyFile type and creator are
four-character strings. If you do not speaifgw type or new creator, this function returns
the current settings unchanged.

path FILE dup path
new type Jm"" é‘ T ype
riew creator mﬂ‘“’ creator
10T in eror auk

Windows and UNIX do not support file types and creators. Trying to set the type or creator
of a file in these platforms results in an error; however, you can get the file type and creator
in these platforms. If the specified file has a name ending with characters that Type and
Creator recognizes as specifying a file type (suchi aor the LVIN file type andllb ~ for

the LVAR file type), this function returns that typetype andLBVWn creator. Otherwise,

the function returng??? in bothtype andcreator.

© MNational Instruments Corporation 11-19 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Volume Info
Returns information about the volume containing the file or directory specifipdthy
including the total storage space provided by the volume, the amount used, and the amount
free in bytes.

volume path
zize

uzed

free

errar out

unL

path
2110 jh ===

Configuration File Vs

The Configuration File VIs provide you with the tools to create, modify, and read a
platform-independent configuration file. The following illustration shows the options
available on th€onfiguration File VIs subpalette.

I=! Configuration File Vs E |

@] oL
o= (&

 TF | [T [i32] [gt == | [_ebabe][a2
%
[}

T..I; IZI.EL i?.f all.::: u&i
oL @] == @] oL o
Mo | [M zec

0- o-

The Configuration File VIs work with a platform-independent configuration file similar in
format to the standard Windows initializatiami() file.

The file is divided into sections, denoted by a name enclosed in brackets. Each section in a

file must have a unique name. Within each section are key and value pairs. Each key within a
section must have a unique name.

LabVIEW Function and VI Reference Manual 11-20 © MNational Instruments Corporation

Chapter 11 File Functions

An example of a configuration file with sectiosestion 1 andsection2 is:
[section 1]
keyl="string value 1"
key2="string value 2"
key3=53
[section 2]
keyl=TRUE
key2=-12.3
key3="/c/temp/data.dat"

The Configuration File VIs support the following data types:

e Strings

» Paths

* Booleans

e 64-bit floating-point numbers (Double)

* 32-bit signed integers (132)

e 32-bit unsigned integers (U32)

String data in the file must be enclosed in double quotes. Any unprintable characters in the
string are stored in the file with their equivalent hexadecimal escape codes (for example,

\0OD for carriage return). In addition, backslash characters are stored in the file as
double-backslashes (for example,for\).

Path data is stored in a platform-neutral format. This format is the standard UNIX format for
paths. The Vls will interpret the absolute pattemp/data.dat as follows on the various
G platforms:

* Windows:c\temp\data.dat
¢ MacOS:c:temp:data.dat
¢ UNIX: /c/temp/data.dat

In addition, the VIs interpret the relative padmp/data.dat as follows:
e Windows:temp\data.dat

¢« MacOS::temp:data.dat

e UNIX: temp/data.dat

© MNational Instruments Corporation 11-21 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Close Config Data

Closes a reference to the configuration data identifiegfoyaum. If write configuration
file? is TRUE, the VI writes the data to the platform-independent configuration file identified

by refnum.
IE'num
write configuration file? - B
EI0r in [0 ernor] === error out

Open Config Data
Opens a reference to the configuration data found in a platform-independent configuration
file. If the specified file does not exist anckate file if necessary?s TRUE, the VI also
creates the configuration file.

configuration file path g 0 refrm
create file if neceszsany? (T] - e
EIT0T i [no eror] === error out

Read Key (Boolean)

Reads a Booleavalue associated with key in a specifiedsectionfrom the configuration
data identified byefnum. If the key does not exist, the VI returns ttefault value.

seCtion wereneneney
refnum TF refrurn aut
by ... @ - found?
default walue -~ L el
erar in [ho errar] mLm &rror oLt

Read Key (Double)
Reads a 64-bit floating-point numbealue associated witkey in a specifiedsection
from the configuration data identified bgfnum. If key does not exist, the VI returns
default value.

SECtiDn m.uu-E
refnum DBL refrum out

(OF=

0=

ke = “ faund ?

default value —I_r‘ “"ﬂ wvalue
error in [no errar] errar out

LabVIEW Function and VI Reference Manual 11-22 © MNational Instruments Corporation

Chapter 11 File Functions

Read Key (132)
Reads a 32-bit signed integerlue associated with key in a specifiedsectionfrom
the configuration data identified logfnum. If the key does not exist, the VI returns the
default value.

section merennnnnns
refnum i3z refrium ot
kg @ - found ?

default value mﬂ“‘ 1 wvalue
Ermar in (o error] errar oLt

Read Key (Path)

Reads a pathalue associated witkey in a specifiedgectionfrom the configuration data
identified byrefnum. If key does not exist, the VI returdgfault value.

sechion =g

refnum L. refrurm aut
key @ - found?
|:|_
default value mr‘ % walue
ermar in [ha errar] 2rrar oLt

Read Key (String)

Reads a stringalue associated witkey in a specifiedsectionfrom the configuration data
identified byrefnum. If key does not exist, the VI returdgfault value.

section wernnnnneny
refnum abu refrium out
by = @ “ found ?
G e 1= ey

default value r‘ “"ﬂ value
eror in [no ermor| error out

Read Key (U32)
Reads a 32-bit unsigned integatue associated witkey in a specifiedsectionfrom
the configuration data identified wgfnum. If key does not exist, the VI returns the
default value.

sechion g
refnum &, refrum out
kg @ “ faund ?

default value —l_r‘ “"ﬂ value
erar in [no erar] errar out

© MNational Instruments Corporation 11-23 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Remove Key
Removes &ey in a specifiedectionfrom the configuration data identified bgfnum.

sechion mennnnneney
refnum Hi=n refrm aut
ke g = found?
ermar in [no errar] ===l === aror out

Remove Section

Removes &ectionfrom the configuration data identified bgfnum.

sechion =y
refnum Wseo refrunm out
............ ot
error in [no ermor| S e

Write Key (Boolean)

Writes a Booleawalue associated witkey in a specifiedectionof the configuration data
identified byrefnum. If key exists, the VI replaces the existing valuey does not exist,
the VI adds th&ey/value pair to the end of the specifisdction If sectiondoes not exist,

the VI addssection with thekey/value pair, to the end of the configuration data.

sechion =g
refnum TF refrum aut
key 000 "Eﬂ
valug - error oLt
errar in (o errar]

Write Key (Double)

Writes a 64-bit floating-point numbgalue associated witkey in a specifiedectionof the
configuration data identified kngefnum. If key exists, the VI replaces the existing value.
If key does not exist, the VI adds tkey/value pair to the end of the specified section.
If sectiondoes not exist, the VI adds the section, withkigngvalue pair, to the end of the
configuration data.

section =g
refnum EL refrum oot
ko f ‘r@ﬂ
value mr error out
error in [ho errar]

LabVIEW Function and VI Reference Manual 11-24 © MNational Instruments Corporation

Chapter 11 File Functions

Write Key (132)

Writes a 32-bit signed integealue associated witkey in a specifiedsectionof the
configuration data identified yefnum. If key exists, the VI replaces the existing value.
If key does not exist, the VI adds tkey/value pair to the end of the specifisdction

If sectiondoes not exist, the VI addection with thekey/value pair, to the end of the
configuration data.

section memrereeeny
refnum i refrm out
kE_'.-' wf L g

value f oo grror auk

erar in [ho erar]

Write Key (Path)

Writes a patlvalue associated witkey in a specifiedsectionof the configuration data
identified byrefnum. If key exists, the VI replaces the existing valu&key does not exist,
the VI adds th&ey/value pair to the end of the specifisdction If sectiondoes not exist,
the VI addssection with thekey/value pair, to the end of the configuration data.

sECtinn werrrneneny
refnum s refrum aut
key AT [R

=
Mj....... e grror out

value mr‘
ermar in [ho errar]

Write Key (String)

Writes a stringralue associated witkey in a specifiedsectionof the configuration data
identified byrefnum. If key exists, the VI replaces the existing valugey does not exist,
the VI adds thé&ey/value pair to the end of the specifisdction If sectiondoes not exist,
the VI addssection with thekey/value pair, to the end of the configuration data.

sechion =g
refrnum abi: refrum out
kg "'
value o= 2rror aLlt
erar in [ho errar]

© MNational Instruments Corporation 11-25 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Write Key (U32)

Writes a 32-bit unsigned integealue associated witkey in a specifiedsectionof the
configuration data identified yefnum. If key exists, the VI replaces the existing value.
If key does not exist, the VI adds tkey/value pair to the end of the specifisdction

If the section does not exist, the VI adedstion with thekey/value pair, to the end of the
configuration data.

sEChon wrnennneney
refnum u&i refrm out
ke ==
value f == 2rror ot
erar in fho erarl

File Constants Descriptions

The following constants are available from Hike Constantssubpalette.

it File Constants |

Bl =H B A

Current VI's Path Constant

Returns the path to the file containing the VI in which this function appears. If the VI is
incorporated into an application (using the Application Builder libraries), the function returns
the path to the VI in the application file, and treats the application file as a VI library.

path

LabVIEW Function and VI Reference Manual 11-26 © MNational Instruments Corporation

Chapter 11 File Functions

Default Directory Constant
Returns the path to your default directory. The default directory is the directory which the file
dialog displays initially. The Preferences dialog bBgi{»Preferenceg, underPaths
defines this directory.

path

Empty Path

Returns an empty path.

Not A Path

Returns a path whose value is Not A Path. You can use this path as an output from structures
and subVIs when an error occurs.

Not A Refnum

Returns a refnum whose value is Not A Refnum. You can use this refnum as an output from
structures and subVIs when an error occurs.

Path Constant

Use this to supply a constant directory or file path to the block diagram. Set this value by
clicking inside the constant with the Operating tool and typing in the value. Use the standard
file path syntax for a given platform. You can set the value of the path constant to Not a Path
by clicking on the path symbol with the Operating tool and seleblatg Pathfrom the

resulting menu. See thiRaths and Refnunsection of Chapter &trings and File I/Qin the
LabVIEW User Manudior more information on using the Not a Path value.

The value of the path constant cannot be changed while the VI executes. You can assign a
label to this constant.

© MNational Instruments Corporation 11-27 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Temporary Directory Constant
Returns the path to your temporary directory. The temporary directory is the directory in
which you store temporary information that you expect the user or the operating system to
delete periodically. The G Preferences dialog it Preferenceg, underPaths defines
this directory.

path

VI Library Constant
Returns the path to the VI library directory for the current development library on the
current computer. The Preferences dialog liaditdPreferenced, underPaths defines this
directory. If you build an application using the Application Builder libraries, this path is the
path of the directory containing the application.

g~ path

LabVIEW Function and VI Reference Manual 11-28 © MNational Instruments Corporation

Application Control Functions

This chapter describes the Application Control functions.

To access thApplication Control palette, shown in the following
illustration, selecEunctions»Application Control.

s Functions |
Application Contro
¥ ¥
tlc
Y - 3
]
o ME Y
aliE| o)
HE ¥ Y
S
e PP |
==
Instr Lik) 13 iy »
JIei id
(U -—1EHlApplication Control
LERILE)Y

I'I'IEI"IEU ?m

‘_I_I_I_L

TheApplication Control palette include the following subpalettes:
» Help functions
* Menu functions

© MNational Instruments Corporation 12-1 LabVIEW Function and VI Reference Manual

Chapter 12 Application Control Functions

Application Control Functions

The following Application Control functions are available.

Call By Reference Node
The Call By Reference node is very similar to a subVI node: you can use either to call a VI.
However, there is a significant difference. With a subVI node, you determine what VI is called
when you drop the node on the diagram.

With the Call By Reference node, the end user determines what VI is called at runtime
via thereferenceinput. The Call By Reference node could call a VI that resides on a
different computer.

At the top of the Call By Reference node are four terminals: an input/output pair of flow
through VI reference terminals, and an input/output pair of flow through error clusters.

The VI reference input accepts wires only from strictly-typed VI references. Below these
terminals is an area within which a connector pane resides that is identical to that of a VI
with its terminals showing (rather than its icon). The connector pane of the strictly-typed VI
reference input determines the pattern and data types of this connector pane. You should wire
to these terminals just as you would to a normal subVI.

As long as none of the terminals of the connector pane have wires attached to them, the
connector pane adapts automatically to the connector pane of the input VI reference.
However, if any of them are wired, the node does not adapt automatically, and you must
explicitly change the connector pane (possibly breaking those wires) by popping up on the
node and selecting thedapt To Reference Inputmenu item.

At run time there is a small amount of overhead in calling the VI that is not necessary in a
normal subVI call. This overhead comes from validating the VI reference and a few

other details. However, for a call to a VI in the local LabVIEW, this overhead should be
insignificant for all but the smallest subVIs. Calling a VI located in another LabVIEW
application (across the network) involves considerably more overheadef€éhenceinput
determines the VI that is called by the Call by Reference node.

referance

dup reference
errar in kno error)

ErFar out

LabVIEW Function and VI Reference Manual 12-2 © MNational Instruments Corporation

Chapter 12 Application Control Functions

Call Chain

Returns a reference to a LabVIEW application or a VI.

% poacasaca: -5l chain

Close Application or VI Reference
Closes an open VI or the TCP connection to an open copy of LabVIEW.

application or ¥i reference

Erar in (o errar) ermar oLt

Invoke Node
Invokes a method or action on a VI. Most methods have parameters associated with them.
To select the method, pop up anywhere on the node and/geldntds. Once you select the
method, the associated parameters appear in the following illustration. You can set and get the
parameter values. Parameters with a white background are required inputs and the parameters
with a gray background are recommended inputs.

Arrto Befrorm In

] dup dute Refhurm
errar in Cno errar)

B ocless B v out

trwethod
—{* paratt 1 |—
—{+ param 2 |—

Open Application Reference
Returns a reference to a VI Server application running on the specified computer. If you do
not specify a value famachine name then it returns a reference to the local LabVIEW
application in which this function is running.

- open loc... % application reference
port number = oL
Ermar in [ho o] ===

machine name |

errar out

You can use thapplication referenceoutput as an input to the Property and Invoke nodes to
get or set properties and invoke methods on the application. Using it as the input to the Open
VI Reference function lets you get references to VIs in that application. Close the reference
with the Close Application or VI Reference function. If you forget to close this reference, it
closes automatically when the top-level VI associated with this function finishes executing.
However, it is good practice to conserve the resources involved in maintaining the connection
by closing the reference when you finish using it.

© MNational Instruments Corporation 12-3 LabVIEW Function and VI Reference Manual

Chapter 12

OpenV

Application Control Functions

| Reference
Returns a reference to a VI specified by a name string or path to the VI's location on disk.
type specifier ¥ Refrum .. ———
application reference [locall % i reference
vi path 07
2Irar in [ho errgr] === Eqror out
pagaward ["""‘"""""""j

You can get references to VIs in another LabVIEW application by wirirgpplication
reference(obtained from the Open Application Reference function) to this function. In this
casepath input refers to the file system on the remote LabVIEW computer. If you wire a
reference to the local LabVIEW application you get the same behavior as if you had not wired
anything to theapplication referenceinput.

If you intend to perform editing operations on the referenced VI, and the VI has a
password-protected diagram, you can provide the passwordpasbeordstring input.

If you provide the incorrect password, the Open VI Reference function returns an error and
an invalid VI reference. If you provide no password when opening a reference to a VI that is
password protected, you can still get the reference, but you can only perform operations that
do not edit the VI.

If you intend to call the specified VI through the Call By Reference function, wire a
strictly-typed VI reference to thtgpe specifierinput. The function ignores the value of this
input. Only the input's type—the connector pane information—is used. By specifying this
type, the Open VI Reference function verifies at run time that the referenced VI's connector
pane matches that of thge specifierinput.

Note It is possible to wire a Generic VI refnum type to the type specifier input. Doing

this results in the same behavior as if you had not wired the type specifier input
at all.

If you wire the type specifier input with a strictly-typed VI refnum, the VI must meet several
requirements before the VI reference is returned successfully:

e The VI cannot be broken for any reason.

e The VI must be runnable as a subVI; that is, it cannot be active as a top-level VI (unless
the VI is re-entrant).

¢ The connector pane of the VI must match that of the type specifier.
If you forget to close this reference, it closes automatically when the top-level VI associated

with this function finishes executing. However, it is good practice to conserve the resources
involved in maintaining the connection by closing the reference when you finish using it.

LabVIEW Function and VI Reference Manual 12-4 © MNational Instruments Corporation

Chapter 12 Application Control Functions

If you get a strictly-typed reference to a reentrant VI, a dedicated data space is allocated for
that reference. This data space is always used in conjunction with the output VI reference.
This can lead to some new behaviors that you may not be accustomed to in LabVIEW.

For example, parallel calls (using the Call By Reference node) to a reentrant VI using the
same VI reference do not execute in parallel, but execute serially, one after the other.

Notice that a VI reference is similar to what is known as a function pointer in other languages.
However, in LabVIEW, these function pointers also can be used to call VIs across the
network.

Print Panel

Produces the same printout as programmatic print at completion, but can be called from other
VIs and at times other than at completion. By default, it prints the entire panel, not just what
is visible in the window. This VI assumes that the VI is loaded but does not require the
window to be open.

¥l name

Ertire Panel [T]
errar in [ho erar) =

C—
Ey

| Print| errar aut

Property Node

Sets (writes) or gets (reads) VI and application property information. To select the VI or
application class, pop up on the node and select froi8aleet VI Server Classubmenu.
To select an application class, sel&pplication. To select a VI class, selédirtual
Instrument, or wire the VI or application refnum teferenceand the node choices change
accordingly.

To select a specifiproperty, pop up on one of thameterminals and sele&roperties.

To set property information, pop up and sefebainge to Write, and to get property
information pop up and sele€hange to Read Some properties are read only, so you cannot
seeChange to Write in the pop-up menu. The Property node works the same way as
Attribute nodes. If you want to add items to the node, pop up and &dek&lement or click

and drag the node to expand the number of items in the node. When this node executes,
properties are handled in the order from top to bottom. If an error occurs on one of the
properties, the node stops at that property and returns an error. No further properties are
handled. The error string reports which property caused the error. Remember if the small
direction arrow on a property is on the left, you are setting the property value. If the small
direction arrow on the property is on the right, you are getting the property value. Each
property name has a short or long name which can be changed by popping up and selecting
Name Format Another name format is no name where only the type is displayed for each

property.

© MNational Instruments Corporation 12-5 LabVIEW Function and VI Reference Manual

Chapter 12

Quit

Stop

Application Control Functions

refarehce & & dup referehce
error in [no error) 7 A4 class errar aut
narne 1 w—attribute 1
attribute 2— name 2 i

< E """ ATCHRIE 3

AT

Stops all executing VIs and ends the current session of LabVIEW. This function shuts down
only LabVIEW,; the function does not affect other applications. The function stops all running
VIs the same way the Stop function does.

quit? [T]

Stops the VI in which it executes, just as if you clickedStap button in the toolbar. If you
wired the input, stop occurs only if the input value is TRUE. If you leave the input unwired,
the stop occurs as soon as the node that is currently executing finishes.

StDp? [T]

If you need to abort execution of all Vls in a hierarchy from the block diagram, you can use
this function, but you must use it with caution. Before you call the Stop function with a TRUE
input, be sure to complete all final tasks for the VI first, such as closing files, setting save
values for devices being controlled, and so on. If you put the Stop function in a subVI, you
should make its behavior clear to other users of the VI because this function causes their
VI hierarchies to abort execution.

In general, avoid using the Stop function when you have a built-in termination protocol in
your VI. For example, I/O operations should be performed in While Loops so that the VI can
terminate the loop on an I/O error. You should also consider using a front panel Stop Boolean
control to terminate the loop at the request of the user rather than using the Stop function.

LabVIEW Function and VI Reference Manual 12-6 © MNational Instruments Corporation

Chapter 12 Application Control Functions

Help Function Descriptions

The following illustration displays the options available onHiedp subpalette.

~HHelp
Eallr 2

Control Help Window

Modifies theHelp window by showing, hiding, or repositioning the window.

=] STa T — {ﬁ@

Top Left Cornep s]~ =

Control Online Help

Controls the online help system by displaying the table of contents of a help file, jumping to
a specific point in a help file, or closing the online help system.

Operation a
String to gearch for “j.....JE ? o= F pror CDlutpt

Path to the help file
Errar Input -===r

Get Help Window Status

Returns the status and the position information foiHbkp window.

c?..g:?} Show

8] e Ty Left Carner

© MNational Instruments Corporation 12-7 LabVIEW Function and VI Reference Manual

Chapter 12 Application Control Functions

Menu Functions

The following illustration displays the options available onNfemu subpalette.

[EMenu M

MEML! | [MEML

Bz afxn

MEND | [END | [FERLD
] = 5
REN] | e @-2

The Menu functions operate on menus identified by a refnum. A VI's menu refnum is
obtained through the constant Current VI's menu. Items are identified by an item tag (string)
and sometimes by an item path (string), which is a list of item tags from the menu tree root
up to the item and separated by colons.

Ely

The following Menu functions are available.

Delete Menu Items
Deletes menu items from the menubar or a submenu within the menubar.

menubar FEHD menubar out
menu tag

itemmns ﬁ
ermar in (o errar)

e @rror aut

If menu tagis specified, the items are deleted from the submenu specifiadrytag or
else the items are deleted from the menubar. The function returns an meauifagor one
of the items specified is not found.

items can be a tag (string) of an existing item, an array of tags of existing items, a position
index (zero-based integer) of an item in the menu or an array of position indices of items in
the menu. If you do not wiitems, all the items in the menu are deleted. If there is a submenu
in any of the specified items, the submenu and all its contents are deleted automatically.

Because separators do not have unique tags, they are best deleted by using their positional
indices.

LabVIEW Function and VI Reference Manual 12-8 © MNational Instruments Corporation

Enable Menu Tracking

Enables or disables tracking of mesalections.

Get Menu Item Info

Application Control Functions

Chapter 12
menubar MERU el ot
enable [T] -~ "14 error out

2rrar in [ho ermar]

Returns the attributes of the menu item specified thrategh tag.

itemn kag submenu tags
menubar HEMLT menubar out
o . ™ item name
error in [no error) =7 1 enabled
error aut
...................... ChECkEd
e ghjort cut

Item attributes aréem name(the string that appears in the memmabled(false designates

that the item is grayed outhecked(specifies whether there is a check mark next to the
item), andshort cut (key accelerator). If the item has a submenu, its item tags are returned as
an array of strings isubmenu tags|f item tag is unwired, the menubar items are returned.

If item tag is not valid, an error is returned.

Get Menu Selection

Returns thetem tag of the last selected menu item, optionally waitiingeout

milliseconds

. item path is a string describing the position of the item in the menu

hierarchy, which is the format of a list of menu tags separated by a colon (:). If block menu
is set toTrue , Menu selection is blocked out after an item tag is read.

© MNational Instruments Corporation

menubar

g timeout [200] — ...

_. tlITIEd Dut
FEMHL | menubar out
b4 k‘"mi:, itern tag

block mesmu [F] -
errar in [ho error] ::::j:n

‘“‘Lﬂ itern path
errar out

12-9

LabVIEW Function and VI Reference Manual

Chapter 12 Application Control Functions

Get Menu Shortcut Info
Returns the menu item that is accessible through a given shortcut.

menubar FEMU menubar out

thort cut = i .--L": itern tag
EI100 in [efror] === "‘L_ itern path
error out

item path is a string of menu item tags separated by a colon (:).

short cut consists of a string (key) and a Boolean (specifies whether the shift key is included
or not).

Insert Menu ltems
Inserts menu items into a menubar or a submenu within the menubar.

menu tag
menubar FEFD rmenubar out
item names = +H itern tags out

item tags ool E‘“ — B rror out

errar in [ho errar]
after itern

menu tagspecifies the submenu where items are inserted. If you do not specifytag
the items are inserted into theenubar.

item namesanditem tagsidentify the items to be inserted into the menu. The typeof
namesanditem tagscan be an array of strings (for inserting multiple items) or just a string

(for inserting a single item). You can wire in eitlitern namesor item tags in which case

both names and tags get the same values. If you require each item to have different name and
tag, you must wire in separate valuesifem namesanditem tags

after item specifies the position where the items are insestiéer item can be a tag (string)

of an existing item or a position index (zero based integer) in the menu. To insert at the
beginning of the menu, wire a number less thanditey item. To insert at the end of the

menu, wire a number larger than the number of items in the menu. You can insert a separator
using the application tag APP_SEPARATOR. The function always ensures that the tags of all
the inserted menu items are unique to the menu hierarchy by appending numbers to the
supplied tags, if necessary.

item tags outreturns the actual tags of the inserted itemsdfiu tagor after item (tag) is
not found, the function returns an error.

LabVIEW Function and VI Reference Manual 12-10 © MNational Instruments Corporation

Chapter 12 Application Control Functions

Set Menu Item Info

Sets the attributes of a menu item specified thronghu anditem tag. Item attributes are
item name (the string that appears in the meranabled(false designates that the item is
grayed out)checked(specifies whether there is a check mark next to the item¥ytamttut
(key accelerator). Attributes that are not wired remain unchangeznlfag is not valid, an
error is returned.

item tag
menubar HEHD merubar out
itern narne = — ?fﬂ
enabled - d error out
eror in [no error)
ChECkEd
short cut ses—m————

© MNational Instruments Corporation 12-11 LabVIEW Function and VI Reference Manual

Advanced Functions

This chapter describes the functions that perform advanced operations.
This chapter also describes the Data Manipulation and Synchronization
functions, and the VI Control and Memory ViIs.

To access thAdvancedpalette, shown in the following illustration, select
Functions»Advanced

EE Functions |

4
@' far

O
" k
'.':E::"?
o &Y

AL di
s

.. i .. h
i
Instr Lk

I+

w

E
=
=

@
=) 2]

[=]
i 2=
- | [

10
bt
e, (2
-

wEES 2

The Advanced functions include the following subpalettes:
« Data Manipulation

e Memory

* Synchronization

e VI Control

© MNational Instruments Corporation 13-1 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Advanced Function Descriptions

The following Advanced functions are available.

Beep

Causes the system to issue an audible tone. You can specify the tone frequency in Hertz,
the duration in milliseconds, and the intensity as a value from 0 to 255, with 255 being the
loudest. Although this VI appears on all platforms, the frequency, duration, and intensity
parameters work only on the Macintosh.

frequency [Hz] - ignored -
duration [mzec] - ighared _,_.P
intenzity [0-255) - ignored — ——

&rror - ighored

Code Interface Node

Calls code written in a conventional programming language, such as C, directly from a block
diagram. Code Interface Nodes (CINs) make it possible for you to use algorithms written in
another language or to access platform-specific features or hardware that G does not directly
support.

CINs are resizable and show datatypes for the connected inputs and outputs, similar to the
Bundle function. The following illustration shows the CIN function.

[Code Interface Mode]

The LabVIEW interface to external code is very powerful. You can pass any number of
parameters to or from external code, and each parameter can be of any arbitrary G datatype.
LabVIEW provides several libraries of routines that make working with G datatypes easier.
These routines support memory allocation, file manipulation, and datatype conversion.

If you convert a VI that contains a CIN to another platform, you need to recompile the code
for the new platform because CINs use code compiled in another programming language. You
can write source code for a CIN so that it is machine-independent, requiring only a recompile
to convert it to another platform. For examples of CINsegamples\cins

For more information on the Code Interface Node, sekdh¥IEW Code Interface
Reference Manuahvailable in portable document format (PDF) only.

LabVIEW Function and VI Reference Manual 13-2 © MNational Instruments Corporation

Chapter 13 Advanced Functions

Call Library Function
Calls standard libraries without writing a Code Interface Node (CIN). Under Windows, you
can call a dynamic link library (DLL) function directly. In Macintosh and UNIX, you can call
a shared library function directly. On the Macintosh 68K, you must have the CFM-68K
system extension installed for the Call Library Function node to operate.

This node supports a large number of datatypes and calling conventions. You can use it to call
functions from most standard and custom-made libraries.

The Call Library Function node, shown in the following illustration, looks similar to a
Code Interface node.

ﬂj:ﬂ (£
L]
— return walue
param 1 — — new walue of param 1
param 2 — M new walue of param 2

The Call Library Function consists of paired input/output terminals with input on the left and
output on the right. You can use one or both. The return value for the function is returned in
the right terminal of the top pair of terminals of the node. If there is no return value, then this
pair of terminals is unused. Each additional pair of terminals corresponds to a parameter in
the functions parameter list. You pass a value to the function by wiring to the left terminal of
a terminal pair. You read the value of a parameter after the function call by wiring from the
right terminal of a terminal pair.

If you selecConfigure... from the pop-up menu of the node, you see a Call Library Function
dialog box from which you can specify the library name or path, function name, calling
conventions, parameters, and return value for the node. When you ciik,dhe node
automatically increases in size to have the correct number of terminals. It then sets the
terminals to the correct datatypes. For more information on Call Library Function refer to
Chapter 25Calling Code From Other Languagés theG Programming Reference Manual

© MNational Instruments Corporation 13-3 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Data Manipulation Function Descriptions

The following illustration displays the options available onDia¢a Manipulation
subpalette.

] MANT
@ =4 /'/'_77@ Lyskie
ﬂgj’ cal el

- 1€ IE

Flatten To String
Convertsanything to a string of binary valuesype string is a type descriptor that describes
the datatype of anythindata string is the flattened form of anything. For more information
on type descriptors and flattened data,Ha#iened Datain Appendix A,Data Storage
Formats of theG Programming Reference Manual

[o-]

] ; type tring
anything m===(H £ data string

Join Numbers
Creates a number from the component bytes or words.

M thil)

Logical Shift
Shiftsx the number of bits specified jy

Y ey
X

LabVIEW Function and VI Reference Manual 13-4 © MNational Instruments Corporation

Chapter 13 Advanced Functions

Mantissa & Exponent
Returns the mantissa and exponent of the input numeric value such that
number = mantissa* 2 &P f humber is 0, bothmantissaandexponentare 0.
Otherwise, the value @hantissais greater than or equal to 1 and less than 2, and the value
of exponentis an integer.

e mantissa
E-3 =0

exponent

number

EXF

Rotate
Rotatesx the number of bits specified gy

y w ratated left by p
X

Rotate Left With Carry

Rotates each bit in the inputlue to the left (from least significant to most significant bit),
insertscarry in the low-order bit, and returns the most significant bit.

cary [,ﬁ’.l msh camy out

rvalue value

Rotate Right With Carry

Rotates each bit walue to the right (from most significant to least significant), inseatsy
in the high-order bit, and returns the least significant bit.

CAFEY e] TR]Sb caryr |:||.|t
*\fa]ulan.l walue 4

Split Number

Breaks a number into its component bytes or words.

hif=]
X —@:I_ |,::[:]

© MNational Instruments Corporation 13-5 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

The following illustration shows an example of how to use the Split Number function.
The function splits the signed 32-bit number 100,000 into the high word component, 1,
and the low word component, 34,464.

32 ulg
+[100000 1

ulg
34464
1116
I LE

Swap Bytes
Swaps the high-order 8 bits and the low-order 8 bits for every weanalyihing.
anything ';;' byte swapped

Swap Words
Swaps the high-order 16 bits and the low-order 16 bits for every long integgything.
anything I;; word swapped

Type Cast
Castsx to the datatypeype.

type
X EE “[tupe *] x

Casting data to a string converts it into machine-independent, big endian form. That is, the
function puts the most significant byte or word first and the least significant byte or word last,
removes alignment, and converts extended-precision numbers to 16 bytes. Casting a string to

LabVIEW Function and VI Reference Manual 13-6 © MNational Instruments Corporation

Chapter 13 Advanced Functions

a 1D array converts the string from machine-independent form to the native form for that

platform.

Unflatten From String

Convertshinary string to the type wired ttype. This function performs the inverse of
Flatten To Stringbinary string should contain flattened data of the type wiretype.
For more information on type descriptors and flattened datd;latened Datain
Appendix A,Data Storage Formatof theG Programming Reference Manual

= 1]

binary string

5)

type

L S |

el
value

Memory VI Descriptions

The following illustration displays the options available onNfeenory subpalette.

In Port (Windows 3.1 and Windows 95)

Reads a byte or word integer from a spec#@ister address Because this VI is not available

on all platforms, VIs using this subVI are not portable.

register address
read a byte ar & ward [F:byte]

I
Fart

walue

Out Port (Windows 3.1 and Windows 95)

Writes a byte or word integer to a speciégister address Because this VI is not available

on all platforms, VIs using this subVI are not portable.

register address

wirike a byte or a word (Fib.. -
value —

Ot
Fort

© National Instruments Corporation 13-7

LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Synchronization Vis

You can synchronize tasks executing in parallel by using the Synchronization VIs.
You can also use the Synchronization VIs to pass data between parallel tasks. You access
the Synchronization palette by choosingunctions»Advanced»Synchronization

The following illustration displays the options available on3lachronization palette.

The Synchronization palette consists of five subpalettes:
* Naotification VIs

¢ Queue Vis

¢ Rendezvous VIs

e Semaphore Vs

* Occurrence Functions

Notification Vs

You can use the Notification VIs to pass data from one task to one or more separate, parallel
tasks. In particular, you use these VIs when you want one or more VIs or parts of block
diagrams to wait until another VI or part of a block diagram sends them some data.

The Notification Vls differ from the Queue Vis in that the data sent is not buffered. That is,
if there is no one waiting on a notification when it is sent, the data will be “lost” if another
notification is sent. Also, more than one Wait On Notification VI can receive the same data.

LabVIEW Function and VI Reference Manual 13-8 © MNational Instruments Corporation

Chapter 13 Advanced Functions

You can access the notification VIs by selecting
Functions»Advanced»Synchronization»Notification

i Notification i

LD @ O Ofody, ®

| e || s || 2o || =0 ||%
i i
B =7

The notification VlIs use thRotifier RefNum control from theControls»Path & Refnum
palette.

Le]

The Notifier RefNum can be used with the following VIs.

Cancel Notification
Cancels and returns a previously sent notification.

notifier ':E' natifier out
e pancelled notification
erraor aut

»

errar in (no error)

This prevents a call to the Wait On Notification VI wigimore previousset to FALSE to see
the previously sent notification.

Create Notifier

Looks up an existingotifier or creates a nemotifier and returns a refnum that you can use
when calling other Notification Vis.

':E' notifier
; e
return (F) "f:l created new
error in (no error) = = e rar out

If nameis specified, the VI first searches for an existiogifier with the sam&ameand

will return its refnum if it exists. If a named notifier with the same name does not already exist
and thereturn existing input is FALSE, the VI will create a nawtifier and return its

refnum. Thecreated newoutput returns TRUE if the VI creates a new natifier.

© MNational Instruments Corporation 13-9 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Destroy Notifier
Destroys the specifiedbtifier and returns thiast notification that was sent. All Wait on
Notification VIs that are currently waiting on this notifier time out immediately and return

an error.
notifier ':E' notifier out
» e 1ast notification
errar in (no error) ertar out
Get Notifier Status

Returns current status informationruattifier .

il 1111
notifier ':1:' notifier out

L # yaiting
error in (no error] B %hst notification

error out

Not A Notifier
Returns TRUE ihotifier is not a valid notifier refnum.
. i .
notifier @0 not a notifier

Send Notification
Sendmotification to the specifiedhotifier. All Wait On Notification VIs that are currently
waiting on thisnotifier stop waiting and return the specifiedtification.

notifier {D notifier out
notification =
ertor in (no error)

oL s

errar out

Wait On Notification

Waits for the Send Notification VI to sendtification to the specified notifier.

notifier ':E' niotifier out

ignore previous (T) 77 =77 *nnotification
ms timeout (-1 f Z..e e birned Ut
errar in Cno error) arrar out

LabVIEW Function and VI Reference Manual 13-10 © MNational Instruments Corporation

Chapter 13 Advanced Functions

If ignore previousis FALSE and a notification was sent since the last time this VI was called,
the VI returns immediately with the value of the old notification and tiritled out as

FALSE. If theignore previousinput is TRUE, the VI will wait timeout milliseconds

(default -1, or forever) before timing out. If a notification is seémted out will return

FALSE. If a notification is not sent oriifotifier is not validtimed out will return TRUE.

Wait On Notification From Multiple
Waits for the Send Notification VI to send a notification to one of the specified notifiers.

notifiers 0 ':E' notifiers out

ignote previous (T -5 7 S e notifications
ms timeout (-1 f - Lo birned oot
errar in (no error) arrar out

If ignore previousis FALSE and a notification was sent to any of the specified notifiers since
the last time this VI was called, the VI returns immediately with the value(s) of the old
notification(s) and withimed out=FALSE. If theignore previousinput is TRUE, the VI

will wait ms timeoutmilliseconds (default —1, or forever) before timing out. If at least one
notification is senttimed out will return FALSE. If no notification is sentimed out will

return TRUE.

Queue Vls

You can use the Queue VIs to pass an ordered sequence of data elements from one task to

another separate, parallel task. In particular, you use these VIs when you want one task to wait
until another task provides it with some data. You can also use these VIs when you want one

task to wait until another task has processed some data that the first task has provided.

The queue Vs differ from the notification VIs in that the data sent is buffered. That is, if there

is no one waiting to read from the queue when an element is inserted, the element stays in the
gueue until it is explicitly removed. Also, when data is inserted into a queue and there are two
VIs waiting to remove it from the queue, only one of them receives the data.

You can access the Queue Vls by seledfumgctions»Advanced»Synchronization»Queue

The Queue VIs use tligueue RefNumcontrol from theControls»Path & Refnum palette.

© MNational Instruments Corporation 13-11 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

[=]

Queue RefNum can be used with the following Vis.

Create Queue
Looks up an existing queue or creates a new queue and returns a refnum that you can use when
calling other queue ViIs.

narne [unnarned) o queue

e ol Greate‘d Miew

return exisiting (F) mrﬂ Tem aror ot
errar in Cno errar)

If you specify a size > 0, the queue size is limited to that many elements. If the Insert Queue
Element VI tries to insert an element into a full queue, it must wait until an element is removed
with the Remove Queue Element VI. The default size is —1 for an unbounded queue.

If a name is specified, the VI first searches for an existing queue with the same name and will
returns its refnum if it exists. If a named queue with the same name does not already exist and
thereturn existing input is FALSE, the VI creates a new queue and return its refnum.
Thecreated newoutput returns TRUE if the VI creates a new queue.

LabVIEW Function and VI Reference Manual 13-12 © MNational Instruments Corporation

Chapter 13 Advanced Functions

Destroy Queue

Destroys the specified queue and returns any elements that are in the queue. All Insert Queue
Element and Remove Queue Element VIs that are currently waiting on this queue time out
immediately and return an error.

queue - queue aut
» B g lements
errar in Cno errar) ertar out

Flush Queue
Removes alelementsfrom queue

queue s queue out
ugi}ﬁmﬂme]ementg
errar in (no error) ertar out

Get Queue Status
Returns current status informationaqafeue

Ii queus size

narme

queue - queus out
5z

return elernents (F) - L # panding to remowve
- pending to inzert

ertor in (no error) sz
| ertar aut

glernets in queus
lnooooooooooon g lements

Insert Queue Element
Inserts an element into a queue.

at bE‘g'il'l'il'lg [:Fj 4
queue - queue out
queue element ~f
ms timeout (=13 f

error in (no error)

E t-lmed Dut
o error out

Theat begining parameter specifies whether the elementis inserted at the end (default) or the
front of the queue. If the queue is full, the VI waitseout milliseconds (default —1, or

forever) before timing out. If space becomes available during the wait, the element is inserted
andtimeout returns FALSE. If the queue remains full or the queue is not Vaidout

returns TRUE.

© MNational Instruments Corporation 13-13 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Not A Queue

Returns TRUE ifjueueis not a valid

gueue refnum.

Remove Queue Element

Removes an element from a queue.

-
queue @2 not a queus
R R —
queue 1 queus aut
"
ms timeout (-1 —— g qyeue element

errar in (no error) = . timed out
error aut

Thefrom end parameter specifies whether the returned element is taken from the front

(default) or the end of the queue. If

the queue is empty, the VI tivagsut milliseconds

(default —1, or forever) before timing out. If an element becomes available during the wait,
the element is returned atiched out returns FALSE. If no element becomes available or the
queue is not validjmed out returns TRUE.

Rendezvous Vs

You can use the Rendezvous VIs to synchronize two or more separate, parallel tasks at
specific points of execution. Each task that reaches the rendezvous waits until the specified
number of tasks are waiting, at which point all tasks proceed with execution.

You can access the Rendezvous VIs by selecting
Functions»Advanced»Synchronization»Rendezvous

i1 Rendezvous

LabVIEW Function and VI Reference Manual

13-14 © National Instruments Corporation

Chapter 13 Advanced Functions

The Rendezvous Vs use tRendezvous RefNuntontrol from theControls»
Path & Refnum palette.

o+

The Rendezvous RefNum can be used with the following VIs.

Create Rendezvous

Looks up an existingendezvousor creates a nerendezvousand returns a refnum that you
can use when calling other Rendezvous Vils.

narne (unnamed) ++* rendezwvaous
i LY
size (20 770 Y [created new

1 H
o error out

bovrm aseicitinn (F
Feturn exisiting (F

errar in (no error)

Thesizespecifies how many tasks have to meet atéhdezvousin order to continue
execution. The default size is 2.

If nameis specified, the VI first searches for an existiegdezvouswith the same name and
returns its refnum if it exists. If a named rendezvous with the same name does not already
exist and theeturn existing input is FALSE, the VI creates a new rendezvous and return its
refnum. Thecreated newoutput returns TRUE if the VI creates a new rendezvous.

Destroy Rendezvous

Destroys the specified rendezvous. All Wait at Rendezvous VIs that are currently waiting on
this rendezvous time out immediately and return an error.

rendezvous **‘. rendezwvous out

error in (no error) errar out

Get Rendezvous Status
Returns current status information afemdezvous

fronanannnnn naMme
rendezyous s rendezvous out
[§ . waiting
errar in (no error) %size
error out

© MNational Instruments Corporation 13-15 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Not A Rendezvous
Returns TRUE ifendezvousis not a valid rendezvous refnum.

'
@2

rendezyous not a rendezwvous

Resize Rendezvous
Changes the size oéndezvousby size changeand returnsiew size

rendezvous ry rendezvous out
zize change (01 I ';_:' L new size
ertor in Cno errar) ertror out

If the number of tasks currently waitingrandezvousis less than or equal teew size the
first size tasks stop waiting and continue execution.

Wait at Rendezvous
Waits until a sufficient number of tasks have arrived at the rendezvous.

rendezwvous **‘. rendezwvous aut
ms timeout (-1 = tirned out
ertar in Cno errar) o Eoarror aut

If the number of tasks, including the new one, waitingeatiezvousis less than the
rendezvous size, the VI wattmeout milliseconds (default —1, or forever) before timing out.
If enough tasks arrive at the rendezvous during the tivaéd out returns FALSE. If enough
tasks do not arrive or the rendezvous is not vifited out returns TRUE.

Semaphore Vis

Semaphores, also known as Mutex, are used to limit the number of tasks that may
simultaneously operate on a shared (protected) resource. A protected resource or critical
section may include writing to global variables or communicating with external instruments.

You can use the Semaphore VIs to synchronize two or more separate, parallel tasks so that
only one task at a time executes a critical section of code protected by a common semaphore.
In particular, you use these VIs when you want other VIs or parts of block diagram to wait
until another VI or part of a block diagram is finished with the execution of a critical section.

You can access the Semaphore VIs by sele&limgtions»Advanced»
Synchronization»Semaphore

LabVIEW Function and VI Reference Manual 13-16 © MNational Instruments Corporation

Chapter 13 Advanced Functions

The semaphore VIs use tBemaphore RefNumcontrol from theControls»
Path & Refnum palette.

The Semaphore RefNum can be used with the following Vls.

Acquire Semaphore
Acquires access to a semaphore.

sermaphate i zemaphote aut
ms timeaut (-1 = tirmed out
error in (no error) =8 Lo error out

If the semaphore is already acquired by the maximum number of tasks, the \tinnexitst
milliseconds (default —1, or forever) before timing out. If the semaphore becomes available
during the waittimed out returns FALSE. If the semaphore does not become available or the
semaphore is not valitimed out returns TRUE.

Create Semaphore

Looks up an existing semaphore or creates a new semaphore and returns a refnum that you
can use when calling other semaphore VIs.

=semaphote
:,IE:.I created new

b= epror out

return exiziting (F)

ertar in (no error)

sizespecifies how many tasks may acquire the semaphore at the same time. The default size
is 1.

If a name is specified, the VI first searches for an existing semaphore with the same name and
returns its refnum if it exists. If a named semaphore with the same name does not already exist

© MNational Instruments Corporation 13-17 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

and thereturn existing input is FALSE, the VI creates a new semaphore and return its
refnum. Thecreated newoutput returns TRUE if the VI creates a new semaphore.

Destroy Semaphore

Destroys the specified semaphore. All Acquire Semaphore VIs that are currently waiting on
this semaphore will time out immediately and return an error.

=zemnaphate zemaphote out
x

errar in kne error) errar out

Get Semaphore Status
Returns current status information of a semaphore.

i"""‘""‘""‘""‘""“ narme
semaphore sernaphare out
] L zize
ertar in (no ertor) # waiting
cttlﬂ====-err-:-r out
Not A Semaphore
Returns TRUE ifemaphoreis not a valid semaphore refnum.
semaphore @? not a semaphate

Release Semaphore
Releases access to a semaphore.

semaphore ‘ semaphare out

errar in (no error) ertar out

If there is an Acquire Semaphore VI waiting for this semaphore, it stops waiting and
continues execution. If you call the Release Semaphore VI on a semaphore that you have not
acquired, you effectively increment the semaphore size.

LabVIEW Function and VI Reference Manual 13-18 © MNational Instruments Corporation

Chapter 13 Advanced Functions

Occurrence Function Descriptions

You can use the occurrence functions to control separate, synchronous activities. In particular,
you use these functions when you want one VI or part of a block diagram to wait until another
VI or part of a block diagram finishes a task without forcing LabVIEW to poll.

You can perform the same task using global variables, with one loop polling the value of the
global until its value changes. However, global variables add overhead, because the loop that
pulls the global variable uses execution time. With occurrences, the polling loop is replaced
with a Wait on Occurrence function and does not use processor time. When some diagram
sets the occurrence, LabVIEW activates all Wait on Occurrence functions in any block
diagrams that are waiting for the specified occurrence.

The following illustration displays the options available on@veurrencessubpalette.

Occurrences x|

L [[D

Generate Occurrence

Creates amccurrencethat you can pass to the Wait on Occurrence and Set Occurrence
functions.

@7 DCCUMENCE

Ordinarily, only one Generate Occurrence node is connected to any set of Wait on Occurrence
and Set Occurrence functions. You can connect a Generate Occurrence function to any
number of Wait on Occurrence and Set Occurrence functions. You do not have to have the
same number of Wait on Occurrence and Set Occurrence functions.

Unlike other synchronization VIs, each Generate Occurrence function on a block diagram
represents a single, unigue occurrence. In this way, you can think of the Generate Occurrence
function as a constant. When a VI is running, every time a Generate Occurrence function
executes, the node produces the same value. For example, if you place a Generate Occurrence
function inside of a loop, the value produced by Generate Occurrence is the same for every
iteration of the loop. If you place a Generate Occurrence function on the block diagram of a
reentrant VI, Generate Occurrence produces a different value for each caller.

© MNational Instruments Corporation 13-19 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Set Occurrence

Triggers the specifiedccurrence All block diagrams that are waiting for this occurrence
stop waiting.

oCCurence —[D

Wait On Occurrence
Waits for the Set Occurrence function to set or trigger the gigearrence

mz timeout [-1]
occurence —
ignore previous [T) -

tirmed out

LabVIEW Function and VI Reference Manual 13-20 © MNational Instruments Corporation

Part i

Data Acquisition Vis

Part Il,Data Aquisition Visintroduces the collection of Vs that work with
your data aquisition (DAQ) hardware devices. This part contains the
following chapters:

Chapter 14|ntroduction to the LabVIEW Data Acquisition YIs
contains basic information about the data acquisition (DAQ) VIs and
shows where you can find them in LabVIEW.

Chapter 15Easy Analog Input V|slescribes the Easy Analog Input
VIs, which perform simple analog input operations.

Chapter 16lntermediate Analog Input V]slescribes the Intermediate
Analog Input Vls.

Chapter 17Analog Input Utility VIs describes the Analog Input

Utility VIs. These VIs—AI Read One Scan, Al Waveform Scan, and
Al Continuous Scan—are single-VI solutions to common analog input
problems. The Analog Input Utility VIs are intermediate-level VIs, so
they rely on the advanced-level Vis.

Chapter 18Advanced Analog Input V/lsontains reference
descriptions of the Advanced Analog Input VIs. These VIs are the
interface to the NI-DAQ software and are the foundation of the Easy,
Utility and Intermediate Analog Input VIs.

Chapter 19Easy Analog Output Vlslescribes the Easy Analog
Output Vs in LabVIEW, which perform simple analog output
operations.

Chapter 20Intermediate Analog Output Vldescribes the
Intermediate Analog Output VIs. These VIs—AO Write One Update,
AO Waveform Gen, and AO Continuous Gen—are single VI solutions
to common analog output problems.

Chapter 21Analog Output Utility Visdescribes the Analog Output
Utility VIs. The VIs—AO Continuous Generation, AO Waveform
Generation, and AO Write One Update—are single-VI solutions to

Part I

Data Acquisition VIs

common analog output problems. The Analog Output Utility VIs are
intermediate-level VIs, so they rely on the advanced-level Vis.

Chapter 22Advanced Analog Output Vlsontains reference
descriptions of the Advanced Analog Output VIs. These VIs are the
interface to the NI-DAQ software and are the foundation of the Easy,
Utility, and Intermediate Analog Output VIs.

Chapter 23Easy Digital I/O VIs describes the Easy Digital I/O Vis,
which perform simple digital I/O operations.

Chapter 24Intermediate Digital I/O Visdescribes the Intermediate
Digital I/O VIs. These Vls are single VI solutions to common digital
problems.

Chapter 25Advanced Digital /0 Visdescribes the Advanced Digital
I/0 Vls, which include the digital port and digital group VIs. You use
the digital port VIs for immediate reads and writes to digital lines and
ports. You use the digital group Vls for immediate, handshaked, or
clocked 1/O for multiple ports. These Vis are the interface to the
NI-DAQ software and the foundation of the Easy and Intermediate
Digital I/0O Vis.

Chapter 26Easy Counter Vigdescribes the Easy Counter Vls that
perform simple counting operations.

Chapter 27Intermediate Counter V]slescribes Intermediate Counter

VIs you can use to program counters on MIO, TIO, and other devices
with the DAQ-STC or Am9513 counter chips. These Vis call the
Advanced Counter VIs to configure the counters for common
operations and to start, read, and stop the counters. You can configure
these VIs to generate single pulses and continuous pulse trains, to
count events or elapsed time, to divide down a signal, and to measure
pulse width or period. The Easy Counter VIs call the Intermediate
Counter Vs for several pulse generation, counting, and measurement
operations.

Chapter 28Advanced Counter VJ]slescribes the Vis that configure
and control hardware counters. You can use these VIs to generate
variable duty cycle square waves, to count events, and to measure
periods and frequencies.

Chapter 29Calibration and Configuration Vigdescribes the VIs that
calibrate specific devices and set and return configuration information.

Chapter 30Signal Conditioning Visdescribes the data acquisition
Signal Conditioning VIs, which you use to convert analog input
voltages read from resistance temperature detectors (RTDs), strain
gauges, or thermocouples into units of strain or temperature.

LabVIEW Function and VI Reference Manual 1I-2 © MNational Instruments Corporation

Introduction to the LabVIEW
Data Acquisition VIs

This chapter contains basic information about the data acquisition (DAQ)
VlIs and shows where you can find them in LabVIEW. Descriptions of these
VIs comprise Chapter 14 through Chapter 29.

LabVIEW includes a collection of VIs that work with your DAQ hardware
devices. With LabVIEW DAQ VIs you can develop acquisition and control
applications.

You can find the DAQ VIs in thBunctions palette from your block
diagram in LabVIEW. The DAQ VIs are located near the bottom of the
Functions palette.

To access thBata Acquisition palette, choosEunctions»
Data Acquisition, as shown in the following illustration.

» »
el
* (3
abc anA
- 2]
ot S =
=
B EME B
H £
= | [+—IHIData Acquisition
e G [
R == ERLENLENLENL
m»m A
e | g_r.@.-v
MISC |'5_:|:_';">'I-'|u'

© MNational Instruments Corporation 14-1 LabVIEW Function and VI Reference Manual

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

TheData Acquisition palette contains six subpalette icons that take you
to the different classes of DAQ VIs. The following illustration shows what
each of the icons in tHeata Acquisition palette means.

Analog Output VIs Digital I/0 Vis
EO pata

Analog Input Vis —mr = E'nj k E""u k E'm! k -g Counter Vls

Calibration and
Configuration VIs gl

Signal Conditioning VIs

This part of the manual is organized in the order that the DAQ VI icons
appear in th®ata Acquisition palette from left to right. For example,

in this section, the Analog Input VI chapters are followed by the Analog
Output VI chapters, which are followed by the Digital I/0 VI chapters, and
so on. Most often, there are several chapters devoted to one class of
DAQ ViIs in the palette, because many of the VI palettes also contain
several subpalettes.

Finding Help Online for the DAQ Vls

You can find helpful information about individual VIs online by using the
LabVIEW Help window Help»Show Help. When you place the cursor

on a Vlicon, the wiring diagram and parameter names for that VI appear
in theHelp window. You can also find information for front panel controls
or indicators by placing the cursor over the control or indicator with the
Help window open. For more information on the LabVIEW Help window,
refer to theGetting Helpsection in Chapter Zireating VIs of the

LabVIEW User Manual.

In addition to theHelp window, LabVIEW has more extensive online
information available. To access this information, seteip»Online
Reference For most block diagram objects, you can selgdine
Referencefrom the object’s pop-up menu to access the online description.
You can also access this information by pressing the button shown to the
left, which is located at the bottom of LabVIEWAIp window.

For information on creating your own online reference files, see the

LabVIEW Function and VI Reference Manual 14-2 © MNational Instruments Corporation

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

Creating Your Own Help Filesection in Chapter Brinting and
Documenting VIsof theG Programming Reference Manual

Note Use only the inputs you need on each VI. LabVIEW sets all unwired inputs to their
default values. Many of the DAQ function inputs are optional and do not appear
in the Simple Diagram Helpwindow. These inputs typically specify rarely-used
options. If an input is required, your VI wiring remains “broken” until a value
is wired to the input. Required inputs appear in bold in tHelp window,
recommended inputs appear in plain text, and optional inputs are in gray text.

The default values for inputs appear in parentheses beside the input name in the
Help window.

Note Some DAQ VIs use an enumerated data type as a control or indicator terminal.
If you connect a numeric value to an enumerated indicator, LabVIEW converts

the number to the closest enumeration item. If you connect an enumerated control
to a number value, the value is the enumeration index.

The Analog Input Vis

These VIs perform analog input operations.

The Analog Input VIs can be found by chooskgctions»
Data Acquisition»Analog Input. When you click on the Analog Input

icon in theData Acquisition palette, théAnalog Input palette pops up,
as shown in the following illustration.

B Data Acquisition
Analog Input
] ¥]
Br K2, t|Es tE
p"-"o.—u:ﬂﬁnalng Input

uTIL k ADl
& &
© MNational Instruments Corporation 14-3

LabVIEW Function and VI Reference Manual

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

There are four classes of Analog Input VIs found inAhalog Input
palette. The Easy Analog Input VIs, Intermediate Analog Input VIs,

Analog Input Utility VIs, and Advanced Analog Input VIs. The following
illustrates these VI classes.

Easy Analog Input VIs

-
-

Al Al Al Al Al .
CONFIG) | START || RERD ||5-SCAM || CLEAR | deg Intermediate
o |]]] e Analog Input Vis
E'IU.HL ' 'EU ' Advanced

\ Analog Input Vis

Analog Input Utility VIs

Easy Analog Input Vis

The Easy Analog Input VIs perform simple analog input operations.
You can run these VIs from the front panel or use them as subVIs in
basic applications.

You can use each VI alone to perform a basic analog operation.
Unlike intermediate- and advanced-level Vis, Easy Analog Input Vs

automatically alert you to errors with a dialog box that asks you to stop
the execution of the VI or to ignore the error.

The Easy Analog Input VIs provide a basic, convenient interface with
only the most commonly used inputs and outputs. For more complex
applications, you should use the Intermediate Analog Input VIs and
Advanced Analog Input VIs for more functionality and performance.

Refer to Chapter 1%&asy Analog Input V|dor specific VI information.

LabVIEW Function and VI Reference Manual 14-4 © National Instruments Corporation

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

Intermediate Analog Input Vis

You can find intermediate-level Analog Input VIs in two different places

in theAnalog Input palette. You can find the Intermediate Analog

Input Vs in the second row of thenalog Input palette. The other
intermediate-level Vis are in thenalog Input Utilities palette, which

is discussed later. The Intermediate Analog Input VIs—AI Config,

Al Start, Al Read, Al Single Scan, and Al Clear—are in turn built from the
fundamental building block layer, called the Advanced Analog Input VIs.
These Vs offer almost as much power as the advanced-level Vs, and they
conveniently group the advanced-level Vs into a tidy, logical sequence.

Refer to Chapter 18ntermediate Analog Input Visor specific
VI information.

Analog Input Utility Vs

=T You can access thnalog Input Utilities palette by choosing the Analog
F, Input Utility icon from theAnalog Input palette. The Analog Input
Utility VIs—AI Read One Scan, Al Waveform Scan, and Al Continuous
Analog Input Scan—are single-VI solutions to common analog input problems..These
Utility Icon VIs are convenient, but they lack flexibility. These three Vls are built from

the Intermediate Analog Input Vls in tA@alog Input palette.

Refer to Chapter 1Analog Input Utility VIs for specific VI information.

Advanced Analog Input Vis

=, AU B You can access thedvanced Analog Inputpalette by choosing the
F, Advanced Analog Inputicon from theAnalog Input palette. These Vls
are the interface to the NI-DAQ data acquisition software and are the
Advanced Analog foundation of the Easy, Utility, and Intermediate Analog Input VIs.
Input Icon

Refer to Chapter 1&dvanced Analog Input V/Ifor specific
VI information.

Locating Analog Input VI Examples

For examples of how to use the analog input VIs, see
examples\dag\anlogin\anlogin.llb.

© MNational Instruments Corporation 14-5 LabVIEW Function and VI Reference Manual

Chapter 14

Introduction to the LabVIEW Data Acquisition Vs

Analog Output Vis

These Vls perform analog output operations.

The Analog Output VIs can be found by choodiuctions»Data
Acquisition»Analog Output. When you click on thAnalog Output icon
in theData Acquisition palette, theAnalog Output palette pops up, as
shown in the following illustration.

+—1HID ata Acquisition

Bx ’|E->- |, 'l]
E‘,—D:ﬂhnalug Output

= HEE
By W W Al

EQIL [3 EHDU »

There are four classes of Analog Output VIs found inAihalog Output
palette: the Easy Analog Output Vls, Intermediate Analog Output Vs,
Analog Output Utility VIs, and the Advanced Analog Output Vls.

The following illustrates these VI classes.

EEQ Analog Dutput §

AN AN AN AN E Anal
HULT FT || HULT FT || OME FT || OME FT ' asy Analog
iy w [e)
+ + : utput ViIs
:T:'i':ll :T:'i':ll -\;'ﬂ -\;'ﬂ P

Al Al Al Al
COHFIG| | "'RITE || ETART WHIE_:.
B, | | B, | | B, | | B0,

UTIL k Anl k
E'hj E'hj Advanced

\ < Analog Output VIs

Analog Output Utility VIs

AN
CLEAR Intermediate
B |1 Analog Output Vls

LabVIEW Function and VI Reference Manual 14-6 © MNational Instruments Corporation

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

Easy Analog Output Vis

The Easy Analog Output VIs perform simple analog output operations.
You can run these Vls from the front panel or use them as subVIs in basic
applications.

You can use each VI by itself to perform a basic analog output operation.
Unlike intermediate- and advanced-level VIs, Easy Analog Output VIs
automatically alert you to errors with a dialog box that asks you to stop the
execution of the VI or to ignore the error.

The Easy Analog Output VIs provide a basic, convenient interface with
only the most commonly used inputs and outputs. For more complex
applications, you should use the Intermediate Analog Output VIs and
Advanced Analog Output VIs for more functionality and performance.

Refer to Chapter 1€asy Analog Output Vigor specific VI information.

Intermediate Analog Output Vis

You can find intermediate-level Analog Output VIs in two different places

in the Analog Output palette. You can find the Intermediate Analog

Output Vls in the second row of tWealog Output palette. The other
intermediate-level Vis are in tiaalog Output Utilities palette, which is
discussed later. The Intermediate Analog Output VIs—AO Config, AO
Write, AO Start, AO Wait, and AO Clear—are in turn built from the
fundamental building block layer, called the Advanced Analog Output VIs.
These VIs offer almost as much power as the advanced-level Vis, and they
conveniently group the advanced-level Vis into a tidy, logical sequence.

Refer to Chapter 20ntermediate Analog Output \Ifor specific
VI information.

Analog Output Utility Vis

You can access thnalog Output Utilities palette by choosing the

E"g"-. Analog Output Utility icon from theAnalog Output palette. The Analog
Output Utility VIs—AI Read One Scan, Al Waveform Scan, and Al
Analog Output Continuous Scan—are single-VI solutions to common analog output
Utility Icon problems. These VIs are convenient, but they lack flexibility. These three

VIs are built from the Intermediate Analog Output VIs in Amalog
Output palette.

Refer to Chapter 23nalog Output Utility Visfor specific VI information.

© National Instruments Corporation 14-7 LabVIEW Function and VI Reference Manual

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

Advanced Analog Output Vis

EPHDU I

Advanced Analog
Output Icon

You can access thedvanced Analog Outputpalette by choosing the
Advanced Analog Outputicon from theAnalog Output palette. These

Vls are the interface to the NI-DAQ software and are the foundation of the
Easy, Utility, and Intermediate Analog Output VIs.

Because all these VIs rely on the advanced-level VIs, you can refer to
Chapter 22Advanced Analog Output Vfer additional information on the
inputs and outputs and how they work.

Locating Analog Output VI Examples

For examples of how to use the analog output VIs, see the examples in
examples\dag\anlogout\anlogout.llb

Digital Function Vis

These VIs perform digital operations.

The Digital 1/0 Vs can be found by choosiRgnctions»Data
Acquisition»Digital 1/0 . When you click on the Digital I/0 icon in the
Data Acquisition palette, thdigital I/O palette pops up, as shown in the
following illustration.

EE D ata Acquisition |

Digital 1/0
Ep e EER
L «~—Digital 1/0
£

[+ IIG vic |[0Ic 1IG
Lire || roRT [[LImE || rORT

| [| = | =i
] o1 |[oIo_ |[oio T

CONFIG|| READ ||“'RITE || =TART WHIE)
e || i (2B | B | aeem | | B

=

=
Ll
Ll

rIig RO
clear || B Ehe ’
S| [

There are three classes of Digital /0O Vls found inRiggtal I/O palette.
The Easy Digital /0 Vls, Intermediate Digital /0 Vs, and Advanced
Digital I/O Vls. The following illustrates these VI classes.

LabVIEW Function and VI Reference Manual 14-8 © MNational Instruments Corporation

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

tine | okt || CIve || Pinr |
conric| | READ | [whiTe || STakr || whiT Intermediate
a3 | | i 3| | B | annee | | B & — Digital 110 Vis
cLenr ||t

|| e

Easy Digital /0 VIs

< Advanced
Digital I/0 VIs

Easy Digital 1/0 Vls

The Easy Digital /0 VIs perform simple digital operations. You can run
these Vls from the front panel or use them as subVIs in basic applications.

You can use each VI by itself to perform a basic digital operation. Unlike
intermediate- and advanced-level VIs, Easy Digital I/0 VIs automatically
alert you to errors with a dialog box that asks you to stop the execution of

the VI or to ignore the error.

The Easy Digital I/O VIs are actually composed of Advanced Digital /0
VIs. The Easy Digital /0O Vls provide a basic, convenient interface with
only the most commonly used inputs and outputs. For more complex
applications, you should use the intermediate- or advanced-level Vis for

more functionality and performance.

Refer to Chapter 2Easy Digital I/0O Visfor specific VI information.

Intermediate Digital 1/0 Vis
You can find intermediate-level Digital I/O Vls in the second and third
rows of theDigital I/O palette. The Intermediate Digital /O VIs are in turn
built from the fundamental building block layer, called the Advanced
Digital I1/0O VIs. These VIs offer almost as much power as the
advanced-level VIs, and they conveniently group the advanced-level
VIs into a tidy, logical sequence.

Refer to Chapter 24ntermediate Digital 1/0O Vlsfor specific
VI information.

© MNational Instruments Corporation 14-9 LabVIEW Function and VI Reference Manual

Chapter 14 Introduction to the LabVIEW Data Acquisition VIs

Advanced Digital 1/0 Vls

T
e,
N

Advanced Digital
1/0O Icon

You can access thedvanced Digital I/O palette by choosing the
Advanced Digital I/O icon from theDigital I/O palette. These VIs are the

interface to the NI-DAQ software and are the foundation of the Easy,
Utility, and Intermediate Digital 1/0 VIs.

Because all these VIs rely on the advanced-level VIs, you can refer to
Chapter 25Advanced Digital 1/0 Visfor additional information on the
inputs and outputs and how they work.

Locating Digital 1/0 VI Examples

For examples of how to use the Digital I/O VIs, see the examples in
examples\daq\digital\digio.llb

Counter Vis
These VIs perform counting operations.
The Counter VIs can be found by choosigctions»Data
Acquisition»Counter. When you click on th€ounter icon in the
Data Acquisition palette, theCounter palette pops up, as shown in the
following illustration.
= Data Acquisition |
Counter
|:'Z'J'LI'L o—1H] Counter
E'.- W
Fize] |l 7R [PULEE -'}Hkﬁﬁ FRE | e
134 £ IT'T e e Feein
EET v gn::u »
LabVIEW Function and VI Reference Manual 14-10

© National Instruments Corporation

Easy Counter Vs

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

There are three classes of Counter VIs found irCihnter palette: the
Easy, Intermediate, and Advanced Counter VIs. The following illustrates
these VI classes.

HE—aa
PULSE| | FULSE || FREQ ||
) TRAIN | | 1258 FULSE |«@——— Easy Counter Vis
Id u +1 H.,-"; Hl'l__,l'tu IPEEIDIJ
E'IEIH .IEI,::"' g < Advanced
\ Counter Vis

Intermediate Counter Vis

The Easy Counter VIs perform simple counting operations. You can run
these VIs from the front panel or use them as subViIs in basic applications.

You can use each VI by itself to perform a basic counting operation. Unlike
intermediate- and advanced-level VIs, Easy Counter VIs automatically
alert you to errors with a dialog box that asks you to stop the execution of
the VI or to ignore the error.

The Easy Counter VIs are actually composed of Intermediate Counter VIs,
which are in turn composed of Advanced Counter VIs. The Easy Counter
Vs provide a basic, convenient interface with only the most commonly
used inputs and outputs. For more complex applications, you should use the
intermediate- or advanced-level Vs for more functionality and
performance.

Refer to Chapter 2@&asy Counter Vidor specific VI information.

Intermediate Counter Input Vis

EIHT]
"u
[@nn

Intermediate
Counter VI Icon

You can find the Intermediate Counter VIs in the second row of the
Counter palette. The Intermediate Counter VIs are in turn built from the
fundamental building block layer, called the Advanced Counter VIs. These
VIs offer almost as much power as the advanced-level Vls, and they
conveniently group the advanced-level Vis into a tidy, logical sequence.

Refer to Chapter 2Tntermediate Counter V]$or specific VI information.

© MNational Instruments Corporation 14-11 LabVIEW Function and VI Reference Manual

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

Advanced Counter Vis

= A0)
"

Advanced
Counter VI Icon

You can access thvanced Counterpalette by choosing thdvanced
Counter icon from theCounter palette. These Vls are the interface to the
NI-DAQ software and are the foundation of the Easy and Intermediate
Counter Vis.

Because all these VIs rely on the advanced-level VIs, you can refer to
Chapter 28Advanced Counter Vjfor additional information on the inputs
and outputs and how they work.

Locating Counter VI Examples

For examples of how to use the Counter Vls, open the example libraries by
openingexamples\dag\counter\DAQ-STC.llb ,
examples\dag\counter\am9513.IIb , and

examples\daqg\counter\8253.1lb

Calibration and Configuration Vls

These VIs calibrate specific devices and set and return configuration
information.

See Chapter 2% alibration and Configuration Vidor information on
locating these Vs and examples.

Signal Conditioning Vls

These VIs convert analog input voltages read from resistance temperature
detectors (RTDs), strain gauges, or thermocouples into units of strain or
temperature.

See Chapter 3@&ignal Conditioning Vigfor information on locating these
VIs and examples.

LabVIEW Function and VI Reference Manual 14-12 © MNational Instruments Corporation

Easy Analog Input Vis

This chapter describes the Easy Analog Input Vs, which perform simple

analog input operations. You can run these VIs from the front panel or use
them as subVIs in basic applications.

You can access the Easy Analog Input VIs by chodsingtions»Data
Acquisition»Analog Input. The Easy Analog Input VIs are the VIs on the
top row of theAnalog Input palette, as shown below.

[I:I Analog Input i

HUS’IPT nl.u?lpr IJME“PT uM?PT -] — Easy Analog Input Vis
neB| e e 8| RS

I:D?“IFIG ETART REIIZIEI ssnl:lnn CLEAR

ot | Dbt |] | P | By

EMTIL gn:gu]

Easy Analog Input VI Descriptions

The following Easy Analog Input Vis are available.

Al Acquire Waveform

Acquires a specified number of samples at a specified sample rate from a single input channel
and returns the acquired data.

device e wavefarm
: cf;annel I[D] "J_I— B actual zample period [zec]
nurmber af zamples — [=

zample rate (1000 samples/sec]
high lirmit [0.10]
Iz Tireit [0.10)

© MNational Instruments Corporation 15-1 LabVIEW Function and VI Reference Manual

Chapter 15 Easy Analog Input Vis

The Al Acquire Waveform VI performs a hardware-timed measurement of a waveform
(multiple voltage readings at a specified sampling rate) on a single analog input channel.
If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

Refer to Appendix BDAQ Hardware Capabilitiesfor the channel numbers and input limits
available with your DAQ device.

Al Acquire Waveforms
Acquires data from the specified channels and samples the channels at the specified scan rate.

device — A waveforms
channels (0) NPT oy can
number of samplesfch T8l “period (sec)

scan rate (1000 scansfsec) -
high Tirnit (0.0 —
Tow Tirmit (000

The Al Acquire Waveforms VI performs a timed measurement of multiple waveforms on the
specified analog input channels. If an error occurs, a dialog box appears, giving you the option
to abort the operation or continue execution.

Refer to Appendix BDAQ Hardware Capabilitiesfor the channel numbers and input limits
available with your DAQ device.

Al Sample Channel
Measures the signal attached to the specified channel and returns the measured value.
device Al
channel (0]~ ,i"f sample
igh limit [0.0] f !
e lirnit [0.100)

The Al Sample Channel VI performs a single, untimed measurement of a channel. If an error
occurs, a dialog box appears giving you the option to stop the VI or continue.

Refer to Appendix BDAQ Hardware Capabilitiesfor the channel numbers and input limits
available with your DAQ device.

LabVIEW Function and VI Reference Manual 15-2 © MNational Instruments Corporation

Chapter 15 Easy Analog Input Vis

Al Sample Channels

Performs a single reading from each of the specified channels.

Al
ME

FT
ZE,. zamples

device
channels (0] -F

igh lirnit [0.0]
o i (0.0] —I

A

The Al Sample Channels VI measures a single value from each of the specified analog input

channels. If an error occurs, a dialog box appears, giving you the option to stop the VI or
continue.

Refer to Appendix BDAQ Hardware Capabilitiesfor the channel numbers and input limits
available with your DAQ device.

© MNational Instruments Corporation 15-3 LabVIEW Function and VI Reference Manual

Intermediate Analog Input Vis

This chapter describes the Intermediate Analog Input VlIs. These Vis are
convenient, but they lack flexibility.

You can access the Intermediate Analog Input VIs by choosing
Functions»Data Acquisition»Analog Input The Intermediate Analog
Input VIs are the VIs on the second row of #m@log Input palette, as
shown below.

EQ Analog Input i

Al Al Al Al
HULT FT || HULTFT || OME FT || OME

Intermediate
Analog Input Vis

Handling Errors

LabVIEW makes error handling easy with the Intermediate Analog Input
VIs. Each intermediate-level VI has arror in input cluster and a@rror

out output cluster. The clusters contain a Boolean that indicates whether an
error occurred, the error code for the error, and the name of the VI that
returned the error. Error in indicates an error, the VI returns the error
information inerror out and does not continue to run.

Note The Al Clear VI is an exception to this rule—this VI always clears the acquisition
regardless of whether error in indicates an error.

© MNational Instruments Corporation 16-1 LabVIEW Function and VI Reference Manual

Chapter 16 Intermediate Analog Input VIs

When you use any of the Intermediate Analog Input VIs in a While Loop,
you should stop the loop if tlatusin theerror out cluster reads TRUE.

If you wire the error cluster to the General Error Handler VI, the VI
deciphers the error information and describes the error to you.

The General Error Handler VI is Functions»Time and Dialogin
LabVIEW.

Intermediate Analog Input VI Descriptions

The following Intermediate Analog Input Vs are available.

Al Clear

Clears the analog input task associated veighID in.

tazklD in LR tazkID out
error in [no error) SenEl error out

The Al Clear VI stops an acquisition associated wigkID in and release associated internal
resources, including buffers. Before beginning a new acquisition, you must call the Al Config
VI. Refer to Chapter 18\dvanced Analog Input V/Ifor description of the Al Control VI.

(& Note The Al Clear VI always clears the acquisition regardless of whetbgor in
indicates that an error occurred.

When you use any of the Intermediate Analog Input Vis in a While Loop, you should stop the
loop if thestatusin theerror out cluster reads TRUE. If you wire the error cluster to the

General Error Handler VI, the VI deciphers the error information and describes the error
to you.

The General Error Handler VI is Functions»Time and Dialogin LabVIEW. For more
information on this VI, refer to Chapter IDime, Dialog, and Error Functions

Al Config

Configures an analog input operation for a specified set of channels. This VI configures the
hardware and allocates a buffer for a buffered analog input operation.

LabVIEW Function and VI Reference Manual 16-2 © MNational Instruments Corporation

Chapter 16 Intermediate Analog Input Vis

interchannel delay [zecs] [

measurement mode struchure smmm:

coupling & input config [no..
ifpuk limitz [rio change

device 1] e askiD
channels [0] =8 o = L riurnber of channels
buffer size (1000 scanz) J_ A “{-l: DSF handle structure out
[growp] (0] error aut

2rrar in [ho ermar]

[nurmber of buffers] 1]
allacation made [no change: 0]
[Fumber of Ak boards] [no...

You can allocate more than one buffer only with the following devices.
* (Macintosh) NB-A2000, NB-A2100, and NB-A2150

Refer to Appendix BDAQ Hardware Capabilitiesfor the channel ranges, input limits, and
scanning order you can use with your National Instruments DAQ device.

Al Read

Reads data from a buffered data acquisition.

zcan backlog
conditional retriesal [off] 7| | number read
tazklD in Al tazklD out
number of scans toread [-1... _IJ_ el = zraled data

tirme lirmit in 220 (Mo chang... — | petesss binany data
output units [zcaled: 1) e retrigveal complete
error in [no emor| error out

read/zearch pozition [from ... e
DSP handle stouckne s

The Al Read VI calls the Al Buffer Read VI to read data from a buffered analog input
acquisition.

Al Single Scan

Returns one scan of data from a previously configured group of channels.

data remaining

tasklD in Al tasklD out
opcode = -SCA L xoabed data

tire limit in sec [no change:-1 —l_. A ._I— birary data
sutput units ([acaledﬂ}—l_ﬂ —I—H

1 acquisition state
eror in [no error error out

© MNational Instruments Corporation 16-3 LabVIEW Function and VI Reference Manual

Chapter 16

Intermediate Analog Input Vis

If you have already started an acquisition with the Al Start VI, this VI reads one scan from
the acquisition buffer data, or the onboard FIFO if the acquisition is not buffered. If you have
not started an acquisition, this VI starts an acquisition, retrieves a scan of data, and then
terminates the acquisition. The group configuration determines the channels the VI samples.

If you do not call the Al Start VI, this VI initiates a single scan using the fastest safe channel
clock rate. You can alter the channel clock rate with the Al Config VI.

If you run the Al Start VI, a clock signal initiates the scans.

You must use the Al Start VI to set the clock source to external, for externally-clocked
conversions.

If clock sources are internal and you do not allocate memory, a timed nonbuffered acquisition
begins when you run the Al Start VI. You use this type of acquisition for synchronizing analog
inputs and outputs in a point-to-point control application. The following devices do not
support timed, nonbuffered acquisitions.

* (Macintosh) NB-A2000, NB-A2100, and NB-A2150

Note LabVIEW restarts the device in the event of a FIFO overflow during a timed,

nonbuffered acquisition.

When you sebpcodeto 1 for a nonbuffered acquisition, the VI reads one scan from the FIFO
and returns the data.dpcodeis 2, the VI reads the FIFO until it is empty and returns the last
scan read.

Al Start

Starts a buffered analog input operation. This VI sets the scan rate, the number of scans to
acquire, and the trigger conditions. The VI then starts an acquisition.

edge or zlope [ho change]
pretrigger scans [0]
triqger type [fio trig:0] —
tazklD in TR tasklD out

rumber of scans to acquire . . L actual scan rate
gcan rate [1000 scans/zec) J_ e % actual trigoer paramsz
rumber of buffers to acquir... E error out

ermar in [ho errar)

zan clock zource [ho chang...
analog chan [-] & level [[0.0] seeeeeeeeee
[additianal trig parammsz]

Refer to Appendix BDAQ Hardware Capabilitiesfor the channel ranges, input limits,
scanning order, triggers, and clocks you can use with your National Instruments DAQ device.

LabVIEW Function and VI Reference Manual 16-4 © MNational Instruments Corporation

Analog Input Utility Vis

This chapter describes the Analog Input Utility VIs. These VIs—Al Read
One Scan, Al Waveform Scan, and Al Continuous Scan—are single-VI
solutions to common analog input problems. The Analog Input Utility VIs
are intermediate-level Vls, so they rely on the advanced-level Vis. You can
refer to Chapter 1&dvanced Analog Input VjIfor additional information

on the inputs and outputs and how they work.

You can access thnalog Input Utilities palette by choosing
Functions»Data Acquisition»Analog Input»Analog Input Utilities . The
icon that you must select to access the Analog Input Utility Vs is on the
bottom row of theAnalog Input palette, as shown below.

Analog Input Utility VIs

© MNational Instruments Corporation 17-1 LabVIEW Function and VI Reference Manual

Chapter 17 Analog Input Utility VIs

Handling Errors

LabVIEW makes error handling easy with the intermediate-level Analog
Input Utility VIs. Each intermediate-level VI has arror in input cluster
and arerror out output cluster. The clusters contain a Boolean that
indicates whether an error occurred, the error code for the error, and the
name of the VI that returned the erroretfor in indicates an error, the VI
returns the error information Error out and does not continue to run.

When you use any of the Analog Input Utility VIs in a While Loop, you
should stop the loop if thetatusin theerror out cluster reads TRUE.

If you wire the error cluster to the General Error Handler VI, the VI
deciphers the error information and describes the error to you.

The General Error Handler VI is Functions»Time and Dialogin
LabVIEW. For more information on this VI, refer to Chapter 10,
Time, Dialog, and Error Functions

Analog Input Utility VI Descriptions

The following VIs are available through the Analog Input Utility subpalette.

Al Continuous Scan
Makes continuous, time-sampled measurements of a group of channels, stores the data in a
circular buffer, and returns a specified number of scan measurements on each call.

buffer gize (1000 zzans)
coupling & input config (o,
input limitz [no change] =
device [1] L - zaled data

channels [0] =4 . rumber read
J_' """ ; =) _l— zan backlog

nurmber of scans ta read [300]

zan rate (1000 scanzdzec) E actual zcan period [zec)

error in [no eror) error out

iteration [init: 0] :
I3|E-E|r auniSitiDn [T] H
[nurnber of Ak boardz] [no...

m The Al Continuous Scan VI scans a group of channels indefinitely, as you
might do in data logging applications. Place the VI in a While Loop and

fteration wire the loop’s iteration terminal to the \tération input.

terminal

LabVIEW Function and VI Reference Manual 17-2 © MNational Instruments Corporation

Chapter 17 Analog Input Utility VIs

Also wire the condition that terminates the loop todlear acquisitioninput, inverting the

signal if necessary so that it reads TRUE on the last iteration. On iteration 0, the VI calls the
Al Config VI to configure the channel group and hardware and allocates a data buffer; the VI
calls the Al Start VI to set the scan rate and start the acquisition. On each iteration, the VI
calls the Al Read VI to retrieve the number of measurements specifiaahidyer of scans

to read, scales them, and returns the data as an array of scaled values. On the last iteration
(whenclear acquisitionis TRUE) or if an error occurs, the VI calls the Al Clear VI to clear
any acquisition in progress. You should not need to call the Al Continuous Scan VI outside
of a loop, but if you do, you can leave tteration andclear acquisition inputs unwired.

When calling the Al Continuous Scan VI in a loop to read portions of the data from the
ongoing acquisition, you must read the data fast enough so that newly acquired data does
not overwrite it. Thescan backlogoutput tells you how much data acquired by the VI, but
remains unread. If the backlog increases steadily, your new data may eventually overwrite old
data. Retrieve data more often, or adjustiier size, thescan rate or thenumber of

scans to reado fix this problem

Refer to Appendix BDAQ Hardware Capabilitiesfor the channel ranges, input limits, and
scanning order you can use with your National Instruments DAQ device.

Al Read One Scan

Measures the signals on the specified channels and returns the measurements in an array of
scaled or binary values.

coupling & input config (no change :0
input limits {no change)

b qlevtiﬁi '1 LFIH‘ scakbddata
channels - .
autput units {zcaled: 1) ’ binary data

- =
error 1 \no error) : —==error out

iteration (init:0)
[rurnber of &MMUE boards] (00

m The Al Read One Scan VI performs an immediate measurement of a group

of one or more channels. If you place the VI in a loop to take multiple
measurements from a group of channels, wire the loop iteration terminal to
the Vliteration parameter.

iteration
terminal

On iteration 0, this VI calls the Al Config VI to configure the channel group and hardware,
then calls the Al Single Scan VI to measure and report the results. On subsequent iterations,
the VI avoids unnecessary configuration and calls only the Al Single Scan VI. If you call the
Al Read One Scan VI once to take a single measurement from the group of channels, the
iteration parameter can remain unwired.

Refer to Appendix BDAQ Hardware Capabilitiesfor the channel ranges, input limits, and
scanning order available with your DAQ device.

© MNational Instruments Corporation 17-3 LabVIEW Function and VI Reference Manual

Chapter 17 Analog Input Utility VIs

Al Waveform Scan

Acquires the specified number of scans at the specified scan rate and returns all the data
acquired. You can trigger the acquisition.

time limit in sec [compute...

trigoer and clack (no trig, ... oo

caupling & nput config (no. .. e
input Tirnils (o change)

derice FT E
chamnels (0) & WHYE scaled data

punber of scans J— e artual soan period (sec)
scan rate (1000 scans fsec) ﬂ error out

+

error in (so error)
iteration (init:0)

tlear acquisition (Yes T) -
[rurrber of AMUE boards] (...

m The Al Waveform Scan VI acquires a specified number of scans from a

channel group at a specified scan rate. If you place this VI in a loop to take
multiple acquisitions from the same group of channels, wire the iteration
terminal of the loop to the Miteration input.

iteration
terminal

Also wire the condition that terminates the loop to thelear acquisitioninput, inverting

the signal if necessary so that it reads TRUE on the last iteration. On iteration zero, this VI
calls the Al Config VI to configure the channel group and hardware and allocate a data buffer.
On each iteration, this VI calls the Al Start and Al Read VIs. The Al Start VI sets the scan
rate and trigger conditions and starts the acquisition. The VI stores the measurements in the
buffer as they are acquired, and the Al Read VI retrieves them from the buffer, scales them,
and returns all the data as an array of scaled values. On the last iteratiocl@ainen

acquisition is TRUE) or if an error occurs, the VI also calls the Al Clear VI to clear the
acquisition in progress. If you call the Al Waveform Scan VI only once, you can leave
iteration andclear acquisition unwired.

Refer to Appendix BDAQ Hardware Capabilitiesfor the channel ranges, input limits,
scanning order, triggers, and clocks you can use with your National Instruments DAQ device.

Note These VIs use an uninitialized shift register as local memory to remember the
taskID for the group of channels between VI calls. You normally use one VI in one
place on your diagram, but if you use it more than once, the multiple instances of
the VI share the same tasklID. All calls to one of these Vls configure, read data
from, or clear the same acquisition. Occasionally you may want to use each Vlin
multiple places and have each instance refer to a different taskiD (for example,
when you measure two devices simultaneously). Save a copy of the VI with a new
name (for example, Al Waveform Scan R) and make your new VI reentrant.

LabVIEW Function and VI Reference Manual 17-4 © MNational Instruments Corporation

Chapter 17 Analog Input Utility VIs

= Note For all Analog Input Utility Vls, if your program iterates more than®2 — 1times,
do not wire thdteration input to the loop iteration terminal. Instead, sié¢ration
to 0 on the first loop, then to any positive value on all other iterations. The VI

reconfigures and restarts if iteratiog0.

© MNational Instruments Corporation 17-5 LabVIEW Function and VI Reference Manual

Advanced Analog Input Vis

This chapter contains reference descriptions of the Advanced Analog Input
VIs. These Vis are the interface to the NI-DAQ software and are the
foundation of the Easy, Utility and Intermediate Analog Input Vis.

You can access thedvanced Analog Input palette by choosing
Functions»Data Acquisition»Analog Input»Advanced Analog Input

The icon that you must select to access the Advanced Analog Input VIs is
on the bottom row of thAnalog Input palette, as shown below.

EO Analog Input

Rl Al |
HULT FT || HULTFT || OME FT || OME FT

o | N ITECTY e | B ETTECTY e | N ETTCTY e | B ETTIE) 1
EUTILE [A0 P Advanced
‘ < Analog Input Vis

Advanced Analog Input VI Descriptions
The following Advanced Analog Input VIs are available.

Al Buffer Config

Allocates memory for LabVIEW to store analog input data until the Al Buffer Read VI can
deliver it to you. LabVIEW refers to the buffer(s) allocated by the Al Buffer Config VI as
internal buffers because you do not have direct access to them.

task ID Config task ID out
scans per buffer (—1:no ch.__ "‘:‘_',, DSP rermory handle out
[nurnber of buffers 1 (-1:... — e =

error out
error in (no error)

allacation mode (0: no change)
'SP mernory handle (00

© MNational Instruments Corporation 18-1 LabVIEW Function and VI Reference Manual

Chapter 18

14 Note

Advanced Analog Input VIs

When you run the Al Control VI with control code set #o(clear), the VI performs

the equivalent of running the Al Buffer Config VI with allocation mode set to
That is, both Vs deallocate the internal analog input data buffers. However,
acquisitions that use DSP or expansion card memory are an exception. The Al
Control VI does not deallocate DSP memory when clearing an acquisition. You
must explicitly call the Al Buffer Config VI to deallocate DSP acquisition buffers.

Table 18-1 lists default settings and ranges for the Al Buffer Config VI. The first row gives
the values for most devices, and the other rows give the values for devices that are exceptions

to the rule.
Table 18-1. Al Buffer Config VI Device-Specific Settings and Ranges
Scans per Buffer | Number of Buffers | Allocation Mode
Default Default Default
Device Setting | Range | Setting | Range | Setting | Range
Most Devices 100 0,n=3 1 0,1 2 1,2
Lab-NB 100 n=3 1 0,1 2 1,2
Lab-LC
NB-A2000 100 n=0 1 n=0 2 1,2
NB-A2100
NB-A2150
5102 Devices 100 n=3 1 1 2 1,2

Al Buffer Read

Returns analog input data from the internal data buffer(s).

conditional retrieval specification (aff)

task ID
number to read —]
read fsearch lacation (no change) od]
autput type (zcaled i1)
error in {no error)

tirne Tirmit (no change)
read specification (no change)

rmark locations
acquisition state

task ID out
Rea nurnber read
_I—"‘-{ scaked data
E binary data
| | error out

scan backlog

Note

When the VI reads from the trigger mark, it does not return data until the

acquisition completes for the buffer containing the trigger.

LabVIEW Function and VI Reference Manual 18-2

© National Instruments Corporation

Chapter 18 Advanced Analog Input Vs

Al Clock Config

Sets the channel and scan clock rates.

[configuration made]
[Fetrigger mode]

tazk ID k tazk ID out
which clock ———]%onT g oy B aitual clock rate specification
clock frequency — 1™ ol
error in (no error ‘B
clock sourge oo |
[alternate clock rate specification | s i

error out

Refer to Appendix BDAQ Hardware Capabilitiesfor the clocks available with your
DAQ device.

For devices that have only a channel clock (Lab-LC, Lab-NB, NB-MIO-16, Lab-PC+,
PCI-1200, PC-LPM-16, DAQCard-500, DAQCard-700, and DAQCard-1200), you cannot

set independent channel and scan clock rates. Setting one resets the other because the channe
rate equals scan rate/number of channels to scan.

For devices that have no channel clock (NB-A2000, NB-A2100, and NB-A2150), setting the
channel clock produces an error.

If you specify a value dd for the scan clock rate, interval scanning turns off, and channel
scanning (or round-robin scanning) proceeds at the channel clock rate. This option is
meaningful only for devices with independent channel and scan clocks.

The clock rate is the rate at which LabVIEW samples data or acquires scans. You can express
the clock rate three ways—witthock frequency, with clock period, or withtimebase

source timebase signal andtimebase divisor The VI searches these parameters in that

order and sets the clock rate using the first one with a value not egual to

© MNational Instruments Corporation 18-3 LabVIEW Function and VI Reference Manual

Chapter 18 Advanced Analog Input VIs

Table 18-2 lists default settings and ranges for the controls of the Al Clock Config VI.

Table 18-2. Device-Specific Settings and Ranges for Controls in the Al Clock Config VI

Configuration Retrigger
Mode Mode Which Clock Clock Source
Default Default | Default Default
Device Setting | Range | Setting | Setting | Range | Setting | Range
AT-MIO-16E1 1 1,3 no 1 1,2 1 1,2
AT-MIO-16E-2 support 4<n<1l
AT-MIO-64E-1
NEC-MIO-16E-4
PCI-MIO-16E-1
PCI-MIO-16E-4
PCI-MIO-16XE-10
PCI-6110E 1 1,3 no 1 1 1 1,2
PCI-6111E support 4=n<11
AT-MIO-16E-10 1 1,3 no 1 1,2 1 1,2
AT-MIO-16DE-10 support 4<n<9
AT-MIO-16XE-50
PCI-MIO-16XE-50
NB-A2150 1 1,3 no 1 1 1 1<n<3
NB-A2100 support
NB-A2000
DSA Devices 1 1,3 no 1 1 1 1
support
PC-LPM-16 1 1,3 no 1 1,2 1 1,2
DAQCard-500 support
DAQCard-516
DAQCard-700
Lab-PC
Lab-LC 1 1,3 no 1 2 1 1,2
Lab-NB support
NB-MIO-16
5102 1 1,3 no 1 1 1 1,6
support

LabVIEW Function and VI Reference Manual 18-4 © MNational Instruments Corporation

Chapter 18 Advanced Analog Input Vs

Table 18-2. Device-Specific Settings and Ranges for Controls in the Al Glock Config VI (Continued)

Configuration Retrigger
Mode Mode Which Clock Clock Source
Default Default | Default Default

Device Setting | Range Setting Setting | Range | Setting | Range

5911, 5912 1 1,3 no 1 1,2 1 1<n<3
support

All Other Devices 1 1,3 no 1 1,2 1 1<n<3
support

Al Control

Controls the analog input tasks and specifies the amount of data to acquire.

Cantrl} task ID out
"
T error out

Note

= Note

rinirurn pretrigger scans to acquire

task ID

control code

total scans to acquire
error in (no error)
[number of buffers to acquire]

You cannot use this VI to start an acquisition when you use a PC-LPM-16,
DAQCard-500, or a DAQCard-700 device to scan multiple SCXI channels in

multiplexed mode. For this special case, you must use the Al SingleScan VI to

acquire data. (For more information about the Al SingleScan VI, refer to

its description in this chapter.) However, you can use the Al Control VI for a Lab
and 1200 Series device, PC-LPM-16, DAQCard-500, or DAQCard-700 device
when you scan SCXI channels in parallel mode or sample a single SCXI channel

in multiplexed mode. You can use this VI for an MIO device scanning

SCXI channels in either mode.

Nonbuffered acquisitions are not supported for the following devices.

e (Macintosh) NB-A2000
e (Macintosh) NB-A2100
¢ (Macintosh) NB-A2150

© MNational Instruments Corporation 18-5

LabVIEW Function and VI Reference Manual

Chapter 18 Advanced Analog Input VIs

Table 18-3 lists default settings and ranges for the Al Control VI.

Table 18-3. Device-Specific Settings and Ranges for the Al Control VI

Minimum Number of
Control Total Scans Pretrigger Buffers to
Code to Acquire Scans to Acquire Acquire
Device DS* R* DS* R* DS* R* DS* R*
NB-A2000 0 0,1,4 0 0,n=0 0 0,n=3 1 n=0
NB-A2150
PC-LPM-16 0 0,1,4 0 0,n=3 0 no 1 1
DAQCard-500 support
DAQCard-700
MIO-E Series 0 0,1,4 0 0,n=3 0 0,n=3 1 1
5102 Devices 0 0,1,4 0 n=0 0 n=0 1 1
5911, 5912 0 0,4 0 n=1 0 n=0 1 1
All Other 0 0,1,4 0 0,n=3 0 n=0 1 1
Devices

* DS = Default Setting; R = Range

Al Group Config

Defines what channels belong to a group and assigns them.

dewice ll:Sro;_.up task ID
[group (0] g :scan width
channel scan list Cempty) ﬁ A error out
error in (no error)

Refer to Appendix BDAQ Hardware Capabilitiefor the channel ranges and scanning order
available with your DAQ device.

Table 18-4 lists default settings and ranges for the Al Group Config VI. The first row of the
table gives the values for most devices, and the other rows give the values for devices that are
exceptions to the rule.

LabVIEW Function and VI Reference Manual 18-6 © MNational Instruments Corporation

Chapter 18 Advanced Analog Input Vs

Table 18-4. Device-Specific Settings and Ranges for the Al Group Config VI

Group Channel Scan List
Default Default

Device Setting Range Setting Range
Most Windows Devices 0 0<n<15 all channels 0<n<15
Most Macintosh Devices 0 0<n<15 all channels 0<n<15
AT-MIO-64F-5 0 O<n<15 all channels 0sn<63
AT-MIO-64E-1*
Lab-PC+, PCI-1200, 0 0<n<15 all channels O<n<7
DAQCard-1200
Lab-LC, Lab-NB 0 0<n<15 all channels O<n<7
NB-A2000, NB-A2150 0 0<n<15 all channels 0<n<3
NB-A2100 0 0<n<15 all channels 0,1
5102 Devices 0 O<n<15 all channels 0,1
PCI-4452, PCI-4451 0 O<n<15 all channels 0,1
PCI-4452, PCI-4552 0 0<n<15 all channels 0<n<3

* The valid channels for the AT-MIO-64E-1 in Differential Mode are 0-7, 16-23, 34-39, 48-55.

Note The Lab-LC, Lab-NB, Lab-PC+, PCI-1200, PC-LPM-16, DAQCard-500,
DAQCard-700, and DAQCard-1200 must scan channel lists containing multiple
channels from channeh (n = 0) to channel 0 in sequential order, including
all channels betweem and 0. The NB-A2000, NB-A2150, EISA-A2000, and
AT-A2150 allow only the following scan lists: (0), (1), (2), (3), (0, 1), (2, 3), and (O,
1, 2, 3). The NB-A2100 allows the following scan lists: (0), (1), (0, 1), and (1, 0).

The channel scan list range shown above is for single-ended mode. Please refer to
Appendix B, DAQ Hardware Capabilities, to determine the valid range for
channels in differential mode.

SCXI modules in multiplexed mode must scan channels in ascending consecutive order,
starting from any channel on the module. The module order you specify can be arbitrary.
SCXI modules in parallel mode must follow the DAQ device restrictions on the order of
channel scan lists. Refer to tibannel, Port, and Counter Addressiegtion of Chapter 3,
Basic LabVIEW Data Acquisition Concepits theLabVIEW Data Acquisition Basics
Manualfor information about SCXI channel string syntax.

© MNational Instruments Corporation 18-7 LabVIEW Function and VI Reference Manual

Chapter 18 Advanced Analog Input VIs

Al Hardware Config
Configures either the upper and lower input limits or the range, polarity, and gain.
The Al Hardware Config VI also configures the coupling, input mode, and number of
AMUX-64T devices. The configuration utility determines the default settings for the
parameters of this VI.

[murnber of Ak U [ho change] | —
task |0 Hr dur tazk 1D out
channel list [empty] of E‘:'\':'.-E Egruup channel zettings

irput limitz(no change]% ermar oLt
error in [no emor)

[alternate input limits ze. . Seeseese

[channel input configurati,,, seeeeeeeeeoee

You can use this VI to retrieve the current settings by widsglD only or by wiring both
taskiD andchannel list If channel listis empty, the VI configures channels opes group

basis This means that the configuration applies to all the channels in the group. When you
specify one or more channelsdhannel list, the VI configures channels orpar channel

basis This means that the configuration applies only to the channels you specify. This VI
always returns the current settings for the entire group.

When the configuration is on a per channel basiannel listcan contain one or more

channels. The channelsdhannel listmust belong to the group namedthgkiD. You

specify channels the same way you specify them for the Al Group Config VI. If you

take multiple samples of a channel within a scan and you want to change the hardware
configuration for that channel at each sample, you must supply the settings for each instance
of the channel within the scan. If an elementhennel listspecifies more than one channel,

the corresponding element of the other arrays applies to all those channels.

The VI applies the values contained in the configuration artgysef input limits, lower

input limits , coupling, range, polarity , gain, andmode) to the channels in the group (if you
configured on a per group basis) or the channathamnel list (if you configured on a per
channel basis) in the following way. The VI applies the values listed first in the arrays (at
index 0) to the first channel in the group or the channel(s) listed in indeshauomel list

The VI applies the values listed second in the configuration arrays (at index 1) to the second
channel in the group or channel(s) listed in indexdhahnel list The VI continues to apply

the values in this fashion until the arrays are exhausted. If channels in the gebaproel

list remain unconfigured, the VI applies the final values in the arrays to all the remaining
unconfigured channels.

Table 18-5 gives examples of this method. The pararoletemel scan listwhich is part of
the Al Group Config VI, is used in the following table.

LabVIEW Function and VI Reference Manual 18-8 © MNational Instruments Corporation

Chapter 18

Table 18-5. Al Hardware Config Channel Configuration

Advanced Analog Input Vis

—

U

D

Configuration
Basis Array Values Results
Group Groupchannel scan list= 1, 3, 4, 5, 1 All channels in the group havs
channel listis empty input limits of —1.0 to +1.0.
lower input limit [0] =-1.0
upper input limit [0] = +1.0
Group Groupchannel scan list= 1, 3, 4, 5, 7 Channel 1 has input limits of
channel listis empty —1.0to +1.0. Channel 3 has
lower input limit [0] =-1.0 input limits 0.0 to +5.0.
upper input limit [0] = +1.0 Channels 4, 5, and 7 have inp
lower input limit [1] = 0.0 limits of —10.0 to +10.0.
upper input limit [1] = +5.0
lower input limit [2] =-10.0
upper input limit [2] = +10.0
Channel Groupchannel scan list= 1, 3, 4, 5, 1 Channels 1, 3, 4, and 5 have
channel list[0] = 1 input limits of —1.0 to +1.0.
channel list[1] = 3:5 Channel 7 has the default inpy
lower input limit [0] =-1.0 limits set by the configuration
upper input limit [0] = +1.0 utility. It is unchanged becaus
it is not listed inchannel list
Channel Groupchannel scan list= 1, 3, 4, 5, 7 Channel 1 has input limits of
channel list[0] = 1 —1.0to +1.0. Channels 3, 4,
channel list[1] = 3:5 and 5 have input limits of 0.0
lower input limit [0] =-1.0 to +5.0. Channel 7 has the
upper input limit [0] = +1.0 default input limits set by the
lower input limit [1] = 0.0 configuration utility.
upper input limit [1] = +5.0
Group Groupchannel scan list= 0, 1,0, 1 | Channels 0 and 1 have input
channel listis empty limits of —1.0 to +1.0 the first
lower input limit [0] =-1.0 time they are sampled and
upper input limit [0] = +1.0 input limits of —10.0 to +10.0
lower input limit [1] =-1.0 the second time they are
upper input limit [1] = +1.0 sampled.
lower input limit [2] =-10.0
upper input limit [2] = +10.0
lower input limit [3] =-10.0
upper input limit [3] = +10.0

© MNational Instruments Corporation

18-9

LabVIEW Function and VI Reference Manual

Chapter 18

Advanced Analog Input Vis

Therange, polarity , andgain determine the lower and upper input limits. When you wire
valid input limit arrays (that is, arrays of lengths greater than zero) the VI chooses suitable
input ranges, polarities, and gains to achieve timse limits . The VI ignores theange,

polarity , andgain arrays.

If you do not wire thénput limit arrays, the VI checkange, polarity , andgain. Where the
VI finds an array, it sets the corresponding input property to the values in the array. Where
the VI does not find an array, it leaves the corresponding input property unchanged.

For some devices and SCXI modules, onboard jumperarsge, polarity , and/orgain.
LabVIEW does not alter the settings of jumpered parameters when you spaatifymits .
If LabVIEW cannot achieve the desirggbut limits using the current jumpered settings,
it returns a warning.

To override the current jumper values, you must call the Al Hardware Config VI and specify
range, polarity , and/omgain explicitly. The configuration utility determines the initial setting
for these parameters (the default value is the factory jumper setting).

If a pair ofinput limits values are botd, the VI does not change thput limits .

SCXI channel hardware configurations are actually a combination of SCXI module and
DAQ device settings and require special considerations. The way you specify channels
indicates whether LabVIEW alters the SCXI module settings and/or the DAQ device settings.
Theinput limits parameter always applies to the entire acquisition path.

When you configure on a per group basis, LabVIEW may alter both SCXI module and
DAQ device settings. In this caggin applies to the entire path and is the product of the
SCXI channel gain and acquisition device channel gain. LabVIEW sets the highest gain
needed on the SCXI module, then adds DAQ device gain if necessary.

When configuration is on a per channel basis, you can specify the channels in one of three
ways. The first way is to specify the entire path, as in the following example.

OBO!SC1!MD1!CHO:7

Also, you can specify the path using channel names configured in the DAQ Channel Wizard,
as in the following example.

temperature

If you use either of these methods, LabVIEW can alter both SCXI and DAQ device settings,
andgain applies to the product of the SCXI channel gain and the DAQ device gain. LabVIEW
sets the highest gain needed on the SCXI module, then adds DAQ device gain if necessary.

The second method is to specify the SCXI channel only, as in the following example.
SC1IMD1ICHO:7

LabVIEW Function and VI Reference Manual 18-10 © MNational Instruments Corporation

Chapter 18 Advanced Analog Input Vs

This specification indicates that LabVIEW should alter SCXI settings only. Additionally,
gain applies only to the SCXI channel.

The third way is to specify the acquisition device channel only, as in the following example.
OBO

In this case, LabVIEW alters only DAQ device settings. Gaie parameter applies to the
onboard channel only.

Refer to Appendix BDAQ Hardware Capabilitiesfor the channel ranges, input limits, and
scanning order available with your DAQ device.

Tables 18-6 through 18-9 list default settings and ranges for the Al Hardware Config VI.

A tilde (=) indicates that the parameter is configurable on a per group basis only. This means
you cannot configure it by channel. The first row of these tables gives the values for most
devices, and the other rows give the values for devices that are exceptions to the rule. If you
did not set the default settings with the configuration utility, use the default settings shown in
these tables.

Tabhle 18-6. Device-Specific Settings and Ranges for the Al Hardware Config VI

Channel Input
Configuration Cluster
Number Channel
Coupling Input Mode ~ of AMUX List

Device Ds* R* DS* R* DS* R* DS*
Most Devices 1 1 1 1<n<3 0 O=<n<4 empty
NB-A2000 2 1,2 2 2 0 0 empty
PC-LPM-16, 1 1 2 2 0 0 empty
Lab-LC,
Lab-NB
Lab and 1200 1 1 2 1<n<3 0 0 empty
Series devices
AT-MIO-16X, 1 1 1(no~)| 1<n<3 0 O<n<4 empty
AT-MIO-64F-5
NB-A2100, 1 1,2 2 2 0 0 empty
NB-A2150
DAQCard-500, 1 1 2 1,2 0 0 empty
DAQCard-516,
DAQCard-700

© MNational Instruments Corporation

18-11

LabVIEW Function and VI Reference Manual

Chapter 18 Advanced Analog Input VIs

Table 18-6. Device-Specific Settings and Ranges for the Al Hardware Config VI (Continued)

Channel Input
Configuration Cluster
Number Channel
Coupling Input Mode ~ of AMUX List
Device DS* R* DS* R* DS* R* DS*
5102 Devices 1 1,2 2 2 0 0 empty
PCI-6110E, 1 1,2 1 1 0 0 empty
PCI-6111E,
PCI-4451,
PCI-4551,
PClI-4452,
PCI-4552
* DS = Default Setting; R = Range
7 & Note Channels 0 and 1 and channels 2 and 3 must have the same coupling for the

NB-A2150.

Al Parameter
Configures and retrieves miscellaneous parameters associated with Analog Input of an
operation of a device that are not covered with other Al Vis.

=tring in

float in
walue in
bBoalaan im eeee—
taskID in Fararnl tack ID out
channels -f J
operation J_f_‘: error out
parameter name string cut
errorin (no emor) i float out
wvalue out

boolean out

LabVIEW Function and VI Reference Manual 18-12 © MNational Instruments Corporation

Chapter 18 Advanced Analog Input Vs

Al SingleScan
Returns one scan of data. If you started an acquisition with the Al Control VI, this VI
reads one scan of the data from the internal buffer. On the Macintosh and in Windows, the
VI reads from the onboard FIFO if the acquisition is nonbuffered. If you have not started an
acquisition, this VI starts an acquisition, retrieves a scan of data, and then terminates the
acquisition. The group configuration determines the channels the VI sample. This VI does not
support 5102, DSA, and %9devices.

agqQuisition state

task ID Single task I out
cutput type Cscaled) Scan scaked data
opeode tne changs) — ot “a i binary data
error in (no error) - error out
time Timit Cno change) data remaining

If you do not call the Al Control VI, this VI initiates a single scan using the fastest and most
safe channel clock rate. You can, however, alter the channel clock rate with the Al Clock
Config VI.

If you run the Al Control VI withcontrol codeset to0 (Start), a clock signal initiates
the scans.

If you want externally clocked conversions, you must use the Al Clock Config VI to set the
clock source to external.

If clock sources are internal and you do not allocate memory, a timed, nonbuffered acquisition
begins when you run the Al Control VI witlontrol codeset to0. This type of acquisition is
useful for synchronizing analog inputs and outputs in a point-to-point control application.
The following devices do not support timed, nonbuffered acquisitions:

* (Macintosh) Lab-NB, Lab-LC, NB-A2000, NB-A2100, and NB-A2150

Note In the event of a FIFO overflow during a timed, nonbuffered acquisition,
LabVIEW restarts the device.

© MNational Instruments Corporation 18-13 LabVIEW Function and VI Reference Manual

Chapter 18 Advanced Analog Input VIs

Table 18-7 lists default settings and ranges for the Al SingleScan VI.

Table 18-7. Device-Specific Settings and Ranges for the Al SingleScan VI

Output Type Opcode Time Limit
Device DS R DS R DS R

NB-A2000, NB-A2100, 1 1<n<3 1 1 variable | n=0
NB-A2150
All Other Devices 1 1<n<3 1 1<n<4 1<n<4 n=0

* DS = Default Setting; R = Range

Al Trigger Config
Configures the trigger conditions for starting the scan and channel clocks and the scan
counter.

additional trigger specific...
level (0.00) ———— E

task ID Trig-%n_::ri task ID out
trigger type (0: no change) — EE_'}% Bm sctual trigger specificatior
= error out

mode (0: no change) ;Lr
error in (no error)
trigger source Cernpty string)

trigger or pause condition ...

Refer to Appendix BDAQ Hardware Capabilitiesfor information on the triggers available
with your DAQ device. Refer to your E Series device user manual for a detailed description
of the triggering capabilities of the device.

The following is a detailed description of trigger typéanalog trigger)2 (digital trigger A),

and3 (digital trigger B) as they apply to three types of applications: posttrigger, pretrigger
with software start, and pretrigger with hardware start. The other trigger types are discussed
at the end of this section.

Application Type 1: Posttriggered Acquisition (Start Trigger Only)

If total scans to acquireis = 0 andpretrigger scans to acquireis 0, you are performing

a posttriggered acquisition. thigger type of 1 or 2 (analog trigger or digital trigger A,
respectively) starts the acquisition (digital trigger B is illegal). You provide a start trigger.
Refer to Table 18-10, parts 2 and 3, to determine the default pin to which you connect your
trigger signal. On some devices you can specify an alternative source throtrigigre

source parameter.

LabVIEW Function and VI Reference Manual 18-14 © MNational Instruments Corporation

Chapter 18 Advanced Analog Input Vs

With E-Series devices, if you are using an analog trigger and the analog signal is connected
to one of the analog input channels, that channel must be first in the scan list. This restriction
does not apply if you connect the analog signal to PFIO.

! = acquired data —= |
o i
o —~
inpu N S NA
signal » N Jr: 1 7
SV T —
5.0 . —

In the above illustratiortptal scans to acquireis 1000 andpretrigger scans to acquire
is 0. The start trigger can come from digital trigger A or an analog triggggér or pause
condition = 1: Trigger on a rising edge or slogeyel=5.5 , window size=0.2).

Application Type 2: Pretriggered Acquisition (For All Trigger Types)

If total scans to acquireandpretrigger scans to acquireare both > 0, &igger type of 1

or2 (analog trigger or digital trigger A, respectively) starts the acquisition of posttrigger data
after the pretrigger data is acquired. The trigger is caktojetriggetbecause the acquisition

does not stop until the trigger occurs. A software strobe starts the acquisition. This is a
software start pretrigger acquisition. You provide the stop trigger. Refer to Table 18-10,
parts 2 and 3, to determine the default pin to which you connect your trigger signal. On some
devices, you can specify an alternative source throughifger source parameter.

le— acquired data ——|
G.0 ;"ﬁ\ :
_ . AN I
Input By] LAY :
signal 40 N f 4 : J
30 "'_,"{I

=top |_|
trigger

© MNational Instruments Corporation 18-15 LabVIEW Function and VI Reference Manual

Chapter 18

Advanced Analog Input VIs

In the previous illustratiortptal scans to acquirels 1000 andpretrigger scans to acquire
is 900. The stop trigger can come from digital trigger A or an analog trigggggé€r or pause
condition = 1: Trigger on rising edge or slopgeyel=3.7 , window size=0.5).

With E Series devices, if you are using an analog trigger and the analog signal is connected
to an analog input channel, that channel must be the only channel in the scan list (ho multiple
channel scan allowed). This restriction does not apply if you connect the analog signal

to PFIO.

Application Type 3: Pretriggered Acquisition (Start and Stop Trigger)

Application Type 3 is used infrequently. Unless you plan to provide both a start trigger and a
stop trigger, skip this section.

On MIO devices, you can enable both the start trigger and the stop trigger. (You must call the
Al Trigger Config VI twice to do this.) In this case, a digital or analog trigger signal starts the
acquisition rather than a software strobe. This is a hardware start pretriggered acquisition.
You provide both the start trigger (as described in Application Type 1) and the stop trigger
(as described in Application Type 2). Refer to Tables 18-11 and 18-12 to determine the
default pin to which you connect your trigger signal. On some devices, you can specify an
alternative source through thrégger source parameter.

E I acquirad data—l—-: |
Ll L;A\\ i
. A AN ;
input r ! NN L
E N \ 7
i "~
30 ! i/ :

I — !
tsllzart |_| :
rigger .
st p rL
Higqer

In the above illustratiortptal scans to acquireis 1000 andpretrigger scans to acquire

is 900. The start trigger can come from digital trigger B or an analog trityigyer or pause
condition = 1: Trigger on rising edge or slopeyel=5.5 , window size=0.2). The stop
trigger can come from digital trigger A or an analog trigtrggder or pause condition=1:

Trigger on rising edge or slopevel = 4.0 , window size=0.2). Notice that some of the

data after the start trigger has been discarded, because all 900 pretrigger scans have been
collected and the stop trigger is more than 900 scans away from the start trigger.

LabVIEW Function and VI Reference Manual 18-16 © MNational Instruments Corporation

Chapter 18 Advanced Analog Input Vs

When using analog triggering on E Series devices, there are several restrictions that apply, as
shown in Table 18-8.

Table 18-8. Restrictions for Analog Triggering on E-Series Devices

Start Stop
Trigger Trigger Restrictions

Digital A | Digital B | None

Digital B | Analog Analog signal must be connected to PFIO, unless you are
scanning only one channel, in which case the input to that
channel can be used.

Analog Digital A | Analog signal must be first in scan list if it is connected to pn
analog input channel.

A trigger type of 4 (digital scan clock gating) enables an external TTL signal to gate the scan
clock on and off, effectively pausing and resuming an acquisition.

Channel clock and scan clock are the same on the NB-MIO-16. Therefore, if the scan clock
gate becomes FALSE, the current scan does not complete and the scan clock ceases operation.
When the scan clock gate becomes TRUE, the scan clock immediately begins operation
again, where it left off previously. You wire your signal to the EXTGATE pin.

A trigger type of 5 (analog scan clock gating) enables an external analog signal to gate the
scan clock on and off, effectively pausing and resuming an acquisition. A trigger ype of
allows you to use the output of the analog trigger circuitry (ATCOUT) as a general purpose
signal. For example, you can use ATCOUT to start an analog output operation, or you can
count the number of analog triggers appearing at ATCOUT.

Note Trigger typesdl, 5, and6 on E-Series devices use the same analog trigger circuitry.
All three types can be enabled at the same time, but the last one enabled dictates
how the analog trigger circuitry behaves. The E Series restrictions described in the
trigger applications apply to all three trigger types.

Trigger type5 on E-Series devices uses the digital scan clock gate and the analog trigger
circuitry. Therefore, enabling trigger typeoverwrites any settings made for trigger type

For some devices, digital triggering is supported, but for these devices the source is
predetermined. Therefore, tiiggger source parameter is invalid. Table 18-9 shows the pin
names on the 1/O connector to which you should connect your digital trigger signal.

© MNational Instruments Corporation 18-17 LabVIEW Function and VI Reference Manual

Advanced Analog Input Vis

Table 18-9. Digital Trigger Sources for Devices with Fixed Digital Trigger Sources

Posttriggering Pretriggering
Start Start Stop
Device Trigger Pin Trigger Pin Trigger Pin

MIO-16L/H, MIO-16DL/DH STARTTRIG* STARTTRIG* | STOPTRIG
NB-MIO-16L/H STARTTRIG* no support no support
AT-MIO-16X, AT-MIO-16F-5, | EXTTRIG* EXTTRIG* EXTTRIG*
AT-MIO-64F-5
Lab and 1200 Series devices| EXTTRIG no support EXTTRIG
PC-LPM-16, DAQCard-500, | no support no support no support
DAQCard-700
NB-A2000, NB-A2100, EXTTRIG* no support EXTTRIG*
NB-A2150
DSA 45«x EXTTRIG* EXTTRIG* EXTTRIG*

* On the AT-MIO-16X, AT-MIO-16F-5, and AT-MIO-64F-5, the same pin is used for both the start trigger and the
stop trigger. Refer to your hardware user manual for more details.

Table 18-10 lists the default settings and ranges for the Al Trigger Config VI. The first row
of each table gives the values for most devices, and the other rows give the values for devices
that are exceptions to the rule.

LabVIEW Function and VI Reference Manual 18-18 © MNational Instruments Corporation

Chapter 18 Advanced Analog Input Vs

Table 18-10. Device-Specific Settings and Ranges for the Al Trigger Config VI (Part 1)

Trigger or
Trigger Pause
Type Mode Condition Level
Device Ds* R* Ds* R* Ds* R* DS* R*
Most Devices 2 2,3 1 1<n<3 no support no support
AT-MIO-16E-10, 2 2<nz4 1 1<n<3 1 1, 2, no support
AT-MIO-16DE-10, 7,8
AT-MIO-16XE-50,
PCI-MIO-16XE-50
AT-MIO-16E-2, 2 1<n<6 1 1<n<3 1 1<n<8 0 -10
AT-MIO-64E-3, <n<
NEC-MIO-16E-4 10
Lab and 1200 Series 2 2 1 1<n<3 no support no support
devices
PC-LPM-16, no support no support no support no support
DAQCard-500,
DAQCard-700
NB-A2100, 1 1,2 1 1<n<3 1 1,2 0 —2.828
NB-A2150 <n<
2.828
NB-A2000 1 1,2 1 1<n<3 1 1,2 0 -5.12
<n<
5.12
5102 Devices 1 1,2,3, 1 1<n<3 1 1,23, 0 —5<n<5
6 4
5911, 5912 1 1,2,3, 1 1<n<3 1 1,23, 0 —10sn<
6 4 10
DSA Devices 1 1,2,3 1 1<n<3 1 1<n<4 0 —42<n<
42

* DS = Default Setting; R = Range

© MNational Instruments Corporation 18-19 LabVIEW Function and VI Reference Manual

Chapter 18

Advanced Analog Input Vis

Table 18-11. Device-Specific Settings and Ranges for the Al Trigger Config VI (Part 2)

Trigger Source

Additional Trigger
Specifications Cluster

(Analog) Window Size Coupling
Default Default Default
Device Setting Range Setting Range Setting Range

AT-MIO-16E-1 0 0=n<15, 0 0=n<20 no support

AT-MIO-16E-2 PFIO

NEC-MIO-16E-4

PCI-MIO-16E-1

PCI-MIO-16E-1

PCI-MIO-16XE-10

AT-MIO-64E-3 0 0=n<63, 0 0=n<20 no support
PFIO

NB-A2000 0 O<n<3 no support 2 1,2

NB-A2100 0 0=sn<3 0 Osn< 1 1,2

NB-A2150 5.656

5102 Devices 0 1,1, 0 0<n< 10 1 1,2
TRIG

PCI-6110E 0 O<n<4 0 0<n< 80 1 1,2
PFIO

PCI-6111E 0 0<sn<?2 0 0<n< 80 1 1,2
PFIO

4451, 4551 0 0,1 0 0<n< 84 no support

4452, 4552 0 O0<sn<4 0 0<n< 84 no support

All Other Devices no support no support no support

LabVIEW Function and VI Reference Manual

18-20

© National Instruments Corporation

Chapter 18 Advanced Analog Input Vs

Table 18-12. Device-Specific Settings and Ranges for the Al Trigger Config VI (Part 3)

Trigger Source (Digital)
Device DS R
E-Series Start Trigger PFIO PFI 0~9, RTSI 0~6, GPCTRO0
E-Series Stop Trigger PFI1 PFI 0~9, RTSI 0~6
E-Series Digital Scan Clock Gate PFIO PFI 0~9, RTSI 0~6
5102 Devices with RTSI, Start and Sto| PFIO PFI 1-2, RTSI 0-6
Triggers
5102 Devices without RTSI, Start and | PFIO PFI1-2
Stop Triggers
5911, 5912 PFI1 PFI 1-2, RTSI 0-6
DSA 44xx Start Trigger PFIO PFI0, PFI1, PFI3, PFl4, PFI6,
RTSI 0~6
OSA 44x Stop Trigger PFI1 PFI0, PFI1, PFI3, PFi4, PFI6,
RTSI 0~6
DSA 45«x Start and Stop Trigger dedicated PFI 0~33, RTSI 0~6
EXTTRIG*
pin
All Other Devices no support

* See Table 18-9 for devices with fixed digital trigger sources.

© MNational Instruments Corporation 18-21 LabVIEW Function and VI Reference Manual

Chapter 18 Advanced Analog Input VIs
Table 18-13. Device-Specific Settings and Ranges for the Al Trigger Config VI (Part 4)
Additional Trigger Specifications Cluster
Skip Time
Delay Count Limit
Device DS R DS| R | DS | R
NB-A2000 0 0<n<655.35 | no support| no support
NB-A2100, NB-A2150S 0 0<n<32.77 | no support| no support
NB-A2150C 0 0=n<16.38 | no support| no support
NB-A2150F 0 0=n<17.05 | no support| no support
All Other Devices no support no support| no support
* DS = Default Setting; R = Range
LabVIEW Function and VI Reference Manual 18-22 © MNational Instruments Corporation

Easy Analog Output Vis

This chapter describes the Easy Analog Output Vis in LabVIEW, which

perform simple analog output operatio
front panel or use them as subVisinb

ns. You can run these VIs from the
asic applications.

You can access the Easy Analog Output VIs by chodsimgtions»
Data Acquisition»Analog Output. The Easy Analog Output VIs are the

VIs on the top row of thAnalog Output

palette, as shown below.

E] Analeg Dutput'

—— Easy Analog Output VIs

Easy Analog Output VI Descriptions

The following Easy Analog Output VIs are available.

AO Generate Waveform

Generates a voltage waveform on an analog output channel at the specified update rate.

device
charnnel [0] 7

[
HULT FT

update rate [1000 updates/zec]

warefarm

The AO Generate Waveform VI generates a multipoint waveform on a specified analog output
channel. If an error occurs, a dialog box appears, giving you the option to stop the VI or

continue.

© MNational Instruments Corporation 19-1 LabVIEW Function and VI Reference Manual

Chapter 19 Easy Analog Output Vis

AO Generate Waveforms
Generates multiple aveforms on the spdigd analog output channels at the spiedi

updae rate.
device W
channels [0] ~ f}{l
update rate (1000 updates/zec) j i
waveforms

If an error occurs, a dialog box appeaisirgy you the option to stop the VI or continue.

Refer to Appendi B, DAQ Hardware Capabilitis, for the channel numbers you can use with
your DAQ device.

A0 Update Channel

Writes a speéied value to an analog output channel.

device

channel (0]~ g , ~
value — =2

The AO Update Channel VI writes a single update to an analog output channel. If an error
occurs, a dialog box appearsyigg you the option to stop the VI or continue.

Refer to Appendi B, DAQ Hardware Capabilitiefor the channel numbers and output limits
available with yourDAQ device.

A0 Update Channels

Writesvalues to each of the spfed analog output channels.

i AN
device e
channels (0]~ g &
=
wvalligs =

The AO Update Channels VI updates multiple analog output channels with gabgges. If
an error occurs, a dialog box appearging you the option to stop the VI or continue.

Refer to Appendi B, DAQ Hardware Capabilitis, for the channel numbers you can use with
your DAQ device.

LabVIEW Function and VI Reference Manual 19-2 © MNational Instruments Corporation

Intermediate Analog Output Vis

This chapter describes the Intermediate Analog Output VIs. These Vls
are single VI solutions to common analog output problems. The
intermediate-level Vls are convenient, but they lack flexibility. Because
all the Vls in this chapter rely on the advanced layer, you can refer to
Chapter 22Advanced Analog Output Vfer additional information on the
inputs and outputs and how they work.

You can access the Intermediate Analog Output VIs by choosing
Functions»Data Acquisition»Analog Output The Intermediate Analog
Output Vis are the VIs on the second row ofAimalog Output palette, as
shown below.

0 Analog Dutput

AN L) A
HULT FT || HULT FT || @ME FT || OME FT
By | (B0 | B o ||2 3R

[=1 i 1 =1 ol 1] Py)

;1] HY A HY RO i
CONFIG| | "wRITE ETART '-.'\.-'Fil'll'EI CLEAR Intermediate
Bl | (B | | B e | [Bz | | B Analog Output Vis
UTIL k AON
E"“x E"“x

Handling Errors

LabVIEW makes error handling easy with the Intermediate Analog Output
VlIs. Each intermediate-level VI has arror in input cluster and ag@rror

out output cluster. The clusters contain a Boolean that indicates whether an
error occurred, the error code for the error, and the name of the VI that
returned the error. Error in indicates an error, the VI returns the error
information inerror out and does not continue to run.

5 Note The AO Clear VI is an exception to this rule—this VI always clears the acquisition
regardless of whether error in indicates an error.

© MNational Instruments Corporation 20-1 LabVIEW Function and VI Reference Manual

Chapter 20 Intermediate Analog Output VlIs

When you usery of the Intermediate Analog Output VIs in a While Loop,
you should stop the loop if tltatusin theerror out cluster reads RUE.

If you wire the error cluster to the General Error Handler VI, the VI
deciphers the error information and describes the error to you.

The General Error Handler VI is Functions»Time and Dialog in

LabVIEW. For more information on this VI, refer to yduabVIEW User
Manual

Analog Output VI Descriptions

The following Analog Output VIs aravailable.

AO Clear

Clears the analog output task associateH tagkID in.

H A
tazklD in CLEAR tasklD out
erar in (o errar) B 2ror oLt

The AO Clear VI alvays clears the generatioggardless of whethanror in indicates
an erra.

A0 Config

Corfigures the channel list and output limits, and allocatagfar for analog output
operation.

Timit zettings (no change) 7
device “hi taskID

channels (D) w¥f COHFIG L numnber of channels

buffer size (1000 updates) —'_g""v
[group] (00 I

error in (no error)

allocate mode

'SP handle structure

mLﬂDSP handle structure out
’ error out

Refer to Appendi B, DAQ Hardware Capabilitiesfor the channel ranges and output limits
available with youDAQ device.

LabVIEW Function and VI Reference Manual 20-2 © MNational Instruments Corporation

Chapter 20 Intermediate Analog Output Vis

AO Start
Starts a buffered analog output operation. This VI sets the update rate and then starts the
generation.
taskiID in] taskiD out
number(u:-f buffer iteratin}'us (1% e TF'RT L actual update rate
update rate (1000 updatesfsec Ea v
P error ill: (no error) mrn%_ error out
clack Cupdate clock 1:1)
clock source Cinternal:1)
A0 Wait
Waits until the waveform generation of the task completes before returning.
tazkID in . taskID out
update rake [1000 updates/sec] J__I Bl
check everny M updates (5] nﬂr‘ =Tl errar oLt
error in [no error)

Use the AO Wait VI to wait for a buffered, finite waveform generation to finish before calling
the AO Clear VI. The AO Wait VI checks the status of the task at regular intervals by calling
the AO Write VI and checking itgeneration completeoutput. The AO Wait VI waits
asynchronously between intervals to free the processor for other operations. The VI calculates
the wait interval by dividing theheck every N updatesnput by the update rate. You should

not use the AO Wait VI when you generate data continuously, because the generation never
finishes. The AO Clear VI stops a continuous waveform generation.

AO Write

Writes data into the buffer for a buffered analog output operation.

[DSF updates to write
tazkID in iR - tazkID out
scaled data = — U — nurmber of updates done
time limit in zec [no chang... J_ B _l— number of buffers done
allow regeneration: T [T] - L generation complete
ermar in (o errar) 2ror oLt
[O5SF handle struchure s

© MNational Instruments Corporation 20-3 LabVIEW Function and VI Reference Manual

Analog Output Utility Vis

This chapter describes the Analog Output Utility VIs. The Vis—

AO Continuous Generation, AO Waveform Generation, and AO Write
One Update—are single-VI solutions to common analog output problems.
The Analog Output Utility VIs are intermediate-level Vls, so they rely on
the advanced-level Vis. You can refer to Chapte®2anced Analog
Output Vls for additional information on the inputs and outputs and how
they work.

You can access thenalog Output Utilities palette by choosing
Functions»Data Acquisition»Analog Output»Analog Output Utilities
The icon that you must select to access the Analog Output Utility VIs is
on the bottom row of thAnalog Output palette, as shown below.

Analog Output Utility VIs

Handling Errors

LabVIEW makes error handling easy with the intermediate-level Analog
Output Utility VIs. Each intermediate-level VI hasemor in input cluster
and arerror out output cluster. The clusters contain a Boolean that
indicates whether an error occurred, the error code for the error, and the
name of the VI that returned the erroretfor in indicates an error, the VI
returns the error information error out and does not continue to run.

© MNational Instruments Corporation 21-1 LabVIEW Function and VI Reference Manual

Chapter 21

Analog Output Utility Vis

When you use any of the Analog Output Utility VIs in a While Loop, you
should stop the loop if th&tatusin theerror out cluster reads TRUE. If

you wire the error cluster to the General Error Handler VI, the VI deciphers
the error information and describes the error to you.

The General Error Handler VI is Functions»Utilities in LabVIEW.
For more information on this VI, refer to Chapter Timne, Dialog, and
Error Functions

Analog Output Utility VI Descriptions

The following Analog Output Utility VIs are available.

AO Continuous Gen

Generates a continuous, timed, circular-buffered waveform for the given output channels at
the specified update rate. The VI updates the output buffer continuously as it generates the
data. If you simply want to generate the same data continuously, use the AO Waveform Gen

VI

Note

instead.

buffer gize (1000 updates]) ——

update rate [1000 updateszec) ﬂ“ e e ot

lirnit settings [ho change] ==

device (1] e | nurmber of updates done

channels (0] = | B, L number of buffers dane

scaled data

eror in [no error)
iteration [O:initialize]
clear generation (Ve T] -

[

iteration
terminal

You use the AO Continuous Gen VI when your waveform data resides on
disk and is too large to hold in memory, or when you must create your
waveform in real time. Place the VI in a While Loop and wire the iteration
terminal to the Viteration input.

If your program iterates more than #_1 times, do not wire this VI iteration
terminal to the loop iteration terminal. Instead, siération to0 on the first loop,
then to any positive value on all other iterations. The VI reconfigures and restarts
if iteration < 0.

Also wire the condition that terminates the loop to the &féar acquisitioninput, inverting
the signal if necessary so that it is TRUE on the last iteration. On iteration 0, the VI calls the
AO Config VI to configure the channel group and hardware and to allocate a buffer for the
data. It also calls the AO Write VI to write the given data into the buffer, and then the AO Start

VI to set the update rate and start the signal generation. On each subsequent iteration, the VI

LabVIEW Function and VI Reference Manual 21-2 © MNational Instruments Corporation

Chapter 21 Analog Output Utility Vis

calls the AO Write VI to write the next portion of data into the buffer at the current write
position. On the last iteration (whefear generationis TRUB or if an error occurs, the VI
also calls the AO Clear VI to clear any generation in progress. Although it is not normally
necessary, you can call the AO Continuous Gen VI outside of a loop (that is, to call it only
once). But if you do, leave thieration andclear generationinputs unwired.

The first call to the AO Write VI setdlow regenerationto TRUE, so that the same data can

be generated more than once. If you chaailpsv regenerationto FALSE, you must write

new data fast enough that new data is always available to be generated. If you do not fill the
buffer fast enough, you get a regeneration error. To correct this problem, decregskatbe

rate, increase thbuffer size, increase the amount of data written each time, or write data
more often.

If you setallow regenerationto FALSE, and your device has an analog output FIFO, your
buffer size must be at least twice as big as your FIFO.

If an error occurs, the VI calls the AO Clear VI to clear any generation in progress, then
passes the unmodified error informatioretoor out. If an error occurs inside the AO
Continuous Gen VI, the AO Clear VI clears any generation in progress and passes its
error information out.

Refer to Appendix BDAQ Hardware Capabilitiesfor the channel ranges and output limits
available with your DAQ device.

Note The AO Continuous Gen VI uses an uninitialized shift register as local memory to
remember the taskID of the output operation between calls. You normally use this
VIin one place on a diagram, but if you use it in more than one place, the multiple
instances of the VI share the same taskID. All calls to this VI configure, write
data, or clear the same generation. Occasionally, you may want to use this VI
in multiple places on the diagram but have each instance refer to a different
taskID (for example, when you want to generate waveforms with two devices
simultaneously). Save a copy of this VI with a new name (for example,
AO Continuous Gen R) and make your new VI reentrant.

© MNational Instruments Corporation 21-3 LabVIEW Function and VI Reference Manual

Chapter 21 Analog Output Utility Vis

A0 Waveform Gen
Generates a timed, simple-buffered or circular-buffered waveform for the given output
channels at the specified update rate. Unless you perform indefinite generation, the VI returns
control to the LabVIEW diagram only when the generation completes.

c .E|r1ljr1EE‘\iliE|_lE s—
update rate (1000 upuﬁtae&é;séﬁj —
m If you place this VI in a loop to generate multiple waveforms with the same
. , group of channels, wire the iteration terminal to thet®flation input.
iteration
terminal
Note If your program iterates more than 3_1 times, do not wire this VI iteration

terminal to the loop iteration terminal. Instead, set the iteration valu@ton the
first loop, then to any positive value on all other iterations. The VI reconfigures
and restarts if iterations O.

On iteration 0, the VI calls the AO Config VI to configure the channel group and hardware
and to allocate a buffer for the data. On each iteration, the VI calls the AO Write VI to write
the data into the buffer, then the AO Start VI to set the update rate and start the generation. If
you call the AO Waveform Gen VI only once, you can leéwration unwired. Theteration
parameter defaults @ which tells the VI to configure the device before starting the

waveform generation.

If an error occurs, the VI calls the AO Clear VI to clear any generation in progress, then passes
the error information unmodified througinror out. If an error occurs inside the AO
Waveform Gen VI, it clears any generation in progress and passes its error information out.

Refer to Appendix E DAQ Hardware Capabilitie. Sor the channel ranges, output limits, and
scanning order available with your DAQ device.

(& Note The AO Waveform Gen VI uses an uninitialized shift register as local memory to
remember the taskID of the output operation between calls. You normally use this
VI in one place on your diagram, but if you use it in multiple places, all instances
of the VI share the same taskID. All calls to this VI configure, write data, or clear
the same generation. Occasionally, you may want to use this VI in multiple places
on the diagram, but have each instance refer to a different taskiD. Save a copy of
this VI with a new name (for example, AO Waveform Gen R) and make the new
VI reentrant.

LabVIEW Function and VI Reference Manual 21-4 © MNational Instruments Corporation

Chapter 21 Analog Output Utility Vis

AQ Write One Update

Writes a single value to each of the specified analog output channels.

lirnit zettingz [no change)
device [1] ——F a0 &

1-Up
channels (0] =8
™
zcaled data f B error out
2rrar in [ho ermar]

iteration [T:initialize]

m The AO Write One Update VI performs an immediate, untimed update of
a group of one or more channels. If you place the VI in a loop to write more

lt:rﬁ:?; than one value to the same group of channels, wire the iteration terminal to
the Vliteration input.
Note If your program iterates more than 21 times, do not wire this VI iteration

terminal to the loop iteration terminal. Instead, set the iteration valu@ton the
first loop, then to any positive value on all other iterations. The VI reconfigures
and restarts if iteration<0.

On iteration 0, the VI calls the AO Config VI to configure the channel group and hardware,
then calls the AO Single Update VI to write the voltage to the output channels. On future
iterations, the VI calls only the AO Single Update VI, avoiding unnecessary configuration. If
you call the AO Write One Update VI only once to write a single value to each channel, leave
theiteration input unwired. Its default value oftells the VI to perform the configuration
before writing any data.

Refer to Appendix E DAQ Hardware Capabilitie: sfor the channel ranges, output limits, and
scanning order available with your DAQ device.

Note The AO Write One Update VI uses an uninitialized shift register as local memory
to remember the tasklID for the group of channels when calling between Vis.
Usually, this VI appears in one place on your diagram. However, if you use it
in more than one place, the multiple instances of the VI share the same taskiD.
All calls to this VI configure or write data to the same group. If you want to use
this VI in more than one place on your diagram, and want each instance to refer
to a different taskID (for example, to write data with two devices at the same time),
you should save a copy of this VI with a new name (for example, AO Write One
Update R) and make your new VI reentrant.

© MNational Instruments Corporation 21-5 LabVIEW Function and VI Reference Manual

Advanced Analog Output Vis

This chapter contains reference descriptions of the Advanced Analog
Output Vis. These Vls are the interface to the NI-DAQ software and are the
foundation of the Easy, Utility, and Intermediate Analog Output VIs.

You can access thdvanced Analog Output palette by choosing
Functions»Data Acquisition»Analog Output»Advanced Analog
Output. The icon that you must select to access the Advanced Analog
Output Vls is on the bottom row of thaalog Output palette, as shown
below.

E'ng"" Eﬁ:“ g < Advanced

Analog Output Vs

Advanced Analog Output VI Descriptions

The following Advanced Analog Output VIs are available.

A0 Buffer Config

Allocates memory for an analog output buffer. If you are using interrupts, you can allocate a
series of analog output buffers and assign them to a group by calling the AO Buffer Config
VI multiple times. Each buffer can have its own size. If you are using DMA, you may allocate
only one buffer.

© MNational Instruments Corporation 22-1 LabVIEW Function and VI Reference Manual

Chapter 22 Advanced Analog Output Vs

Use the number you assign to the buffer with this VI when you need to refer to this buffer for

other Vls.

AO Buffer Write

error in (no error)
allocate mode Q

DEF handle
task ID Config| task ID out
channel list P .}Hl — DEP handle out
number of updates — __ == error out

buffer nurmber

Writes analog output data to buffers created by the AO Buffer Config VI.

tirme lirnit [-1: auto caloul..
alternate data and mode ze...

tazk 10 ot

tazk D Wite
channel indices [empty) -'I="=ft\-’
zcaled data [empty] mﬂ“‘y—

errar in (o ermar]
regeneration mode [0 no ch...
buffer number [-1: no change)

b= pdate progress
e grror ok

You wire the new data to one of three inputealed data binary data, orDSP memory

handle. The VI searches these inputs in that order for the first array with a length greater than
zero. The VI then writes the data from this array to the output buffer. The lengthsoétee

data or binary data arrays determines the number of updates the VI writBs&SH memory

handle points to the source of the datpdates to write must indicate how many updates the

VI is to write. When no data is wired, this VI is still useful for reporting update progress

information.

The total number of updates written to a buffer before you start it can be less than the number
of updates you allocated the buffer to hold when you called the AO Buffer Config VI.
LabVIEW generates only the updates written to the buffer.

LabVIEW Function and VI Reference Manual 22-2

© National Instruments Corporation

Chapter 22 Advanced Analog Output Vs

A0 Clock Config

Corfigures an update or inte clock for analog output.

clock source specifization

config rade [0 no change)
alternate rate set (no change) = |

tazk IO Clock task 1D oot
buffer nurmber (-1 : no change) — ':"""f"g LE Boactual rates used
.J errar out

clock (0: no change:l
error in [no errar) mr:
ticks per second [-1:noch...
clock source [0 no change)

Refer to Appendi B, DAQ Hardware Capabilitis, for the clocksavailable with your
DAQ device.

You carexpress clock rates three ways—wtittks per secoml, seconds per ti&, or the three
timebase parameters. The VI searches these parameters in that oespressks clock rates
on thefirst parameter with a wiredhlid input. When you cdigure an update clock, one tick
equals one update. When you figare the inteval clock, one tick equals one intat.

AO Control
Starts, pauses, resumes, and clears analog output tasks.
task ID Can- task ID out
cnnttru] m;!dita- Ep— irm
ztaging lis
error in (no error) === error out
iterations
pauzeSresume channel list

A0 Group Config
Assigns a list of analog output channels to a group number and produces the taskID that all
the other analog output VIs use.

device u:ﬁ';'F:; task ID out
gr o ! — group size
t:hannel lis ﬁ;::j e 3rr:r out
error in (no error)

Refer to Appendi B, DAQ Hardware Capabilitis, for the channelavailable with your
DAQ device.

© MNational Instruments Corporation 22-3 LabVIEW Function and VI Reference Manual

Chapter 22 Advanced Analog Output Vls

AOQ Hardware Config

Corfigures the limits (polarity and reference) and whether data fivea ghannel is

expressed ivolts milliamperes if you are using channel numbers. ThidwWays returns the
current settings for all the channels in the group.

task ID
channel list o
channel type

error in (no error) =

Timit settings ==

task ID out
ig EEEERacgrrent hardware settings

oo arror out

Refer to Appendi B, DAQ Hardware Capabilitiesfor the channel ranges, and output limits
available with yourDAQ device.

AO Parameter

Sets miscellaneous parameters associated with the Analog Output operatioreeictee d
that are notavered with other Analog Output VIs.

float in
walue in
boolean in .
tazsk ID in [ETw— tack ID out
channels
parameter name —| /BT error oul
ermor in (no ermor]

A0 Single Update

Performs an immediate update of the channels in the group.

bask IO Fingle bask 10 out
opcode [0: no change) il—dﬁdj“\tﬁ = binary array written
galed array [emply] ntj"' S——F="==== gror out
error in [no ermor|
hinary array [empky]

AO Trigger and Gate Config (Windows)

Corfigures the trigger and gate conditions for analog output operations on E-®eides d
and 5411 dvices.

tazk |D Trigger tazk |0 out
trigger or gate source [0; ... Gontig

trigger or gate condition ... B e

erar out

&frar in [t errar)
trigger or gake =ource zpe...

LabVIEW Function and VI Reference Manual 22-4 © MNational Instruments Corporation

Easy Digital 1/0 Vis

This chapter describes the Easy Digital 1/0 Vls, which perform simple
digital /0 operations. You can run these VIs from the front panel or use

them as subVIs in basic applications.

Access the Easy Digital /0 VIs by choosiRgnctions»Data
Acquisition»Digital 1/0 .

&5 Digital 170 =]
TIG 1ic |[o1e |[oic
LIME [[PORT [|LIME || PORT | < Easy Digital /0 Vis

B || B B | (B
(3] DIO oI DIn [}

GONFIG| | RERD || WRITE || START || whiT
e 2| | i B | B [aonne | | B

010 |[oIo 1 LU
CLEAR R sl ER,
nhis E i

The Easy Digital /0 Vls are the VIs on the top row of[tgital 1/O
palette. For examples of how to use the Easy Digital I/O VIs, open the

example library by openingxamples\dag\digital\digital.llb

Easy Digital 1/0 Descriptions

The following Easy Digital 1/0s are available.

Read from Digital Line
Reads the logical state of a digital line on a digital channel that you configure.

poart width [3] ———
device nE lite state

digital channel =" gz —
line — BS

iteration [initialize]

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

© MNational Instruments Corporation 23-1 LabVIEW Function and VI Reference Manual

Chapter 23 Easy Digital 1/0 Vs

= Note When you call this VI on a digital I/O port that is part of an 8255 PPI when your
iteration terminal is left at0, the 8255 PPI goes through a configuration phase,
where all the ports within the same PPI chip get reset to logic low, regardless of
the data direction. The data direction on other ports, however, is maintained. To
avoid this effect, connect a value other tharto the iteration terminal once you
have configured the desired ports.

Read from Digital Port
Reads a digital channel that you configure.

port width (3] ———
device e pattern
digital channel ~"" B
=

ikeration [O:initialize]

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

(& Note When you call this VI on a digital I/O port that is part of an 8255 PPI when your
iteration terminal is left at0, the 8255 PPI goes through a configuration phase,
where all the ports within the same PPI chip get reset to logic low, regardless of
the data direction. To avoid this effect, connect a value other thda the iteration
terminal once you have configured the desired ports.

Write to Digital Line
Sets the output logic state of a digital line to high or low on a digital channel that you specify.

port width (3]
device
digital channel ~*
line —
line state

iteration [D:ritialize]

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

Note When you call this VI on a digital I/O port that is part of an 8255 PPI when your
iteration terminal is left at0, the 8255 PPI goes through a configuration phase,
where all the ports within the same PPI chip get reset to logic low, regardless of
the data direction. The data direction on other ports, however, is maintained. To
avoid this effect, connect a value other tharto the iteration terminal once you
have configured the desired ports.

LabVIEW Function and VI Reference Manual 23-2 © MNational Instruments Corporation

Chapter 23 Easy Digital I/0 Vs

Write to Digital Port
Outputs a decimal pattern to a digital channel that you specify.
pork width [3]
device

digital channel """ g+ -
pattern —— ==

iteration [D:initialize]

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

Note When you call this VI on a digital I1/O port that is part of an 8255 PPI when your
iteration terminal is left at0, the 8255 PPI goes through a configuration phase,
where all the ports within the same PPI chip get reset to logic low, regardless of
the data direction. The data direction on other ports, however, is maintained. To
avoid this effect, connect a value other tharto the iteration terminal once you
have configured the desired ports.

© MNational Instruments Corporation 23-3 LabVIEW Function and VI Reference Manual

Intermediate Digital 1/0 Vis

This chapter describes the Intermediate Digital I/0 Vls. These Vis are
single VI solutions to common digital problems.

For example, the DIO Single Read/Write VI is a single VI solution for
non-buffered digital reads and writes. The DIO Single Read/Write VI
works with any device with digital ports.

You combine the other VIs—DIO Config, DIO Start, DIO Read,

DIO Write, DIO Wait, and DIO Clear—to build more demanding
applications using buffered digital reads and writes. Your device must
support handshaking to use these VIs.

All the Vs described in this chapter are built from the fundamental building
block layer, the advanced-level Vls.

You can access the Intermediate Digital I/O VIs by chooBingctions»
Data Acquisition»Digital 1/0 . The Intermediate Digital /0O Vls are the
VIs on the second and third rows of Digital palette, as shown below.

E>! Digital 170 H|

DI DIc DIe DI
LIME FOET LIME POET

— r
'-]' Intermediate

I:DI::IEPII]FIG £EIH':I':I '-.E:'EﬁE SDTIHHRT '-.-.3 T 4@t
@] II—— Digital /O VIs
B | B | | e 2| | B 9

cieAr || 9, ax’
| ey

© MNational Instruments Corporation 24-1 LabVIEW Function and VI Reference Manual

Chapter 24 Intermediate Digital I/0 Vs

Handling Errors

LabVIEW makes error handling easy with the Intermediate Digital I/O VIs.
Each intermediate-level VI has arror in input cluster and aerror out
output cluster. The clusters contain a Boolean that indicates whether an
error occurred, the error code for the error, and the name of the VI that
returned the error. Error in indicates an error, the VI returns the error
information inerror out and does not continue to run.

Note The DIO Clear VI is an exception to this rule—this VI always clears the
acquisition regardless of whetharror in indicates an error.

When you use any of the Intermediate Digital I/O Vs in a While Loop, you
should stop the loop if treatusin theerror out cluster read$RUE If you

wire the error cluster to the General Error Handler VI, the VI deciphers the
error information and describes the error to you.

The General Error Handler VI is Functions»Time and Functionin
LabVIEW. For more information on this VI, refer to Chapter 10,
Time, Dialog, and Error Functions

Intermediate Digital I/0 VI Descriptions

The following Intermediate Digital I/O VIs are available.

DIO Clear

Calls the Digital Group Buffer Control VI to halt a transfer and clear the group.

taskll in —{ -[iog — taskID out
error in (no error) o g8 error out

LabVIEW Function and VI Reference Manual 24-2 © MNational Instruments Corporation

Chapter 24 Intermediate Digital I/0 Vs

DIO0 Config

The DIO Cotfig VI calls the agdanced Digital Group Cdig VI to assign a list of ports to the
group, establish the group's direction, and productagi¢D. The VI then calls the Digital
Mode Cortlig VI to establish the handskeparameters, which onl§fact the operation of the
DIO-32 ckvices. Finaly, the VI calls the Digital Bifer Corfig VI to allocate auffer to hold
the scans as & are read or the updates to be written.

of zcans fupdates(10007

device] taskiD
group —oaan COHFIG

port lis vl] il
group direction —|_£ r===error out
error in (no error)
handshaking mode paraneters o

Refer to Appendi B, DAQ Hardware Capabilitiesor the ports and directioasailable with
your DAQ device.

DIO Read

Calls the Digital Béfer Read VI to read data from the internal tranbidfer and returns the
data read ipattern.

zcan backlog

number read
tazklD in tasklD out

rumber of scans to read - @ L port data

tirme limit in zec [ho chang... f an “‘L_ reftriesval complete

errar in (o errar) ermar oLt

DIO Single Read/Write

Reads or writes digital data to the digital channels §pddin the digital channel list. This
single VI corfigures and transfers data. When you use this VI in a loop, véieethtion
counter to tkiteration input so that cdiiguration takes place only once.

nurnber to read

device oIo 1 zcans read
R4l

digital channel list == e - = number transfered
group direction J_ = % ready state
operation code E error out
Er1ar in (o error]
updates to write
tirne lirnit [1 z2c)
iteration [T:initialize]

© MNational Instruments Corporation 24-3 LabVIEW Function and VI Reference Manual

Chapter 24 Intermediate Digital I/0 Vs

DIO Start

Starts abuffered digital 1/O operation. This VI calls the Digital Clock GigrivI to set the

clock rate if the internal clock produces the hanksiségnals, and then starts the data transfer
by calling the Digital Bfifer Control VI.

taskiD in]
number of scansfupdates to __. _I——' SIER
handshake zource | = "-"-’"' error out
clock frequency
error in (no error)

taskID oud

DIO Wait

Waits until the digitabuffered input or output operation completes before returning.
For input, the VI detects completion when the acquisition state retignie Digital Bufer
Read VlIfinishes with or without backlodror output, the VI detects completion when the
generation completeindicator of the DIO Write VIS TRUE

tazkID out

tazkID in s
direction m D
check everny M milizeconds (5] J_ Einn

mﬂm errar out
EIror in [no error)

Refer to Appendi B, DAQ Hardware Capabilitiesfor the handshake modagilable with
your DAQ device.

DIO Write
Calls the Digital Btfer Write VI to write to the internal transfbuffer.

(Macintosh) You musffill the buffer with data before you use the DIO Start VI &gib the
digital output operationYou can call the DIO Write VI after the transfegins to retréve
status information.

tazklD in BIT tasklD out
digital data e R — — buffer iterations
tirme limit in zec [no chang... | B

- generation complete
wirite locatian Iﬂ "“'L ermar oLt

error in [no emor)

LabVIEW Function and VI Reference Manual 24-4 © MNational Instruments Corporation

Advanced Digital 1/0 Vls

This chapter describes the Advanced Digital /0 Vls, which include the
digital port and digital group VIs. You use the digital port Vs for
immediate reads and writes to digital lines and ports. You use the digital
group Vls for immediate, handshaked, or clocked 1/0O for multiple ports.
These Vis are the interface to the NI-DAQ software and the foundation of
the Easy and Intermediate Digital I/O Vls.

You can access thedvancedDigital I/O palette by choosing
Functions»Data Acquisition»Digital I/O»Advanced Digital 1/O.

The icon that you must select to access the Advanced Digital I/0O VIs
is on the bottom row of thBigital /0 palette, as shown below.

© MNational Instruments Corporation

B Digital 170 |
0DIG 0nIG nIG 0DIG
LIME FORT LIME PORT
— —

I {_{ _l_ _}{

[1] ODIo DI 010 [{x]
cONFIE|| RERD || %wRITE || 2TRART '“’“'E;.
| |t B i | e | (B

Y] AOU

T 95 T
B[ey g

25-1 LabVIEW Function and VI Reference Manual

Chapter 25 Advanced Digital I/0 VIs

Digital Port VI Descriptions

The digital port VIs perform immediate digital reads and writeg.onl

DIO Port Config

Establishes a digital channel d¢yuration.You can use #htaskID that this VI returns only

in digital port VIs.

tazk |0 oot

device Fort
digital channel ~F el

pork width f

error in [ho error)
i direction map

error ot

Refer to Appendi B, DAQ Hardware Capabilitiesfor the ports and directioagailable with

your DAQ device.

DIO Port Read

Reads the digital channel iddied by taskID and returns the pattern readoiattern.

task ID Fort task ID out
Tine mask — Fead — pattern
ILIL T[]
error in (no error) =] error out

DIO Port Write

Writes thevalue inpattern to the digital port idenfiied by taskID.

task ID

pattern —

Tine rmask —___|

error in (no error) R

Paort
Write

(L] T[T
[=]

task ID out

oo arror out

LabVIEW Function and VI Reference Manual 25-2

© National Instruments Corporation

Digital Group VI Descriptions

Chapter 25 Advanced Digital I/0 Vs

The digital group VIs perform immediate, handshaked, or clocked digital 1/O.

Digital Buffer Config

Allocates memory for a digital input or output buffer.

task ID Euffer task ID out
¥ of scansfupdates —[Config
allocation rmode — ere B error out
error in (no error)
Digital Buffer Control
Starts an input or output operation.
task ID Buffer task ID out
. cuntrl:lﬂ code _.—_'_Eﬁ..'}.
of scans fupdates =
error in (no error) s error out
data overwrite /regen.
Digital Buffer Read
Returns digital input data from the internal data buffer.
task ID Euffer task Il out
nurnber to read :mﬂ Ijmark Tocations
read location = nurmber read
time Tirnit J El—p-:-rt data
error in (no error) error out
=zan backlog

Digital Buffer Write

Writes digital output data to the buffer created by the Digital Buffer Config VI. The write
always begins at the write mark. After a write, the write mark points to the update following
the last update written.

error in (no error)

task 1D E

digital data =r=——

Write
=]

uffer

task ID out

wiite location m=tf

update progress

time Timit

=]

= grror out

(Macintosh) Fill the buffer with data before you use the Digital Buffer Control VI to begin the
digital output operation. You can call the Digital Buffer Write VI after the transfer begins to
retrieve status information.

© MNational Instruments Corporation

25-3

LabVIEW Function and VI Reference Manual

Chapter 25 Advanced Digital I/0 VIs

The total number of updates written tbuéfer before you start it can be less than the number
of updates you allocated thaffer to hold when you called the Digital Ber Corfig VI.
The VI generates only the updates written to bhifer.

Digital Clock Config
Corfigures a DIO-32 érice to produce handskasignals based on the output of a clock for
timed digital 1/O.

alternate clk rate spec, s
config mode
tazk |0 Clock tazk [0 out

_—|Config . .
clock source g ok nformation

clock frequency —l_r‘ b= =rrar aut

error in [no emor|
gating mode

Refer to Appendi B, DAQ Hardware Capabilitiesfor the clocksavailable with your
DAQ device.

The following example illustratesdw to use the three timebase parameters to specify a clock
rate. Assume these parametemgehthe folbwing settings:

timebase source: 1
timebase signal: 1,000,000.0 Hz
timebase wisor: 25

In this case, the ticks per second rate is 1,000,00@ded by 25, so LabVIEW updates the
digital group 40,000 times per second.

Digital Group Config
Defines a digital input or output grouou can use thtaskID this VI returns only in the
digital group Vils.

device Group tazk 1D out
group = | f""g’,ﬁ, L group size

digital channel list et - handshaking
error in [no error) mr E.Em error aut

group direction

Refer to Appendix BDAQ Hardware Capabilitiesor the ports and directio@sailable with
your DAQ device.

(& Note The same digital channel cannot belong to twdfdrent groups. If you configure
a group to use a specified digitahannel, that digitalchannel must be one that is
not already defined in another group or you will get an erro

LabVIEW Function and VI Reference Manual 25-4 © MNational Instruments Corporation

Chapter 25 Advanced Digital I/0 Vs

MIO devices éxcept for theAT-MIO-16D and theAT-MIO-16DE-10), as well as the
NB-TIO-10, LPM cvices,DAQCard-500, 516 @ices,DAQCard-700, PC-TIO-10,
AO-2DC ckvices, PC-OPDIO-16, ar@iT-AO-6/10, do not atiw handshaking. The digital
port VIs are more appropriate for thesides. Handshaking is not alved f digital

channel listis composed of channel names. ATeMIO-16D andAT-MIO-16DE-10 do not
allow handshaking ifligital channel listincludes ports 0, 1, and/or 4. The DIO-3%ides

do not albw handshaking ifligital channel listincludes ports 2, 5, 8, and/or 11. The DIO-24
and Lab and 1200 Serieavites do not atiw handshakingfidigital channel listincludes
port 2. The DIO-32F abws handshaking for the follving corfigurations only:

* A group containing &y one port
e A group containing ports 0 and 1, or ports 2 and 3, in that order
* A group containing ports 0, 1, 2, and 3, in that order

Digital Mode Config
Corfigures the handshaking characteristics for DIO-@2c@s.

request polariby
acknowledge modify amaunt
acknowledge modity mode

tazk |0 cm"}’-“_ tazk 10 aut
zignal mode i)
edge mode f = errar out

erar in (o erar)
acknowledge polarity
hardware double buffer mode

Refer to Appendi B, DAQ Hardware Capabilitiesfor the handshake modasilable with
your DAQ device.

DIO Parameter
Corfigures and reteves miscellaneous parameters associated with digital input and output
that are not cdiguredby other DIO Vis.

float in
value In
[
task |10 in Faram tashk 1D out
channels 4 I_Im o
operation | g error out
parameter name il
. i oat out
error in (o errar) value aut
SN boalean oot

© MNational Instruments Corporation 25-5 LabVIEW Function and VI Reference Manual

Chapter 25 Advanced Digital I/0 VIs

Table 25-1 lists device specific parameters and legal ranges for devices.

Table 25-1. Device Specific Parameters and Legal Ranges for Devices

Parameter Setting Input/Output Legal Default
Device Name Support Possible | You Should Use Values Value
VXI-DIO-128 0: Input Port per input yes channels, floatin,| N/A N/A
Logic port float out
Threshold
DAQ-DIO-653 1: ACK/Req per group yes taskiD in, value | Off, On N/A
(DIO- 32HS) Exchange in, value out
2: Clock per group yes taskID in, value | Off, On N/A
Reverse in, value out

Digital Single Read
Reads the digital channels that belong to the group identifi¢aiskiD and returns the
patterns read.

index array ————
tazk [D GFE--:-u tazk 1D out
opcode s L patterns read
nurmber ta read f = 1 pattern list

2rrar in [ho ermar] errar oLk
time lirit ready state

Digital Single Write
Writes the data ipattern array to the digital channels that belong to the group identified by
taskiD.

index array ———
tazk [D Group tazk 1D out
T Write L

opoode erolBinet patterns writken
pattern list f = 1 ready state
error in [no error) error out

kirne lirmit

LabVIEW Function and VI Reference Manual 25-6 © MNational Instruments Corporation

Chapter 25 Advanced Digital I/0 Vs

Digital Trigger Config
Configures the trigger condition for starting and/or stopping a digital pattern generation
operation. This VI is only valid when the Digital Clock Config VI hatasdshake source
parameter set to 1 or 4 (internal or external pattern generation with external clock).

additional trigger specific... mmmmmmmmy
tazk ID Trigger task D out
trigger type [0 no changel —'_IEE_"' 3
mode (0 no change) f =

errar in (o error)
trigger condition 00: no ch., ——

arror ot

© MNational Instruments Corporation 25-7 LabVIEW Function and VI Reference Manual

Easy Counter Vis

This chapter describes the Easy Counter Vls that perform simple counting
operations. You can run these Vls from the front panel or use them as
subViIs in basic applications.

You can access the Easy Counter VIs by chodsingtions»
Data Acquisition»Counter. The Easy Counter VIs are the VIs on the top
row of theCounter palette.

=l Counter |

=T o =]
PULSE| [FULSE | [FRE

, | TR s Easy Counter Vis
4w [[annt)] nd (o=

E"ET » '@':T ¥

This chapter describes the high-level VIs for programming counters on the
MIO, TIO, and other devices with the DAQ-STC or Am9513 counter/timer
chips. These ViIs call the Intermediate Counter VIs to generate a single
delayed TTL pulse, a finite or continuous train of pulses, and to measure
the frequency, pulse width, or period of a TTL signal.

Note These Vls do not work with Lab and 1200 Series devices, DAQCards, and other
devices that have the 8253/54 chip. Use the intermediate-level ICTR Control for
those devices. Refer to Chapter 2@termediate Counter V]dor more
information on the ICTR Control VI.

Some of these VIs use other counters in addition to the one specified.

In this case, a logically adjacent counter is chosen, which is referred to as
counter+1when it is the adjacent, logically higher counter emahter—1

when it is the adjacent, logically lower counter.

For a device with the Am9513 chip, if the counter is 1, tmmter+1is
counter 2 andounter—1is counter 5.

© MNational Instruments Corporation 26-1 LabVIEW Function and VI Reference Manual

Chapter 26 Easy Counter VIs

See the Adjacent Counters VI described in Chapteln?gmediate
Counter Vls for more information.

For examples of how to use the Easy Counter VIs, open the example
libraries located irxamples\dag\counter

Easy Counter VI Descriptions

The following Easy Counter VIs are available.

Count Events or Time

Configures one or two counters to count external events or elapsed time. An external event is
a high or low signal transition on the specified SOURCE pin of the counter.

source edge [rising 10)
event source timebase (coun__.

devrice L AD count
counter ~3 L~ L seconds since start
counter size (16Ff24-bits:0) seconds since last call

startfrestart (F: no)
stop (F: no)

To count events, selvent source/timebaséo 0.0 and connect the signal you want to count
to the SOURCE pin of the counter. To count time, set this control to the timebase frequency
you want to use.

Generate Delayed Pulse

Configures and starts a counter to generate a single pulse with the specified delay and pulse
width on the counter’'s OUT pin. A single pulse consists of a delay phase (phase 1), followed
by a pulse phase (phase 2), and then a return to the phase 1 level. If an internal timebase is
chosen, the VI selects the highest resolution timebase for the counter to achieve the desired
characteristics. If an external timebase signal is chosen, the user indicates the delay and width
as cycles of that signal. Execute the Counter Start VI with this VI's taskID to generate another
pulse. You can optionally gate or trigger the pulse with a signal on the counter’s GATE pin.

timebaze source Cinternal:0)
gate mode (ungated 01 ————

device FLLSE [taskiD]
counter «F Wl L [actual delay (s or cycles)]
pulse palarity Chigh:0) E] [actual width (s or cycles)]

pulse delay (5 or cycles)
pulse width (5 or cycles)

LabVIEW Function and VI Reference Manual 26-2 © MNational Instruments Corporation

Chapter 26 Easy Counter Vis

Generate Pulse Train
Configures the specified counter to generate a continuous pulse train on the counter's OUT
pin, or to generate a finite-length pulse train using the specified counter and an adjacent
counter. The signal has the prescribed frequency, duty cycle, and polarity. Each cycle of the
pulse train consists of a delay phase (phase 1) followed by a pulse phase (phase 2).

gate mode (ungated 0]
pulse polarity Chigh 00 ———— |

device %Hlﬁle [taskID of counter]
t wnf . -
coun _er u "_ﬁl [taskID of counter-1]
number of pulses (cont:0) — - actual parameters
frequency (Hz) —

duty cycle (0.5)

This VI uses only the specifiembunter to generates a continuous pulse. For a finite-length
pulse, the VI also usemunter—1to generate a minimum-delayed pulse to gatmter.

To generate another pulse train, execute the intermediate Counter Start VI watsktbes
supplied by this VI. To stop a continuous pulse train, execute the intermediate Counter Stop
VI or execute this counter again to generate one, short pulse. You must externally wire
counter—1s OUT pin tocounter's GATE pin for a finite-length pulse train. You can

optionally gate or trigger the start of the train with a signat@mter—1's GATE pin.

Note A pulse train consists of a series of delayed pulses, where phase 1 or the first phase
of each pulse is the inactive state of the output (low for a high pulse) and the
phase 2 of the second phase is the pulse itself.

Measure Frequency

Measures the frequency of a TTL signal on the specified counter’s SOURCE pin by counting
positive edges of the signal during a specified period of time. In addition to this connection,
you must wirecounter's GATE pin to the OUT pin ofounter—1 This VI is useful for

relatively high frequency signals, when many cycles of the signal occur during the timing
period. Use the Measure Pulse Width or Periotb¥telatively low frequency signals. Keep

in mind that period(s) = 1/frequency (Hz).

counter-1 gate modefungated O] 1 B [actual parameters
device FRE% frequency (Hz)
counter - AR byalid?

gate width (5) S I T I===“Em!-:nthe-r' status

counter size (16/24-bit:0)
[rnascirnunn delay to gate (5.0,

© MNational Instruments Corporation 26-3 LabVIEW Function and VI Reference Manual

Chapter 26

Easy Counter VIs

This VI configures the specifietbunter andcounter+1 (optional for Am9513) as event
counters to count rising edges of the signal on counter’s SOURCE pin. The VI also configures
counter—1to generate a minimum-delayed pulse to gate the event counter, starts the event
counter and then the gate counter, waits the expected gate period, and then reads the gate
counter until its output state is low. Next the VI reads the event counter and computes the
signal frequencynumber of events/actual gate pulse widthand stops the counters. You

can optionally gate or trigger the operation with a signalamter—1's GATE pin.

Measure Pulse Width or Period

Measures the pulse width (length of time a signal is high or low) or period (length of time
between adjacent rising or falling edges) of a TTL signal connectaitder's GATE pin.

The method used gates an internal timebase clock with the signal being measured. This VI is
useful in measuring the period or frequency (1/period) of relatively low frequency signals,
when many timebase cycles occur during the gate. Use the Measure Frequency VI to measure
the period or frequency of relatively high frequency signals.

tirne Tirit Coomputed:-T1) 11 count
device pulse width/period (5]
FULSE _
counter -4 Feriot [y - ¥alid?
type of measurement - e ounker owverflow ?
timebase (1M Hz) | timeout * _

The VI iterates until a valid measuremdirtjeout, or counter overflow occurs. A valid
measurement exists wheount = 4 without a counter overflow. tfounter overflow occurs,
lowertimebase If you start a pulse width measurement during the phase you want to
measure, you get an incorrect low measurement. Therefore, make sure the pulse does not
occur until afteccounter is started. This restriction does not apply to period measurements.

LabVIEW Function and VI Reference Manual 26-4 © MNational Instruments Corporation

Intermediate Counter Vis

This chapter describes Intermediate Counter VIs you can use to program
counters on MIO, TIO, and other devices with the DAQ-STC or Am9513
counter chips. These Vls call the Advanced Counter Vls to configure the
counters for common operations and to start, read, and stop the counters.
You can configure these VIs to generate single pulses and continuous pulse
trains, to count events or elapsed time, to divide down a signal, and to
measure pulse width or period. The Easy Counter VIs call the Intermediate
Counter Vls for several pulse generation, counting, and measurement
operations.

This chapter also describes the ICTR Control VI that you use with Lab and
1200 Series and PC-LPM devices that contain the 8253/54 counter/timer
chip.

You can access the Intermediate Counter VIs by choéaingtions»
Data Acquisition»Counter»Intermediate Counter. The Intermediate
Counter Vls are the VIs on the second row of@benter palette, as shown
below.

[s 2] T——r
‘h PULSE Hlﬁslﬁ 1F|§E3 FULZE
'_I_l +1 |+.l."f H_.‘n,u"t) Enl':ll:!

/

Intermediate Counter Vis

© MNational Instruments Corporation 27-1 LabVIEW Function and VI Reference Manual

Chapter 27

Intermediate Counter VIs

Handling Errors

LabVIEW makes error handling easy with the Intermediate Counter ViIs.
Each intermediate-level VI has arror in input cluster and aerror out
output cluster. The clusters contain a Boolean that indicates whether an
error occurred, the error code for the error, and the name of the VI that
returned the error. Error in indicates an error, the VI returns the error
information inerror out and does not continue to run.

When you use any of the Intermediate Counter VIs in a While Loop, you
should stop the loop if thetatusin theerror out cluster read$RUE If you

wire the error cluster to the General Error Handler VI, the VI deciphers the
error information and describes the error to you.

The General Error Handler VI is Functions»Utilities in LabVIEW.
For more information on this VI, refer to youabVIEW User Manual

Intermediate Counter VI Descriptions

Adjacent Counters
Identifies the counters logically adjacent to a specified counter of an MIO or TIO device.
It also returns the counter size (number of bits) and the timebases.

The following Intermediate Counter VIs are available.

tirmmebaszes
| f------cl:-unter

device F counter+1
counter (717) ~F 4 23 ivgounter+1
counter E'=1=2"%t:ununte-r—l
counter-1
caunter
counter size (bits)

Devices with the Am9513 chip have one or two sets of five, 16-bit counters (1-5, 6—10) that
can be connected in a circular fashion. For example, the next higher counter to counter 1
(calledcounter+1) is 2 and the next lower one (calleaunter-1) is 5.

LabVIEW Function and VI Reference Manual 27-2 © MNational Instruments Corporation

Chapter 27 Intermediate Counter VIs

Continuous Pulse Generator Config
Configures a counter to generate a continuous TTL pulse train on its OUT pin.

gate riode (ungated 01 ————
device EHIFHS_IEG taskiD
counter H L [actual frequency (Hz)]
41 1
pulse polarity Chigh 0 fﬂﬂm{ % [actual duty cyele]
error in (no error) error out
frequency (Hz)

duty cycle (0.3)

The signal is created by repeatedly decrementing the counter twice, first for the delay to the
pulse (phase 1), then for the pulse itself (phase two). The VI selects the highest resolution
timebase to achieve the desired characteristics. You can optionally gate or trigger the
operation with a signal on the counter's GATE pin. Call the Counter Start VI to start the pulse
train or to enable it to be gated.

Counter Read
Reads the counter or counters identifieddskID.

taskiD E-:-un;h taskiD
[counter list] sefooeoqRea count
=)
error in (no error) m overflow ?
error out

The VI is designed to read one counter or two concatenated counters of an Am9513 counter
chip or to read one counter of a DAQ-STC counter chip.

Counter Start
Starts the counters identified tgskID.

tazklD E:unt{h tazklD
[counter lizt] = i

i eI L2 errar aut
error in [no emor|

Counter Stop
Stops a count operation immediately or conditionally on an input error.
task ID Spunter task ID
error in (no error) =R | error out

stop when Cnow :T)

© MNational Instruments Corporation 27-3 LabVIEW Function and VI Reference Manual

Chapter 27 Intermediate Counter VIs

Delayed Pulse Generator Config
Configures a counter to generate a single, delayed TTL pulse on its OUT pin.

tirebase souree (internal 00
gate rmode (ungated 0] ———

device FLLSE task ID
counter —F L [actual delay (s or cycles)]
[4 4
pulse polarity Chigh:0) f 4 % [actual width (= or eyclesl]
error in {(no error) error out

pulse delay (s or cycles)
pulse width (s or cycles)

The signal is created by decrementioginter twice, first for the delay to the pulse (called

phase 1), then for the pulse itself (phase 2). If an internal timebase is chosen, the VI selects
the highest resolution timebase émunter to achieve the desired characteristics. If an

external timebase signal is chosen, the user designates the delay and width as cycles of that
signal. You can optionally gate or trigger the operation with a signadamter's GATE pin.

Call the Counter Start VI to start the pulse or enable it to be gated.

Down Counter or Divider Config

Configures the specifiezbunter to count down or divide a signal on the counter’s SOURCE
pin or on an internal timebase signal using a count value tafiedase divisor The result

is that the signal on the counter’s OUT pin is equal to the frequency of the input signal divided
by timebase divisor

gate mode (ungated:0)
source edge ———

device OH GTR taskiD
counter W%ﬁ
output Chigh pulse :0) f b error out
error in {(no error)

timebase divisor
timebase {counter's SOURCE. ...

You can use this VI to generate finite pulse trains by enabling a continuous pulse generator
until the desired number of pulses has occurred. You can also use it in place of the Continuous
Pulse Generator Config VI to generate a train of strobe or trigger signals.

LabVIEW Function and VI Reference Manual 27-4 © MNational Instruments Corporation

Chapter 27 Intermediate Counter VIs

Event or Time Counter Config

Configures one or two counters to count edges in the signal on the specified counter’'s
SOURCE pin or the number of cycles of a specified internal timebase signal.

count lirnit Ceontinuous:1)
gate rode (ungated 07

dewvice " taskID
counter .

[
counter size (16 /24-bitz:0) 1T
error in [no error) . |

event source Stimebaze [cou...

source edge (Fising :0)

errar out

When the internal timebase is used, this VI works like the Tick Count (ms) function but uses
a hardware counter on the DAQ device with programmable resolution. You can optionally
gate or trigger the operation with a signal on the counter's GATE pin. Call the Counter Start
VI to start the operation or enable it to be gated.

ICTR Control

Controls counters on devices that use the 8253/54 chip, including:
« Lab and 1200 Series devices, DAQCard-500, and DAQCard-700
e (Windows) LPM devices, 516 devices

count
output state ————
device |:I rl.:t RI i val
counter - JGartrs read value
5
error out

control code f
error in {no error)
binary ar bod

In setup mode 0, as shown in Figure 27-1, the output becomes low after the mode set
operation, andounter begins to count down while the gate input is high. The output becomes
high whencounter reaches the TC (that is, when the counter decreases to 0) and stays high
until you set the selected counter to a different mode.

17 P I I I I 6 I O I

W L
et | |
® E 5 4 321 0
Output |:n=E»:||
#
& B+EB=n B

Figure 27-1. Setup Mode in ICTR Control

© MNational Instruments Corporation 27-5 LabVIEW Function and VI Reference Manual

Chapter 27 Intermediate Counter VIs

In setup mode 1, as shown in Figure 27-2, the output becomes loountfollowing the
leading edge of the gate input and becomes high on TC.

Clack | | | |
L p—
Cratput (h = 4]] |

Figure 27-2. Setup Mode 1 in ICTR Control

In setup mode 2, as shown in Figure 27-3, the output becomes low for one period of the clock
input. Thecount indicates the period between output pulses.

Cloge T LML LML LML LML L

Gae g4 3 oz 1 0% 2 1 OM)
Quput = 4] L] L

Figure 27-3. Setup Mode 2 in ICTR Control

In setup mode 3, the output stays high for one-half ofdli@t clock pulses and stays low
for the other half. Refer to Figure 27-4.

Cloge LI ML r e N .
Note: Counting is possible

Gae 4 o g oz

4 2 4 2 4 & 4 2 4 onlywhen Gate stays high
Output (h=d) | | [|] |
5 4 2 5 2 5 4 2 &5 2 5 4 2
Suput (n=5) L L 1

Figure 27-4. Setup Mode 3 in ICTR Control

In setup mode 4, as in Figure 27-5, the output is initially highcandter begins to count
down while the gate input is high. On TC, the output becomes low for one clock pulse, then
becomes high again.

1373 I I 6 6 6

iR Lh=d]
Gale 43 2 1 0
Crtput

Figure 27-5. Setup Mode 4 in ICTR Control

LabVIEW Function and VI Reference Manual 27-6 © MNational Instruments Corporation

Setup mode 5 is similar to mode 4, except that the gate input triggers the count to start.

See Figure 27-6 for an illustration of mode 5.

Chapter 27 Intermediate Counter VIs

Cloge LTI LML LML LML L

Giahe
4 3 21 0

Lea¥], o 1¥] L1

Figure 27-6. Setup Mode 5 in ICTR Control

See the 8253 Programmable Interval Timer data sheet in your lab device user manual for

details on these modes and their associated timing diagrams.

Pulse Width or Period Meas Config

Configures the specifiecbunter to measure the pulse width or period of a TTL signal

connected to its GATE pin.

timebase (Hz) —

device

FULSE
counter ~f FeroFs

taskiD

error out

type of measurement Chigh p... f

error in {no error)

The measurement is done by counting the number of cycles of the specified timebase between
the appropriate starting and ending events. To accurately measure pulse width, the pulse must
occur aftercounter is started. Call the Counter Start VI to start the operation. You can also

use this VI to measure the frequency of low frequency signals. For more accurate

measurements, use a fagierebase

Wait+ (ms)

Calls the Wait (ms) function only if no input error exists.

milliseconds to wait + rnillisecond timer walue
seconds to wait (unused 0) L zecond timer value
ertar in Cno error) s ertar out

This VI is useful when you want to wait between calls to I/O subVIs that use the error 1/O
mechanism; without it you need to use a Sequence Structure to control the execution order.

© National Instruments Corporation r-7

LabVIEW Function and VI Reference Manual

Advanced Counter Vis

This chapter describes the Vls that configure and control hardware
counters. You can use these VIs to generate variable duty cycle square
waves, to count events or time, and to measure periods and frequencies.

You can access thsdvanced Counter palette by choosingunctions»
Data Acquisition»Counter»Advanced Counter The icon that you must
select to access the Advanced Counter VIs is on the bottom row of the
Counter palette, as shown below.

oo |

T [

3w _Fh'h"'lf'n_."t._.—.

5
16

EINT » EHD'-' 3
P T Advanced Counter Vs
Note Use only the inputs that you need on each VI when working with data acquisition.

Leave the rest of the inputs unwired, and LabVIEW sets them to their default
values. In the Help window, the most important terminals are labeled in bold, and
the least commonly used are in brackets. Values given in parentheses are default
values.

The following lists the type of counter chips that your device must have to
work with your version of LabVIEW:

DAQ-STC Counter Chip
* Am9513 Counter Chip
e 8253/54 Counter Chip

© MNational Instruments Corporation 26-1 LabVIEW Function and VI Reference Manual

Chapter 28 Advanced Counter Vs
The ICTRControl VI is the only VI that works with devices that contain the
8253/54 counter chip.

Refer to Table 28-1 for the counter chips used with the various devices.

Table 28-1. Counter Chips and Their Available DAQ Devices

Counter
Chip DAQ Device

Am9513 AT-MIO-16, AT-MIO-16D, AT-MIO-16F-5,
AT-MIO-16X, AT-MIO-64F-5, PC-TIO-10, All AO-2DC
Devices, EISA-A2000, NB-MIO-16, NB-MIO-16X,
NB-DMA-8-G, NB-DMA2800, NB-TIO-10, NB-A2000

DAQ-STC | All E Series Devices, 5102 Devices

8253/54 All Lab and 1200 Series Devices, DAQCard-500,
DAQCard-700, LPM Devices, 516 Devices

Advanced Counter VI Descriptions

The following Advanced Counter VIs are available.

CTR Buffer Config

Allocates memory where LabVIEW stores counter data. The CTR Buffer Config VI also

configures the specified group to perform buffered counter operations instead of the normal
single point operations.

task ID

gufﬂgr task ID out
counts per buffer (-1 :no c... - """
error out

CTR Buffer Read
Returns data from the buffer allocated by CTR Buffer Config.

mark locations
—— acquisition state
task ID Eutfer| task ID out

number to read (-1 : no change) — Eea

R nurnber read
error in (no error) el L0

binary data
error out
backlog

tirne Timit -1 : no change)

LabVIEW Function and VI Reference Manual 28-2 © MNational Instruments Corporation

Chapter 28 Advanced Counter VIs

& Note Incremental reading from the count buffer is supported. However, circular use of
the buffer is not implemented. Therefore, you must set up a finite buffer. You can
read from the finite buffer as it fills.

CTR Group Config

Collects one or more counters into a group. You can use counter groups containing more than
one counter to start, stop, or read multiple counters simultaneously. DAQ-STC devices do not
currently support multiple counters in the same group.

device Graup task D
_—Cenfig .
aravp ﬁ '; group size

colnter list E‘“ 2rror oLt
eIror in [no eror)

Table 28-2 contains valid counter numbers for devices supported by this VI.

Table 28-2. Valid Counter Numbers for CTR Group Config Devices

Device Type Valid Numbers
DAQ-STC Devices Oand 1
Am9513 MIO Devices 1,2,and 5
NB-DMA-8-G, NB-DMA2800 1 through 5
PC-TIO-10, NB-TIO-10 1 through 10
EISA-A2000, NB-A2000 2

CTR Mode Config

Configures one or more counters for a designated counter operation and selects the source
signal, gating mode, and output behavior on terminal count (TC).

count directian
gate parameters s

gource edge —

tazk |0 cl"'loge_' tazk |0 aut
N on qJ
counter list = l_

config mode
timebagze zounce
emar in [ho errar)

imebaze zignal
output bype
output polarity

error out

© MNational Instruments Corporation 28-3 LabVIEW Function and VI Reference Manual

Chapter 28

Advanced Counter VIs

This VI does not start the counters. Use CTR Control VI wdthtrol codel (Start) to start
the counters. If you are using a counter for pulse generation, you do not have to call this VI
unless you want to changate modeor output behavior.

Modes 3, 4, and 6 can be used with or without buffered counting. Mode 7 must be used with
buffered counting. With buffered counting, call the CTR Buffer Config VI before or after the
CTR Mode Config VI and before the CTR Control VI to start the operation, then call the CTR
Buffer Read VI to read the buffered count values. With buffered or unbuffered operations, call
the CTR Control VI to read the most recently acquired, unbuffered count value.

Unless otherwise stated, the following figures show timing and counter values for operations
in whichgate modeis set to high-level or rising-edge asource edges set to rising-edge.

Use mode 1 to reset all the CTR Mode Config VI parameters to their default settings.
This mode overrides any conflicting parameter settings.

Use mode 2 to count transitions of the selected signal and to stop at the first TC. The overflow
status bit is set at TC. Use the CTR Control VI to read the overflow status. This mode is
available only with Am9513 devices. Mode 2 counting is unbuffered. Figure 28-1 shows the
count values you would read with this mode using@gai® modesettings (high-level gating

and rising-edge gating).

dtart
Gate +_|—| [
I

sowce LT LT L M _riri_rn r

Counker :QQQLE"E' =2 3 4
Yalue lLow Ll =2 —=3ed —= 5+ G —+ 5+ Gu
“aae

Figure 28-1. Unbuffered Mode 2 and 3 Counting

Use mode 3 to count transitions of the selected signal continuously, rolling over at TC and
then continuing on. Figure 28-1 shows unbuffered mode 3 counting. Figure 28-2 illustrates a
buffered mode 3 operation with rising-edge gating. This buffered operation is available only
with DAQ-STC devices. With buffered mode 3 operation, LabVIEW stores the current count
value into the buffer on each selected edge of the source signal.

LabVIEW Function and VI Reference Manual 28-4 © MNational Instruments Corporation

Chapter 28 Advanced Counter VIs

oo
ot

! Cowted ! !
a— Counted Evertts —ate—— E . —alm—— CoynbedEvetds —ad
| werks 1 1

- - ————

Gate 1 | |
1
1
Source LML [T iy
1 £ 03 4 5 6
Brter

Figure 28-2. Buffered Mode 3 Counting

Use mode 4 with level gating to measure pulse width and with edge gating to measure the
period of the selected gate signal.

Note For the following descriptions of pulse width measurements (modes 4, 6, and 7),
a high pulse is defined simply as the high-level phase of a signal wjaa mode
is set to high-level gating. This definition differs from that of a high pulse using
pulse generation (mode 5), which consists of a low-level delay phase followed by a
high-level pulse phase. (Low pulses are similarly defined by switching the words
high and low.)

© MNational Instruments Corporation 28-5 LabVIEW Function and VI Reference Manual

Chapter 28

LabVIEW Function and VI Reference Manual

Advanced Counter VIs

To measure pulse width, sgate modeto high or low level. Figure 28-3 shows unbuffered
mode 4 pulse width measurements. You can start an Am9513 counter at any time, and it
measures pulses until you stop it. If you start it in the middle of the pulse you want to measure
(for example, during a high pulse for high-level gating), LabVIEW returns a short count for
that measurement. You must start a DAQ-STC counter only when the signal is in the opposite
polarity from the selected gate level (for example, a low-level phase for high-level gating).
Otherwise, the VI returns error number —10890. With unbuffered counting, the DAQ-STC
stops counting after one measurement. Mode 5 configures the counter for pulse generation.
Use the CTR Pulse Config VI to specify the pulse you want to generate.

Start 1 Start 2
I
Gate _I | }_L_| I_l : I_
1 1 1 1 1 1 1 1 1
. 1 1 | | 1 1 1 | 1
Timebase
1 i1 2 | | 1 2 3 a4 1 1 |
1 1 1 1 | 1 | 1
aAmasiz |0 T = = |
1 1 1 1 1 1 1 1
D&-STC ! | amar | | 1 wlg 1 | -
1 1 1 1 1 1 1 1

Figure 28-3. Unbuffered Mode 4 High Pulse Width Measurement

Figure 28-4 shows the buffered mode 4 pulse width measurement, which is available only
with DAQ-STC devices. The measured value is stored into the buffer at the end of each pulse.
See mode 6 for another way to measure pulse width with a DAQ-STC device.

Figure 28-4. Buffered Mode 4 Rising-Edge Pulse Width Measurement

To measure period, sgate modeto rising or falling edge. Figure 28-5 shows unbuffered
mode 4 pulse width measurement.

You may start either an Am9513 or a DAQ-STC counter at any time. The counter begins
counting at the start of the next period. The Am9513 counter measures periods continuously.
With unbuffered counting, the DAQ-STC stops counting after one measurement.

28-6 © National Instruments Corporation

Chapter 28 Advanced Counter VIs

Start

¢
aste T
I

N

||mED&SE_II_II_II_II_IL|_IL_II_II_II_|I_II_IL_II_I—I|_

24719513 0 1 w4 ol

DAQ-5TC 0 4 -

Figure 28-5. Unbuffered Mode 4 Rising-Edge Period Measurement

Figure 28-6 shows buffered mode 4 period measurement, which is available only with
DAQ-STC devices. The measured value is stored into the buffer at the end of each period.

Start

Measured Measured . Measired ,
=—— Pefiod ——— =— Period —+ = Pefiod—=
| 1

Source

Buffer

Figure 28-6. Buffered Mode 4 Rising-Edge Pulse Width Measurement

Use mode 5 to configure for pulse generation when you also need to coghdgeiraode
output type, oroutput polarity to non-default values. Otherwise, avoid calling the

CTR Mode Config VI and use only the CTR Pulse Config VI for pulse generation. See the
CTR Pulse Config VI for additional information about this operation.

Use mode 6 with level gating to measure the pulse width of the selected signal. This mode is
available only with DAQ-STC devices. Mode 6 differs from mode 4 in that the measurement
of a high (low) pulse does not begin until the first falling (rising) edge of the signal after you
start the counter. If you use unbuffered counting, the counter continues to measure pulses until
you call the CTR Control VI to read the most recently measured value, at which time the
counter stops. Unbuffered mode 6 counting is illustrated in Figure 28-7.

Start Counter Read
Gae — I L] 1 I ey I
i : L
Timebsse M ph MMM UM MUCLRL LR
1 | 1 1
D AG-ETC 0 2 - -

Figure 28-7. Unbuffered Mode 6 High Pulse Width Measurement

© MNational Instruments Corporation 28-7 LabVIEW Function and VI Reference Manual

Chapter 28 Advanced Counter VIs

With buffered mode 6 counting, the measured value is stored into the buffer at the end of each
pulse, as illustrated with Figure 28-8. Call the CTR Buffer Read VI to read the values.

Counter B ead
E.‘iart N
: s ad : : [N | :
™ e ! ™ niereal
Gate — | L1 | L1 L |

Figure 28-8. Buffered Mode 6 High Pulse Width Measurement (Count on Rising Edge of Source)

Use mode 7 to measure every phase of the selected signal using buffered counting. This mode
is available only with DAQ-STC devices. The count value is stored in the buffer on each
low-to-high and high-to-low transition. Use the CTR Buffer Read VI to read the values.

To measure period with this mode, sum successive pairs of signals. To measure phase, use
every other value. LabVIEW ignores the valugafe modewith mode 7, which means that

you cannot tell whether the first measurement starts at a rising or falling edge.

Pairs of amows indicate measured semi-periods

H Measured | Measured, teasuted __:Measur’ed' heasured | Measured |

! Intetval ! htenel 1 htervl ! Inbetval 1 Inbervsl | hteral !
Gate =] [—| e
i i
H | | I i I i
1 1 1 : 1 ! 1
Timebase LML 1Ll LMLl ri eyt mrure
! LI B R z o2 4,01 &2t o2 2 4 5 o 2!
Buffer | : ; =] G : '
' I HEI i |l
; a i i
H NE I
I I

Figure 28-9. Buffered Mode 7 Semi-Period Measurement

Table 28-3 shows the legal values and default settingisfebase signal A value of-1 tells
LabVIEW to use the default settings. When the table says counter, it refers to the counter
being configured. If there are multiple counters, LabVIEW configures each counter
successively.

LabVIEW Function and VI Reference Manual 28-8 © MNational Instruments Corporation

Chapter 28 Advanced Counter VIs

Refer to Table 28-3 to determine what is the next higher or lower consecutive counter.

Table 28-3. Adjacent Counters

Device Next Lower Next Higher
Type Counter Counter Counter
Am9513 S 1 2
1 2 3
2 3 4
3 4 5
4 5 1
10 6 7
6 7 8
7 8 9
8 9 10
9 10 6
DAQ-STC ! 0 !
0 1 0

CTR Pulse Config

Specifies the parameters for pulse generation. This VI configures the counters but does not
start them. Use the CTR Control VI with control cddéStart) to produce the pulse.

Tow Tewvel parameters
duty cycle q
tazk ID tazk ID out

Pulzc
counter list :-?“m': actual parameters uzed
config rmode f [HE error out
error in (no error)

clock frequency
pulze mode

Use this VI to specify the characteristics of your pulses. You can also use the CTR Mode
Config VI to set your desired gate modes, output polarity, and output type. Use the CTR Pulse
Config VI to specifytimebasesourceandtimebasesignal for pulse generation, because
LabVIEW ignores these values specified in the CTR Mode Config VI.

© MNational Instruments Corporation 28-9 LabVIEW Function and VI Reference Manual

Chapter 28 Advanced Counter VIs

CTR Control

Controls and reads groups of counters. Control operations include starting, stopping, and
setting the output state.

change parameter data seeeeeneoeeee
output state ———

tazk |D Corntrall tazk 10 out
colnter list J_,—,E TR read value array
control code H = overflow state arrayp

ermar in [ho errar] efrar aut
fout data output ztate aray

ICTRControl

Controls counters on devices that use the 8253 chip (Lab and 1200 Series devices,
516_devices PC-LPM-16, DAQCard-500, and DAQCard 700).

count
output state ————
device I nli P:| dval
counter Cortral read value
=
—l_ error out

control code
error in (no error) ====E=

binary ar bed

LabVIEW Function and VI Reference Manual 28-10 © MNational Instruments Corporation

Calibration and
Configuration Vis

This chapter describes the VIs that calibrate specific devices and set and
return configuration information.

This chapter also includes a VI for controlling the RTSI bus, which is a
triggering and timing bus you can use to synchronize, time, and trigger
multiple DAQ devices.

(Windows) There is also a VI you can use to set up data acquisition event
occurrences.

You can calibrate certain DAQ devices with the device-specific Vs, but this
is not always necessary because National Instruments calibrates all devices
at the factory.

You can access the Calibration and Configuration VIs by choosing
Functions»Data Acquisition»Calibration and Configuration as shown

below.

+—1HICalibration and Configuration

SET || inFo|[reseT]fcanLH ¢ | Device Setting and
A Channel Confiquration Vls
Z00 [0 b | [CPFTE] [E-Zeried [Calib . .

Catibr || Catibr | [S2°" || Catibr ||CaTibr || 028 14— Calibration Vls
=R

Raoute Crtrl || FI0O

Signal (] — Jﬂnnﬁg 4 . .

5 Other Calibration

= e r Call

Indes: || 575 | (5] P Configuration Vis
Ra= dag D

B AT - SCxl

ZET || GET | Cal

iFa || iHFo || const

© MNational Instruments Corporation 29-1 LabVIEW Function and VI Reference Manual

Chapter 29 Calibration and Configuration VIs

The following VIs only exist in the DAQ VI Library:

A2000 Calibrate
A2000 Configure
A2100 Calibrate
A2100 Config
A2150 Calibrate
A2150 Config

DSP 2200 Calibrate
DSP 2200 Configure

Calibration and Configuration VI Descriptions

The following Calibration and Configuration VIs are available.

1200 Calibrate

This VI calibrates the gain and offset values for the ADCs and DACs on 1200 Series devices
(i.e., DAQPad-1200, DAQCard-1200, etc.).

LaC1 channel
LACO channel ———

device (] dewice aut
calibration Calibr
save new calibration _,— i status

EEFROM location
A0 Calibration Cluster

You can perform a new calibration (and optionally save the new calibration constants in one
of four user areas in the onboard EEPROM) or load an existing set of calibration constants by
copying them from their storage location in the onboard EEPROM. LabVIEW automatically
loads the calibration constants stored in the onboard EEPROM load area when LabVIEW
launches or when you reset the device. By default the EEPROM load area contains a copy of
the calibration constants in the factory area

LabVIEW Function and VI Reference Manual 29-2 © MNational Instruments Corporation

Chapter 29 Calibration and Configuration VIs

A2000 Calibrate
Calibrates the NB-A2000 or EISA-A2000 A/D gain and offset values or restores them to the
original factory-set values.

device L2000 device out
sample clock drive I:-:-nﬁg
dither — G status

You can calibrate your NB-A2000 or EISA-A2000 to adjust the accuracy of the readings from
the four analog input channels. LabVIEW automatically loads the stored calibration values
when it launches or when you reset your NB-A2000 or EISA-A2000.

A Warning This VI is supported only up to NI-DAQ version 4.9.0 and has been removed from
the Calibration and Configuration palette. This VI is still included in the DAQ VI
Library for compatibility only, therefore if you are using NI-DAQ version 5.0 or
later, this VI will return the following messagedeviceSupportError . Ifyou
wish to use this VI, please reinstall NI-DAQ version 4.9.0 or an earlier version.

Refer to Appendix BDAQ Hardware Capabilitiesfor more information on the NB-A2000
or EISA-A2000 DAQ devices.

ﬁ Warning Read the calibration chapter in thB-A20000r EISA-A2000 User Manualefore
using the A2000 Calibrate VI.

If you setsave new value$o 1, then this VI stores the gain and offset calibration values in
an EEPROM on the NB-A2000 or EISA-A2000 device, which does not lose its data even if
the device loses power. LabVIEW reads these EEPROM values and loads them into the
NB-A20000r EISA-A2000, you can choose to replace the permanent copies of the gain
and offset EEPROM values and use the new values until the next calibration, even if you
reinitialize the device. You can also choose not to replace the EEPROM values, but to use
the new values until the next calibration or initialization.

For example, if you consistently get inaccurate readings from one or more input channels after
you reset the device, you can calibrate and save the new gain and offset values as permanent
copies in the EEPROM. However, if acquisition results are accurate after initialization but
start to drift after a few hours of device operation when the device temperature increases, you
can calibrate the device at this operating temperature and retain the current EEPROM values
to use after the next initialization.

© MNational Instruments Corporation 29-3 LabVIEW Function and VI Reference Manual

Chapter 29 Calibration and Configuration VIs

A2000 Configure
Configures dithering and whether to drive 8faMPCLK*line for the NB-A2000 or
EISA-A2000.
device L2000 device out
sample clock drive tonfig
dither — status

A Warning This VI is supported only up to NI-DAQ version 4.9.0 and has been removed from
the Calibration and Configuration palette. This VI is still included in the DAQ VI
Library for compatibility only, therefore if you are using NI-DAQ version 5.0 or
later, this VI will return the following messagedeviceSupportError . Ifyou
wish to use this VI, please reinstall NI-DAQ version 4.9.0 or an earlier version.

Refer to Appendix BDAQ Hardware Capabilitiesfor more information on the NB-A2000
or EISA-A2000 DAQ devices.

After system startup, LabVIEW configures the NB-A2000 or EISA-A2000 as follows.

e sample clock drive=0: Sample clock signal does not drisaMPCLK*line.

» dither =0: Dither disabled.

A2100 Calibrate

Selects the desired calibration reference and performs an offset calibration cycle on the ADCs
on the NB-A2100 or the NB-A2150.

device [device out
AD group —

reference — | CRAL

status

A Warning This VI is supported only up to NI-DAQ version 4.9.0 and has been removed from
the Calibration and Configuration palette. This VI is still included in the DAQ VI
Library for compatibility only, therefore if you are using NI-DAQ version 5.0 or
later, this VI will return the following messagedeviceSupportError . Ifyou
wish to use this VI, please reinstall NI-DAQ version 4.9.0 or an earlier version.

NI-DAQ driver software calibrates the two A/D channels using the analog input ground as the
reference for each channel when you turn on the computer.

LabVIEW Function and VI Reference Manual 29-4 © MNational Instruments Corporation

Chapter 29 Calibration and Configuration VIs

A2100 Config

Selects the signal source used to provide data to the DACs and lets you configure the external
digital trigger to be shared by data acquisition and waveform generation operations on the
NB-A2100.

device [— device out

DA source — E=h
shared trigger — |CORFIG

status

A Warning This VI is supported only up to NI-DAQ version 4.9.0 and has been removed from
the Calibration and Configuration palette. This VI is still included in the DAQ VI
Library for compatibility only, therefore if you are using NI-DAQ version 5.0 or
later, this VI will return the following messagedeviceSupportError . Ifyou
wish to use this VI, please reinstall NI-DAQ version 4.9.0 or an earlier version.

If LabVIEW acquires multiple data acquisition frames and generates multiple waveform
cycles with a trigger required at the beginning of each cycle, then the external trigger
recognition synchronizes so that each trigger simultaneously initiates the acquisition of the
next data frame while generating the output of the next waveform cycle.

A2150 Config
Selects whether or not LabVIEW should drive an internally generated trigger to the
NB-A2150 I/O connector. This VI also determines whether LabVIEW should drive the
NB-A2150 sampling clock signal over the RTSI bus to other devices for multiple-device
synchronized data acquisition.

device TR device out

i trigger drive — Bz
master cloeck — __|CoNFIG
number of slaves
slave list

status

A Warning This VI is supported only up to NI-DAQ version 4.9.0 and has been removed from
the Calibration and Configuration palette. This VI is still included in the DAQ VI
Library for compatibility only, therefore if you are using NI-DAQ version 5.0 or
later, this VI will return the following messagedeviceSupportError . Ifyou
wish to use this VI, please reinstall NI-DAQ version 4.9.0 or an earlier version.

Enableio trigger drive only if you have executed the RTSI Control VI to receive the
RTSITRIG* signal over the RTSI bus, or if you have enabled the analog level trigger using
the Al Trigger Config VI. In these cases, you can monitor the signal being sent to the A/D
trigger circuitry at th&EXTTRIG* line of the 1/O connector after starting the acquisition.

A high-to-low edge of the signal triggers the data acquisition.

© MNational Instruments Corporation 29-5 LabVIEW Function and VI Reference Manual

Chapter 29 Calibration and Configuration VIs

The NB-A2150 uses signals over the RTSI bus for sampling clock synchronization between
two or more NB-A2150 devices. The sampling clock synchronization circuitry makes
simultaneous sampling possible on more than four channels using additional NB-A2150
devices. Ifmaster clockis 1, slave listshould contain the list of devices that accept the
sampling clock frondevice After you run A2150 Config witmaster clockequal tol and
number of slavesgreater tha®, you cannot use the Al Clock Config to set the scan rate for
devices irslave listuntil you run A2150 Config again atevicewith master clockequal to

1 andnumber of slavesequal tc0.

Note Executing A2150 Config with master clock equaltand number of slaves equal
to 0 deconfigures the devices previously in the slave list and sets them up to use
their own sampling clock signal.

A2150 Calibrate (Macintosh)
Performs offset calibrations on the ADCs of the specified AT-A2150.

device A2150 device out
ADCO reference — |Calibr
ADCT reference —T |

status

A Warning This VI is supported only up to NI-DAQ version 4.9.0 and has been removed from
the Calibration and Configuration palette. This VI is still included in the DAQ VI
Library for compatibility only, therefore if you are using NI-DAQ version 5.0 or
later, this VI will return the following messagedeviceSupportError . Ifyou
wish to use this VI, please reinstall NI-DAQ version 4.9.0 or an earlier version.

Refer to Appendix BDAQ Hardware Capabilitiesfor more information on the AT-A2150
DAQ device.

When you launch LabVIEW, or when you reset the AT-A2150, LabVIEW performs an offset
calibration using the analog ground as the reference. Use this VI only for device calibration
to an external reference or for device recalibration for ground reference after using an external
reference.

A0-6/10 Calibrate (Windows)

Loads a set of calibration constants into the calibration DACs or copies a set of calibration
constants from one of four EEPROM areas to EEPROM area 1.

n;af'::fjﬁ Calibr device out
- CIR
EEPROM location =N ctatus

LabVIEW Function and VI Reference Manual 29-6 © MNational Instruments Corporation

Chapter 29 Calibration and Configuration VIs

You can load an existing set of calibration constants into the calibration DACs from a storage
area in the onboard EEPROM. You can copy EEPROM storage areas 2 through 5 to storage
area 1. EEPROM area 5 contains the factory calibration constants. LabVIEW automatically
loads the calibration constants stored in EEPROM area 1 upon start-up or when you reset the
AT-AO-6/10.

Note You can also use the calibration utility provided with the AT-AO-6/10 to perform
a calibration procedure. Refer to the calibration chapter in tAd-AO-6/10 User
Manualfor more information.

Refer to Appendix BDAQ Hardware Capabilitiesfor more information on the
AT-AO-6/10 DAQ devices.

When LabVIEW initializes the AT-AO-6/10, the DAC calibration constants stored in
EEPROM location 1 (user calibration area 1) provide the gain and offset values that ensure
proper device operation. So, this initialization is the same as running the AO-6/10 Calibrate
VI with operation set tol andEEPROM location set tol. When the AT-AO-6/10 leaves the
factory, EEPROM location 1 contains a copy of the calibration constants stored in
EEPROM location 5 (factory calibration).

A calibration procedure performed in bipolar mode is not valid for unipolar mode and vice
versa. See the calibration chapter of ATeAO-6/10 User Manudbr more information.

Channel To Index
Uses the current group configuration for the specified task to produce a list of indices into the
group’s scan or update list for each channel specified in the channel list.

task ID Ind |' task ID out
channel Tist sof e = channel indices

5
buffer number — [

status

You can use this list of channel indices to locate data for a particular channel within a multiple
channel buffer. You can also use the indices to read or write to a group subset with the buffer
read and write VIs.

Refer to your specific device information in AppendixXA\Q Hardware Capabilitiesfor
the channel limitations that apply to your device.

© MNational Instruments Corporation 29-7 LabVIEW Function and VI Reference Manual

Chapter 29

Calibration and Configuration VIs

Table 29-1 shows possible values for¢channel scan listchannel list, andchannel indices
parameters. Table 29-2 shows the possible values for the Suchdieel scan list
parameter is an input for the group configuration Vls.

Table 29-1. Channel to Index VI Parameter Examples

Channel Scan List

Channel List

Channel Indices

1,3,4,57

channel lisf0] =5

channel indice$0] = 3.
Data for channel 5 is at position 3
within a scan. Indices are
zero-based.

1,3,4,57

channel listis of O length.

channel indicesis of 0 length.
(In this case, status is non-zero.

1,2,1,3,1,4

(The device samples
channel 1 three times
during a scan.)

channel lisf0] =1,1,1

channel indice$0] = 0,

channel indice$l] = 2, and
channel indice$2] = 4.

The first occurrence of channel [L
within a scan is at index 0, the
second at index 2, and the third at
index 4.

0,1,3,4

(For this example,
channel scan listis a
digital input group.)

channel lisf0] = 3

channel indice$0] = 2.
The eight bits of data from port 3
are at index 2 in the scan list.

0:3
(One AMUX-64T
in use.)

channel lisf{0] = AM1!9

channel indice$0] = 9.

Data obtained from channel 9 o
AMUX-64T device number 1is at
index 9 in the data buffer.

-

SC1!MD1!CHO0:7,

channel lis{0] =

channel indice$0] = 11.

SC1!MD2!CHO0:4 SC1!MD2!CH3 Data obtained from channel 3 of
the SCXI module in slot 2 is at
index 11 in the data buffer.

LabVIEW Function and VI Reference Manual 29-8 © MNational Instruments Corporation

Chapter 29 Calibration and Configuration VIs

Table 29-2. Channel to Index VI Parameter Examples for Sun

Channel Scan List Channel List Channel Indices

1,3,4,57 channel lis{0] =5 channel indice$0] =
Data for channel 5 is at position 3
within a scan. Indices are

zero-based.
1,3,4,57 channel listis of 0 length. | channel indicesis of O length.

(In this case, status is non-zero.
1,2,1,3,1,4 channel lisf0] =1,1,1 channel indice$0] =
(The device samples channel indice$l] = 2, and
channel 1 three times channel indice$2] =
during a scan.) The first occurrence of channel [L

within a scan is at index 0, the
second at index 2, and the third at
index 4.

DAQ Occurrence Config (Windows)

Creates occurrences that are set by data acquisition events.

general value B
general value A E—

task ID in task ID out
create/olear — — OCCUr Fence
DAL E".re-n‘t {D error out

error in (no error) s E
channel

lewvel conditions =

A DAQ event can be the completion of an acquisition, the acquisition of a certain number of
scans, an analog signal meeting certain trigger conditions, a periodic event, an aperiodic
(externally driven) event, or a digital pattern match or mismatch. Your VI can sleep while
waiting for an occurrence to be set, freeing your computer to execute other VIs.

When you set thereate/clearcontrol tol (create) and call the VI, this VI creates an
occurrence. Use tHRAQ eventcontrol to select the event that sets the occurrence. Wire the
occurrence this VI produces to the Wait on Occurrence function. Anything you wire to the
output of the Wait on Occurrence function does not execute until the occurrence is set. The
occurrence is set each time the event occurs. The occurrence does not clear until you set the
create/clearcontrol to0 (clear) and call this VI, or call the Device Reset VI for the device.

LabVIEW returns a Not a Refnum file 1/0O constant along with a non-zero status code if it
cannot create the occurrence.

© MNational Instruments Corporation 29-9 LabVIEW Function and VI Reference Manual

Chapter 29 Calibration and Configuration VIs

For each computer platform, LabVIEW limits the number of occurrences per second that you
can set. Although this limit depends on the speed of your computer, avoid exceeding
500 occurrences per second.

For some of the events, you must perform your operation using interrupts instead of DMA.
Refer to the description of tH2AQ eventcontrol in this section for more information.

Device Reset
Resets either an entire device or the particular function identifiéaskyD .

tazk I RESET tazk 10 out
device

device string status

Resetting #askID function has the same result as calling the control VI for that function with
control codeset to clear. When you reset the entire device, LabVIEW clears all tasks and
changes all device settings to their default values.

DSA Calibrate

Use this VI to calibrate your DSA device.

tazkID Calibr tazkID oot
operation = 0sA

reference voltage f Error out

Error in [Mao Ermar]

Your device contains calibration D/A converters (calDACs) that fine-tune the analog circuitry.
The calDACs must be programmed (loaded) with certain numbers called calibration
constants. These constants are stored in non-volatile memory (EEPROM) on your device.

To achieve specification accuracy, perform an internal calibration of your device just before

a measurement session but after your computer and the device have been running for at least
15 minutes. Frequent calibration produces the most stable and repeatable measurement
performance.

Before the device is shipped from the factory, an external calibration is performed, and the
EEPROM contains calibration constants that LabVIEW automatically loads into the calDACs
as needed. The value of the onboard reference voltage is also stored in the EEPROM, and this
value is used when you subsequently perform a self-calibration. The calibration constants are
re-calculated and stored in the EEPROM when a self-calibration is performed. When you
perform an external calibration, LabVIEW recalculates the value of the onboard reference
voltage, and then performs a self-calibration. This new onboard reference value is used for all
subsequent self-calibration operations. If a mistake is made when performing an external
calibration, you can restore the board’s factory calibration so that the board is not unusable.

LabVIEW Function and VI Reference Manual 29-10 © MNational Instruments Corporation

Chapter 29 Calibration and Configuration VIs

DSP2200 Calibrate (Windows)

Performs offset calibrations on the analog input and/or analog output of the AT-DSP2200.

device 025 F device out
rode = | zavib

40T reference —

status

A Warning This VI is supported only up to NI-DAQ version 4.9.0 and has been removed from
the Calibration and Configuration palette. This VI is still included in the DAQ VI
Library for compatibility only, therefore if you are using NI-DAQ version 5.0 or
later, this VI will return the following messagedeviceSupportError . Ifyou
wish to use this VI, please reinstall NI-DAQ version 4.9.0 or an earlier version.

Refer to Appendix BDAQ Hardware Capabilitiesfor more information on the
AT-DSP2200 DAQ device.

When you launch LabVIEW or reset the AT-DSP2200, LabVIEW performs an offset
calibration on both the analog input and output using analog ground as the reference.

You can use this VI to calibrate the analog input using an external reference or to recalibrate
the AT-DSP2200 to compensate for configuration or environmental changes.

DSP2200 Configure (Windows)

Specifies data translation and demultiplexing operations that the AT-DSP2200 performs on
analog input and output data.

device 0= F device out
aitranslate /| onsig
aotranslate — |
demux

status

A Warning This VI is supported only up to NI-DAQ version 4.9.0 and has been removed from
the Calibration and Configuration palette. This VI is still included in the DAQ VI
Library for compatibility only, therefore if you are using NI-DAQ version 5.0 or
later, this VI will return the following messagedeviceSupportError . Ifyou
wish to use this VI, please reinstall NI-DAQ version 4.9.0 or an earlier version.

Refer to Appendix BDAQ Hardware Capabilitiesfor more information on the
AT-DSP2200 DAQ device.

Because software running locally on the AT&T WE DSP32C DSP chip reads data from the
ADCs and writes data to the DACs, you can manipulate the data during these transfers.
When you write analog input data to DSP memory, you can write the data as unscaled 16-bit
integers, unscaled 32C floating-point numbers, or scaled 32C floating-point voltages. You can
use thedemux option only when you write analog input data to DSP memory. When you

© MNational Instruments Corporation 29-11 LabVIEW Function and VI Reference Manual

Chapter 29 Calibration and Configuration VIs

enabledemuy, the device writes data from channel O consecutively into DSP memory,
beginning at the start of each buffer, and writes channel 1 data consecutively beginning at the
half-way point of each buffer. When the device writes analog input data to PC memory, it can
write the data as unscaled 16-bit integers, unscaled IEEE single-precision floating-point
numbers, or scaled IEEE single-precision voltages.

If aotranslateis 0, the source data must be in a format suitable for the DACs (16-bit integer
DAC values). Ifaotranslateis 1 or 3, the source data are DAC values in 32C format in

DSP memory or in IEEE single-precision format in PC memomaptfanslateis 2 or 4, the
source data are voltages in 32C format in DSP memory or in IEEE single-precision format in
PC memory.

E-Series Calibrate

Use this VI to calibrate your E-Series device and to select a set of calibration constants to be
used by LabVIEW.

task ID E-%erics task I out
aper ation Calibr
calibration constants f error out
error in (no error)
reference valtage

ﬁ Warning Read the calibration chapter in your device user manual before using the E-Series
Calibrate VI.

Your device contains calibration D/A converters (calDACSs) that are used for fine-tuning the
analog circuitry. The calDACs must be programmed (loaded) with certain numbers, called
calibration constantsThose constants are stored in non-volatile memory (EEPROM) on your
device or are maintained by LabVIEW. To achieve specification accuracy, you should perform
an internal calibration of your device just before a measurement session, but after your
computer and the device have been powered on and allowed to warm up for at least

15 minutes. Frequent calibration produces the most stable and repeatable measurement
performance. The device is not harmed in any way if you recalibrate it as often as you like.

Two sets of calibration constants can reside in two areas inside the EEPROMpaealled

areas One set of constants is programmed at the factory, the other is left for the user. One
load area in the EEPROM corresponds to one set of constants. The load area LabVIEW uses
for loading calDACs with calibration constants is called the default load areas. When you get
the device from the factory, the default load area is the area that contains the calibration
constants obtained by calibrating the device in the factory. LabVIEW automatically loads

the relevant calibration constants stored in the load area the first time you call a VI that
requires them.

LabVIEW Function and VI Reference Manual 29-12 © National Instruments Corporation

Chapter 29 Calibration and Configuration VIs

= Note Calibration of your E-Series device takes some time. Do not be alarmed if the VI
takes several seconds to execute.

A Warning When you run this VI with theoperation set to self calibrate or external calibrate,
LabVIEW will abort any ongoing operations the device is performing and set all
configurations to their defaults. Therefore, you should run this VI before any
other DAQ VIs or when no other operations are running.

12-Bit E-Series Devices

» Connect the positive output of your reference voltage source to the analog input
channel 8.

« Connect the negative output of your reference voltage source to the AISENSE line.
e Connect DACO line (analog output channel 0) with analog input channel 0.

» If your reference voltage source and your computer are floating with respect to each
other, connect the AISENSE line with the AIGND line as well as with the negative output
of your reference voltage source.

16-Bit E-Series Devices

« Connect the positive output of your reference voltage source to the analog input
channel 0.

» Connect the negative output of your reference voltage source to the analog output
channel 8 (by performing those two connections you supply reference voltage to the
analog input channel 0, which is configured for differential operation.)

» If your reference voltage source and your computer are floating with respect to each
other, connect the negative output of your reference voltage source to the AIGND line,
as well as to the analog input channel 8.

Get DAQ Device Information
Returns information about a DAQ device.

tazk |0 or device INFO bask 1D oot

infarmation type infarmation tring
&Irar in [hio erar] &rror out

Refer to Appendix BDAQ Hardware Capabilitiesfor the transfer methods available with
your DAQ device.

© MNational Instruments Corporation 29-13 LabVIEW Function and VI Reference Manual

Chapter 29 Calibration and Configuration VIs

Get SCXI Information
Returns the SCXI chassis configuration information that you set using the configuration
utility or the Set SCXI Information VI.

chassis type
chasziz address

slot information

[' — communication mode
status
cornmiahitation path

device string

LPM-16 Calibrate

Calibrates the PC-LPM-16 or PC-LPM-16PnP converter. The calibration calculates the
correct offset voltage for the voltage comparator, adjusts positive linearity and full-scale
errors to less that0.5 LSB each, and adjusts zero error to less #idrnSB.

device = device out
Calibr
status

Refer to Appendix BDAQ Hardware Capabilitiesfor more information on the PC-LPM-16,
DAQCard-500, or DAQCard-700 device.

Master Slave Config

Configures one device as a master device and any remaining devices as slave devices for
multiple-buffered analog input operations.

MM /E F— Macter TackiD Out
Master TaskID ——(Config
5lave TasklD List ——

— Statux

A Warning This VI is supported only up to NI-DAQ version 4.9.0 and has been removed from
the Calibration and Configuration palette. This VI is still included in the DAQ VI
Library for compatibility only, therefore if you are using NI-DAQ version 5.0 or
later, this VI will return the following messagedeviceSupportError . Ifyou
wish to use this VI, please reinstall NI-DAQ version 4.9.0 or an earlier version.

Makes sure LabVIEW always re-enables the slave debiefesethe master device in a
multiple-buffer analog input operation. Only the following devices, which support multiple
buffered acquisitions, can use this VI.

e (Macintosh) NB-A2000, NB-A2100, and NB-A2150.

LabVIEW Function and VI Reference Manual 29-14 © MNational Instruments Corporation

Chapter 29 Calibration and Configuration VIs

The master device sends a trigger or clock signal to the slave device(s) to control the slave
device sampling. In a multiple-buffer acquisition, you must enable the slave device before the
master device to make sure the slave device always responds to a master signal. If you enable
the master device first, it can send a signal to the slave devices before they can respond. You
are responsible for the initial startup order. You should always start the master device last. The
Master Slave Configuration VI makes sure LabVIEW arms the master device last for each
subsequent buffer acquired during a multiple-buffer acquisition.

MIO Calibrate (Windows)
Calibrates the AT-MIO-16F-5, AT-MIO-64F-5, and AT-MIO-16X gain and offset values for
the ADCs and the DACs. You can either perform a new calibration or use an existing set of
calibration constants by copying the constants from their storage location in the onboard
EEPROM. You can store several sets of calibration constants. LabVIEW automatically loads
the calibration constants stored in the EEPROM load area during startup or when you reset
the device.

reference location
Dact channel

D ACO channel]

device 10 device out
calibration —|Calibr| |
save new calibration —]

EEFROM location —
reference channel Q
reference voltage

status

The load area for the AT-MIO-16F-5 is user area 5. The load area for the AT-MIO-64F-5 and
AT-MIO-16X is user area 8.

é Warning Read the calibration chapter in your device user manual before using the
MIO Calibrate VI.

Refer to Appendix BDAQ Hardware Capabilitiesfor more information on the
AT-MIO-16F-5, AT-MIO-64F-5, and AT-MIO-16X DAQ devices.

7= Note You should always calibrate the ADC and the DACs after you calibrate the internal
reference voltage.

Note If the device takes analog input measurements with the wrong set of calibration
constants loaded, you may get erroneous data.

© MNational Instruments Corporation 29-15 LabVIEW Function and VI Reference Manual

Chapter 29 Calibration and Configuration VIs

MIO Configure (Windows)

Turns dithering on and off. This VI supports the following deviédsMIO-16F-5,
AT-MIO-64F-5, all 12-bit E-Series devices, and all 1200 Series devices.

device 10 device oul
dither — |Config
status

Refer to Appendix BDAQ Hardware Capabilitiesfor more information on the devices
supported by this VI.

Route Signal

Use this VI to route an internal signal to the specified 1/0 connector or RTSI bus line, or to
enable clock sharing through the RTSI bus clock line.

Note This VI is supported by E-Series and 54XX Series devices only.

task 1D Fioute task ID out
zignal narne — %
signal source mrﬂ—l oo prror out
error in {no error)

RTSI Control

Connects or disconnects trigger and timing signals between DAQ devices along the
Real-Time System Integration (RTSI) bus.

device Crtrl device out
control code — == 1{rigger line usermnap

-
board signal — [‘ﬁ[‘ﬁ status
trigger line

direction

This VI is not supported for E-Series devices. For E-Series devices, multiple RTSI
connections can be set directly in the analog input, analog output, and counter VIs and

used along with the Route Signal VI. Other RTSI connections must be made using the
Route Signal VI.

LabVIEW Function and VI Reference Manual 29-16 © MNational Instruments Corporation

Chapter 29 Calibration and Configuration VIs

Scaling Constant Tuner

Adjusts the scaling constants, which LabVIEW uses to account for offset and non-ideal gain,
to convert analog input binary data to voltage data.

task ID

channel Tist :opecacaq !

binary offsets —F |}
precision voltages
binary readings

task ID out
binary offsets aul
actual gains out
status

For more information on the Scaling Constant Tuner VI, see the Scaling Constant Tuner VI
description in Chapter 3@ignal Conditioning Vls

SCXI Cal Constants

Calculates calibration constants for the given channel and range or gain using measured
voltage/binary pairs. You can use this VI with any SCXI module.

TE Gain [1.0)

Cal Constant In 1
Volt/ Amp 2
Volt/dmp 1

SCEI Chassis Cluster
Task ID - Task 10 Out

A
Op Code Cal Cal Constant Out 1

Cal Area Lonzt L Cal Canstant Out 2
Range Code ertar out
SCH1 Gain
ertor in [no ertor) soooo
LAl Board Cluster s
Binary 1
Binary 2
Cal Constant In 2

Set DAQ Device Information
Sets the data transfer mode for different types of operations.

task ID SET task ID out
inforrmation type
infarrmation setting error out
error in {no error)

Refer to Appendix BDAQ Hardware Capabilitiesfor the transfer methods available with
your DAQ device.

© MNational Instruments Corporation 29-17 LabVIEW Function and VI Reference Manual

Chapter 29 Calibration and Configuration VIs

Set SCXI Information
Sets the SCXI chassis configuration information.

slot inforration

device string
chassis type ——
chassis address — | [{Fo

communication mode — |

cornrnunication path

status

Use this VI to override the configuration already set with the configuration utility. You can
use this Vlinsteadof using the configuration utility to enter the chassis configuration
information. If you do not use this VI, the first VI that accesses an SCXI chassis automatically

tries to load information from the configuration file.

Channel Configuration Vls

The following illustration shows the Channel Configurations VIs palette.

-—HDAQ Channel Utilities

GET
MHAMES IMFO

A A

Scale
IMF

MFO
RS

Get DAQ Channel Names
Returns an array of all the channel names in the default configuration file. A corresponding
array of the channels' configured physical units is also returned. tfgingel typg you can
chose to retrieve all channels, or only analog input and analog output, or digital /0 channels.

channel lype \ZET channel names
Wl Rea charinel uritz
=t gror out

eror in [no ermor)

5 Note This VI is specific to computers running NI-DAQ 5.0 or later. LabVIEW returns
an UnsupportedError message if you attempt to run this VI on computers not
running NI-DAQ 5.0 or later.

LabVIEW Function and VI Reference Manual 29-18 © MNational Instruments Corporation

Chapter 29 Calibration and Configuration VIs

Get Channel Information
Returns configuration information about a channel configured in the DAQ Channel Wizard.

channel name THFO channel narne out
hn

infarmation tpe o infarmation string
. FECh . .

2Irar in [ho errgr] === = “"E infarmation wal.ie
error ot

Note This VI is specific to computers running NI-DAQ 5.0 or later. LabVIEW returns
an UnsupportedError message if you attempt to run this VI on computers not
running NI-DAQ 5.0 or later.

Get Scale Information
Returns configuration information about a scale configured in the DAQ Channel Wizard.

zcale name Tcale zcale name out
_ ‘I—ﬂgq':'b—l_i" dezcription
ermar in (o errar) = “Lm zcale type
efrar ouk
coeffizients 1
coefficients 2

5 Note This VI is specific to computers running NI-DAQ 5.0 or later. LabVIEW returns
an UnsupportedError message if you attempt to run this VI on computers not
running NI-DAQ 5.0 or later.

© MNational Instruments Corporation 29-19 LabVIEW Function and VI Reference Manual

Signal Conditioning Vls

This chapter describes the data acquisition Signal Conditioning VIs, which
you use to convert analog input voltages read from resistance temperature
detectors (RTDs), strain gauges, or thermocouples into units of strain or
temperature.

You can edit the conversion formulas used in these VIs or replace them with
your own to meet the specific accuracy requirements of your application. If
you edit or replace the formulas, you should save the new VI in one of your
own directories or folders outside ofib

You can access the Signal Conditioning VIs by chooBiunctions»
Data Acquisition»Signal Conditioning, as shown below.

EI:I Data Acquisition

Signal Conditioning
EK\ g E'\’ g EE:. ' EE:. '
LI
E'.- k(). k
MISG vl ﬁ—u:ﬂﬁignal Conditioning

EHEEHI:I TC LIN T“"H"‘ll5 e | |

ARLLBUFF || M 3| g RID
=1 ﬂcnnu STRATH
W k= || ok B
scalg | Pl il
o
”s £Zah
Sl e

© MNational Instruments Corporation 30-1 LabVIEW Function and VI Reference Manual

Chapter 30 Signal Conditioning Vs

Signal Conditioning VI Descriptions

The following Signal Conditioning VIs are available.

Convert RTD Reading

Converts a voltage you read from an RTD into temperature in Celsius.

Fo——
RTDwvalks Sl RTDtemp
e —'_1-35‘:-”3;

A —

P

This VI first finds the RTD resistance by dividiRJ DVolts by lex. The VI then converts the
resistance to temperature using the following solution to the Callendar Van-Dusen equation
for RTDs:

Rt=Rd1 + At + B2 + C(t — 100)3]

For temperatures abové G, the C coefficient is 0, and the preceding equation reduces to a
quadratic equation for which the algorithm implemented in the VI gives the appropriate root.
So, this conversion VI is accurate only for temperatures alfo@e 0

Your RTD documentation should give yBo and theA andB coefficients for the Callendar
Van-Dusen equation. The most common RTDs are(1@latinum RTDs that either follow
the European temperature curve (DIN 43760) or the American curve. The following table
gives the values fok andB for the European and American curves.

European Curve (DIN 43760) American Curve
A = 3.90802e-03 A = 3.9784e-03
=-5.80195e-07 B = -5.8408e-07
(a = 0.00385p = 1.492) (o= 0.00392p = 1.492)

Some RTD documentation gives valuesdando, from which you can calculate andB
using the following equations:

A = a(l +93/100)

B = -00/10¢?

LabVIEW Function and VI Reference Manual 30-2 © MNational Instruments Corporation

Chapter 30 Signal Conditioning Vs

Convert Strain Gauge Reading
Converts a voltage you read from a strain gauge to units of strain.

Rog120

GF (2.0

w [0.0]
Vea (0.0] W ——— Strain

Bridge Configuration [3:Hal... —] STRATH
Wew [3.33] —
"Wirit [0.0] —
RI0.0 ——

The conversion formula the VI uses is based solely on the bridge configuration. Figures 30-1
through 30-3 show the seven bridge configurations you can use and the corresponding
formulas. For all bridge configurations, the VI uses the following formula to o¥tain

Vr = (Vsg—Vinit) / Vex

In the circuit diagrams, ®UT is the voltage you measure and pass to the conversion VI as the
Vsg parameter. In the quarter-bridge and half-bridge configuratRknandR2 are dummy
resistors that are not directly incorporated into the conversion formula. The SCXI-1121 and
SCXI-1122 modules provide1 andR2 for a bridge-completion network, if needed.

Refer to youiGetting Started with SCxhanual for more information on bridge-completion
networks and voltage excitation.

© MNational Instruments Corporation 30-3 LabVIEW Function and VI Reference Manual

Chapter 30

Signal Conditioning Vs

Figures 30-1 through 30-3 illustrate the bridge-completion networks available.

RL
VWV
R1 Rg (¢)
+
i RL
Vex = —@+ MA
R2 r3 RL
bridgeConfig = 1 (Qtr Bridge 1)
strain (g) = — 4V x (1 + R
GF (1 +2V) Rg
RL
VWA
R1 Rg (¢)
+
. RL
Vex — _@+
R2 Rg (dummy)
RL
— AW~
bridgeConfig = 1 (Qtr Bridge 1)
strain (g) =—— 4Ve (R
GF (1 +2V) Rg

LabVIEW Function and VI Reference Manual

30-4

Figure 30-1. Strain Gauge Bridge Completion Networks (Quarter-Bridge Configuration)

© National Instruments Corporation

Chapter 30

RL
VA%AAY

RL
VWW\

Rg (+¢)

RL
VWW»

Rg (-ve)

A=

bridgeConfig = 2 (Half Bridg

— 4V,
GF [(1 + V) - 2V (v — 1)]

strain (g) =

RL

el)

x(1+

2)

Rg

Rg (+€)

Rg (-¢)

A=

RL

strain (g) = _Gz_l\:/r x

bridgeConfig = 3 (Half Bridge 1)

Signal Conditioning Vs

(=)
Rg

© MNational Instruments Corporation

30-5

Figure 30-2. Strain Gauge Bridge Completion Networks (Half-Bridge Configuration)

LabVIEW Function and VI Reference Manual

Chapter 30 Signal Conditioning Vs

+€

+€

bridgeConfig = 4 (Full Bridge I)

—V

strain (g) = GF

+€

+VE

bridgeConfig = 5 (Full Bridge I1)
. A
strain (g) = —GF(V 1)

+€

bridgeConfig = 6 (Full Bridge Il1)
o —av
" =
st (&) = sErw D -V, v =]

Figure 30-3. Strain Gauge Bridge Completion Networks (Full-Bridge Configuration)

Convert Thermistor Reading
Converts a thermistor voltage into temperature. This VI has two different modes of operation

for voltage-excited and current-excited thermistors.

Type of Excitation 1
THERMT Temperature

Yoltage
[

Voltage Reference — L=
R —— &2

T =n

Excitation Current

LabVIEW Function and VI Reference Manual 30-6 © MNational Instruments Corporation

Chapter 30 Signal Conditioning Vs

This VI has two modes of operation for use with different types of thermistor circuits.
Figure 30-4 shows how the thermistor can be connected to a voltage reference. This is the
setup used in the SCXI-1303, SCXI-1322, SCXI-1327, and SCXI-1328 terminal blocks,
which use an onboard thermistor for cold-junction compensation.

VREF

Figure 30-4. Circuit Diagram of a Thermistor in a Voltage Divider

Figure 30-5 shows a circuit where the thermistor is excited by a constant current source.
An example of this setup would be the use of the DAQPad-MIO-16XE-50, which provides a
constant current output. The DAQPad-TB-52 has a thermistor for cold-junction sensing.

Figure 30-5. Circuit Diagram of a Thermistor with Current Excitation

© MNational Instruments Corporation 30-7 LabVIEW Function and VI Reference Manual

Chapter 30 Signal Conditioning Vs

If the thermistor is excited by voltage, the following shows equation relating the thermistor
resistance, R to the input values:

R, = R, 1 Yo p
Veer—VoH

If the thermistor is current excited, the equation is

\Y;
0
R —

IEX

The following equation is the standard formula the VI uses for converting a thermistor
resistance to temperature:

1

Te = 5
a+ b(InR;)+c(INR;)

The values used by this VI far b, andc are given below. These values are correct for the
thermistors provided on the SCXI and DAQPad-TB-52 terminal blocks. If you are using a
thermistor with different values fa; b, andc (refer to your thermistor data sheet), you can
edit the VI diagram to use your ovanb, andc values.

a=1.295361E-3
b=2.343159E-4
c=1.018703E-7

The VI produces a temperature in degrees Celsius. Thergforel — 273.15.

Convert Thermocouple Buffer
Converts a voltage buffer read from a thermocouple into a temperature buffer value in degrees
Celsius.

Yoltage Buffer TC LIN Temperature Buffer
CJC Yoltage BLUFF

ThermocoupleType ilﬁ_
CJC Sensor(D)

Convert Thermocouple Reading
Converts a voltage read from a thermocouple into a temperature value in degrees Celsius.

Thermucnl.l.!!‘:lle Yoltage
C Voltage
ThermocoupleType

CJC Sensor[0]

KEEHD Linearized Temperature

LabVIEW Function and VI Reference Manual 30-8 © MNational Instruments Corporation

Chapter 30 Signal Conditioning Vs

Scaling Constant Tuner
Adjusts the scaling constants, which LabVIEW uses to account for offset and non-ideal gain,
to convert analog input binary data to voltage data.

task ID] task ID out
channel Tist sgposssaq LONS binary offsets aul
binary offsets — |40 actual gains out
precision voltages status
binary readings

To use this VI correctly, you must first take two analog input readings—a zero offset reading
and a known-voltage reading.

The default binary offset for each channel in the growp ® determine the actual binary
offset for a channel path, ground the channel inputs and take a binary reading, or take multiple
binary readings and average them to get fractional LSBs of the offset.

If you use SCXI, ground the inputs of the SCXI channels to measure the offset of the entire
signal path, including both the SCXI module and the DAQ device. The SCXI-1100,
SCXI-1122, and SCXI-1141 modules have an internal switch you can use to ground the
amplifier inputs without actually wiring the terminals to ground. To use this feature, type the
special SCXI strin@ALGNDON your SCXI channel string as described inAlneplifier Offset
section of Chapter 2Zommon SCXI Applicationg theLabVIEW Data Acquisition

Basics ManualUse intermediate or advanced analog input VIs to get binary data instead of
voltage data.

Note If your device supports dithering, you should enable dither on your DAQ device
when you take multiple readings and average them.

LabVIEW assumes the DAQ devices gain settings and SCXI modules are ideal when it scales
binary readings to voltage, unless you use this VI to determine actual gain values for the
channels. Apply a known precision voltage to each channel and take a binary reading, or take
multiple readings from each channel and compute an average binary reading for each channel.
Your precision voltage should be about ten times as accurate as the resolution of your

DAQ device to produce meaningful results. When you Winary readings, precision

voltages andbinary offsetsto this VI, LabVIEW determines the actual gain using the

following formula:

voltage resolution A binary reading binary off$et
precision voltage

actual gain=

In this formula, thevoltage resolutionvalue expressed in volts per LSB and is a value that
varies depending on the DAQ device type, the polarity setting, and the input range setting. For
example, the voltage resolution for a PCI-MIO-16E-1 device in bipolar mode with an input

© MNational Instruments Corporation 30-9 LabVIEW Function and VI Reference Manual

Chapter 30 Signal Conditioning Vs

range of +5to -5 V is 2.44 mV. The VI returns an array of the actual gain values that the VI
stores for each channel.

Note When you take readings to determine the offset and actual gain, you should use
the same input limits settings and clock rates that you use to measure your input
signals.

LabVIEW uses the following equation to scale binary readings to voltage:

voltage resolution { binary reading binary off$et
gain

voltage =

When you run the Al Group Config VI, it sets the attributes of all the channels in the group
to their defaults, including the binary offset and gain values.

You can wirechannel listif you want to adjust the scaling constants for a subset of the
channels in the group. If you leageannel listunwired, the VI adjusts the scaling constants
for all channels in the group. The VI uses the same method as the Al Hardware Config VI to
apply values in thbinary offsets, precision voltages andbinary readings input arrays.

That is, if you wirecchannel listto this VI, the first element (at index 0) of the input arrays
(binary offsets, precision voltages andbinary readings) apply to the channels listed at

index 0 ofchannel list If you leavechannellist unwired, the first values of the input arrays
apply to the first channel in the group. The VI applies the values of each input array to
channel listchannels or the group in this manner until the VI exhausts the arrays. If channels
in channel listor in the group remain unconfigured, the VI applies the final values in the
arrays to all the remaining unconfigured channels.

If you want to adjust only the channel offsets, and you want to assume the gain settings on the
DAQ device and SCXI modules are ideal, wire drilyary offsets and leaverecision
voltagesandbinary readings unwired.

You can also use this VI to retrieve the binary offset and actual gain values for all the channels
in the group by wirindaskID only.

After you use this VI to adjust the scaling constants for a channel path, any analog input Vis
that return voltage data use the adjusted constants for scaling. You can use the Al Group
Config VI to reset the scaling constants for each channel in the group to their default values
(zero offset and ideal gain).

LabVIEW Function and VI Reference Manual 30-10 © MNational Instruments Corporation

Chapter 30 Signal Conditioning Vs

SCXI Temperature Scan

This VI returns a single scan of temperature data from a list of SCXI channels. The
SCXI Temperature Scan VI uses averaging to reduce 60 Hz and 50 Hz noise, performs
thermocouple linearization, and performs offset compensation for the SCXI-1100 module.

CJC sensor type (IC)
ternperature units (C) —
dewicel 1) S readings
channels CobOlsc1 Imd1 1030 g
channel zenzor tupes (J te) =)'
channel signal limits (£50C)
ertor in Cno error)
iteration

error out

© MNational Instruments Corporation 30-11 LabVIEW Function and VI Reference Manual

Part i

Instrument I/0 Functions and Vs

Part 1, Instrument I/O Functions and Vldescribes LabVIEW instrument
drivers and GPIB, serial port, instrument driver template, and VISA Vls
and functions. This part contains the following chapters:

Chapter 31introduction to LabVIEW Instrument I/O Vlgtroduces
LabVIEW instrument drivers and GPIB, serial port, instrument driver
template, and VISA Vls and functions.

Chapter 32Instrument Driver Template Vldescribes the Instrument
Driver Template VIs.

Chapter 33YISA Library Referencalescribes the VISA Library
Reference operations and attributes.

Chapter 34Traditional GPIB Functionsdescribes the traditional
GPIB functions.

Chapter 35GPIB 488.2 Functiondescribes the IEEE 488.2 (GPIB)
functions.

Chapter 36Serial Port Vis describes the Vs for serial port
operations.

Introduction to LabVIEW
Instrument 1/0 Vis

This chapter describes LabVIEW instrument drivers and GPIB, serial port,
instrument driver template, and VISA VIs and functions.

You can find the Instrument Driver Vls in tR@nctions palette from your
block diagram in LabVIEW. The Instrument Driver VIs are located near the
bottom of theFunctions palette.

To access thimstrument I/O palette, choosEunctions»sinstrument 1/0O ,
as shown in the following illustration.

s Functions x| |
Instrument 1/0

3 3
@ 23] [F
3 — ¥
=
s e » »
M
3

TTE e
B! '. —1HInstrument 1/0

EREs

Tnste Likh ' E Z
o | [

T LD

© MNational Instruments Corporation 31-1 LabVIEW Function and VI Reference Manual

Chapter 31 Introduction to LabVIEW Instrument I/0 VlIs

Thelnstrument I/O palette consists of the following subpalettes:

* VISA

e Traditional GPIB
« GPIB 488.2

e Serial

You can find helpful information about individual VIs online by using the
LabVIEW Help window Help»Show Helg. When you place the cursor

on a Vlicon, the wiring diagram and parameter names for that VI appear
in the Help window. You also can find information for front panel controls
or indicators by placing the cursor over the control or indicator with

the Help window open. For more information on the LabVIEW Help
window, refer to thé&etting Helpsection in Chapter Introduction to

G Programming of theG Programming Reference Manual.

In addition to the Help window, LabVIEW has more extensive online
information available. To access this information, sdtep»Online
Reference For most block diagram objects, you can selatdine
Referencefrom the object’s pop-up menu to access the online description.
For information about creating your own online reference files, see the
Creating Your Own Help Filesection in Chapter Brinting and
Documenting Vlisof theG Programming Reference Manual

Instrument Drivers Overview

A LabVIEW instrument driver is a set of VIs that control a programmable
instrument. Each VI corresponds to a programmatic operation such as
configuring, reading from, writing to, or triggering the instrument.
LabVIEW instrument drivers simplify instrument control and reduce test
program development time by eliminating the need to learn the low-level
programming protocol for each instrument.

The LabVIEW instrument driver library from National Instruments
contains instrument drivers for a variety of programmable instrumentation,
including GPIB, VXI, and serial. If a driver for your instrument is in the
library, you can use it as is to control your instrument. Instrument drivers
are distributed with a block diagram source code, so you can customize

LabVIEW Function and VI Reference Manual 31-2 © MNational Instruments Corporation

Chapter 31 Introduction to LabVIEW Instrument I/0 Vs

them for your specific application, if needed. If a driver for your particular
instrument does not exist, try one of the following suggestions:

e Use a driver for a similar instrument. Often similar instruments from
the same manufacturer have similar, if not identical, instrument
drivers.

* Modify the Instrument Driver Template VIs to create a new driver for
your instrument.

* Use either the GPIB, VXI, Serial, or VISA I/O libraries provided with
LabVIEW to send and receive commands directly to and from your
instrument.

* Refer to Chapter Getting Started with a LabVIEW Instrument
Driver, in theLabVIEW User Manuaior information on how to start
using LabVIEW instrument drivers from National Instruments.

Instrument Driver Distribution

LabVIEW instrument drivers are distributed in a variety of media including
electronically via bulletin board and internet, and on CD-ROM.

You can download the latest versions of the LabVIEW instrument drivers
from one of the National Instruments bulletin boards and, if you have
internet access, you can download the latest instrument driver files from the
National Instrument File Transfer Protocol site. SeeBihietin Board
SupportandFTP Supporsections of Appendix DZustomer

Communication

CD-ROM Instrument Driver Distribution

The entire library of LabVIEW instrument drivers is available on
CD-ROM. The instrument driver CD-ROM is available from National
Instruments at no charge.

You can retrieve the latest instrument driver list on a touch-tone phone by
calling the National Instruments automated fax system, Fax-on-Demand, at
(512) 418-1111 or by calling National Instruments.

© MNational Instruments Corporation 31-3 LabVIEW Function and VI Reference Manual

Chapter 31 Introduction to LabVIEW Instrument I/0 VlIs

Instrument Driver Template Vis

The LabVIEW instrument driver templates are the foundation for all
LabVIEW instrument driver development. The templates have a simple,
flexible structure and a common set of instrument driver VIs that you can
use for driver development. The VIs establish a standard format for all
LabVIEW drivers and each has instructions for modifying it for a particular
instrument.

The LabVIEW instrument driver templates are predefined instrument
driver Vls that perform common operations such as initialization, self-test,
reset, error query, and so on. Instead of developing your own VIs to
accomplish these tasks, you should use the LabVIEW instrument driver
template VIs, which already conform to the LabVIEW standards for
instrument drivers.

Chapter 32|nstrument Driver Template V,lprovides more information
on the Instrument Driver Template VIs.

Introduction to VISA Library

VISA (Virtual Instrument Software Architecture) is a single interface
library for controlling VXI, GPIB, RS-232, and other types of instruments.
The VISA Library provides a standard set of 1/O routines used by all
LabVIEW instrument drivers. Using the VISA functions, you can construct
a single instrument driver VI which controls a particular instrument model
across different I/O interfaces.

An instrument descriptor string is passed to the VISA Open function in
order to select which kind of 1/0 will be used to communicate with the
instrument. Once the session with the instrument is open, functions such as
VISA Read and VISA Write perform the instrument I/O activities in a
generic manner such that the program is not tied to any specific GPIB or
VXI functions. Such an instrument driver is considered to be interface
independent and can be used as is in different systems.

Instrument drivers that use the VISA functions perform activities specific
to the instrument, not to the communication interface. This creates more
opportunities for using the instrument driver in many diverse situations.

For more information on VISA functions, see Chapten83A Library
Reference

LabVIEW Function and VI Reference Manual 31-4 © MNational Instruments Corporation

Chapter 31 Introduction to LabVIEW Instrument I/0 Vs

Introduction to GPIB

The General Purpose Interface Bus (GPIB) is a link, or interface system,
through which interconnected electronic devices communicate.

LabVIEW Traditional GPIB Functions

These traditional GPIB functions are compatible with both IEEE 488 and
IEEE 488.2 devices and are sufficient for most applications. For more
complex applications, such as using several devices and more than one
GPIB interface, you can use the GPIB IEE 488.2 functions.

For more information on the LabVIEW Traditional GPIB functions, see
Chapter 34 Traditional GPIB Functions

GPIB 488.2 Functions

Using GPIB 488.2 functions together with IEEE 488.2-compatible devices
improves the predictability of instrument and software behavior and
lessens programming differences between instruments of different
manufacturers.

The latest revisions of many National Instruments GPIB boards

are fully compatible with the IEEE 488.2 specification for controllers.
The LabVIEW package also contains functions that use |IEEE 488.2.

By using these functions, your programming interface will strictly adhere
to the IEEE 488.2 standard for command and data sequences.

The GPIB 488.2 functions contain the same basic functionality as the
traditional GPIB functions, and include the following enhancements and
additions:

* You specify the GPIB device address with an integer instead of a
string. Further, you specify the bus number with an additional numeric
control, which makes dealing with multiple GPIB interfaces easier.

* You can determine the GPIB status, error, and/or byte count
immediately from the connector pane of each GPIB 488.2 function.
You no longer need to use the GPIB Status Function to obtain error and
other information.

e The FindLstn function implements the IEEE 488.2 Find All Listeners
protocol. You can use this function at the beginning of an application
to determine which devices are present on the bus without knowing
their addresses.

© MNational Instruments Corporation 31-5 LabVIEW Function and VI Reference Manual

Chapter 31

Introduction to LabVIEW Instrument I/0 VlIs

« The GPIB Misc function is still available, but it is no longer
necessary in most cases. |[EEE 488.2 specifies routines for most
GPIB application needs, which are implemented as functions.
However, you can mix the GPIB Misc function, as well as other
GPIB functions, with the GPIB 488.2 functions if you need to.

e There are GPIB 488.2 functions with low-level as well as high-level
functionality, to suit any GPIB application. You can use the low-level
functions in non-controller situations or when you need additional
flexibility.

e Although you must use an IEEE 488.2-compatible controller with
these functions, they can control both IEEE 488.1 and IEEE 488.2
devices. The GPIB 488.2 functions are divided into five functional
categories: single-device, multiple-device, bus management,
low-level, and general.

Single-Device Functions

The single-device functions perform GPIB I/O and control operations with
a single GPIB device. In general, each function accepts a single-device
address as one of its inputs.

For more information on single-device functions, see Chapter 35,
GPIB 488.2 Functions

Multiple-Device Functions

The multiple-device functions perform GPIB I/0O and control operations
with several GPIB devices at once. In general, each function accepts an
array of addresses as one of its inputs.

For more information on multiple-device functions, see Chapter 35,
GPIB 488.2 Functions

Bus Management Functions

The bus management functions perform system-wide functions or report
system-wide status.

For more information on bus management functions, see Chapter 35,
GPIB 488.2 Functions

LabVIEW Function and VI Reference Manual 31-6 © MNational Instruments Corporation

Chapter 31 Introduction to LabVIEW Instrument I/0 Vs

Low-Level Functions

The low-level functions let you create a more specific, detailed program
than higher-level functions. You use low-level functions for unusual
situations or for situations requiring additional flexibility.

For more information on low-level functions, see Chapter 35,
GPIB 488.2 Functions

General Functions
The general functions are useful for special situations.

For more information on general functions, see Chapter 35,
GPIB 488.2 Functions

Serial Port VI Overview

The serial port VIs configure the serial port of your computer and conduct
I/O using that port.

For more information on serial port functions, see Chapter 36,
Serial Port Vs

© MNational Instruments Corporation 31-7 LabVIEW Function and VI Reference Manual

32

Instrument Driver Template Vis

This chapter describes the Instrument Driver Template VIs. These Vls are
located inexamples\instrinsttmpl.lib

Introduction to Instrument Driver Template Vis

The LabVIEW instrument driver templates are the foundation for all
LabVIEW instrument driver development. The templates have a simple,
flexible structure and a common set of instrument driver VIs that you can
use for driver development. The templates establish a standard format for
all LabVIEW drivers and each has instructions for modifying it for a
particular instrument. The LabVIEW instrument driver templates contain
the following 11 predefined template component VIs:

PREFIX Initialize

PREFIX Initialize (VXI, Reg-based)
PREFIX Close

PREFIX Reset

PREFIX Self Test

PREFIX Error Query

PREFIX Error Query (Multiple)
PREFIX Error Message

PREFIX Revision Query

PREFIX Message-Based Template
PREFIX Register-Based Template

The templates contain the following support VIs:

PREFIX Utility Clean Up Initialize
PREFIX Utility Default Instrument Setup

They also contain PREFIX VI Tree, a VI Example Tree.

© MNational Instruments Corporation

32-1 LabVIEW Function and VI Reference Manual

Chapter 32 Instrument Driver Template VIs

Rather than developing your own VIs to accomplish these tasks, you can
use the LabVIEW instrument driver template VIs, which already conform
to the LabVIEWSstandards for instrument drivers. The template Vls are
IEEE 488.2-compatible and work with IEEE 488.2 instruments with
minimal modifications. For non-IEEE 488.2 instruments, use the template
VlIs as a shell or pattern, which you can modify by substituting your
corresponding instrument-specific commands where applicable. After
modifying the VIs, you have the base-level driver that implements all of the
template instrument driver Vls for your particular instrument.

Additionally, LabVIEW instrument drivers developed from the template
VIs are similar to other instrument drivers in the library. Therefore, you
have a higher level of familiarity and understanding when you work with
multiple instrument drivers.

Instrument Driver Template VI Descriptions

The following Instrument Driver Template VIs are available.

Note To develop your own Instrument Driver VI, follow the instructions on the front
panel of the Template VI.

PREFIX Close
All LabVIEW instrument drivershould include a Close VI. The Close VI is the last VI called
when controlling an instrument. It terminates the software connection to the instrument and
deallocates system resources. Additionally, you can choose to place the instrument in an idle
state. For example, if you are developing a switch driver, you can disconnect all switches
when closing the instrument driver.

W54 zession FREFIR
A
Cloze

error in [no ermor)

errar out

PREFIX Error Message
The PREFIX Error Message VI is a template for creating an Error Message VI for your
particular instrument. It translates the error status information returned from a LabVIEW
instrument driver VI to a user-readable string.

., S tatus
WS4 session [FREFTE | dup V154 sezsion
Type aof Dialag [1: OF Mzq) EHWLL Errar Code (0]
erar in (o erar] Erx “"Lm Error Meszage [emphy]
errar out

LabVIEW Function and VI Reference Manual 32-2 © MNational Instruments Corporation

Chapter 32 Instrument Driver Template Vis

PREFIX Error Query, Error Query (Multiple) and Error Message
If an instrument has error query capability, the LabVIEW instrument driver has Error Query
and Error Message VIs. The Error Query VI queries the instrument and returns the
instrument-specific error information. The Error Message VI translates the error status
information returned from a LabVIEW instrument driver VI into a user-readable string.

WS4 sezsion '-“kE dup W54 seszion
! L Error
error in [no emor) Ll "““-’% Error Message
error aut

PREFIX Initialize and PREFIX Initialize (VXI, Reg-based)

The Initialize VI is the first VI called when you are accessing an instrument driver. It
configures the communications interface, manages handles, and sends a default command to
the instrument. Typically, the default setup configures the instrument operation for the rest of
the driver (including turning headers on or off, or using long or short form for queries). After
successful operation, the Initialize VI returngl8A sessionthat addresses the instrument in

all subsequent instrument driver VlIs. The Initialize VI is a template for message-based
instruments while Initialize (VXI, Reg-based) is for register-based instruments.

FREFIi-F

[nztrument Descriptar [WVE:] W54 zegsion
ID Query [T: Check] - -pleitis
Reset [T: Ressat] - errar out

Erar in (o erraor)

The VI has annstrument Descriptor string as an input. Based on the syntax of this input,

the VI configures the 1/O interface and generates an instrument handle for all other instrument
driver VIs. The following table shows the grammar forltisgrument Descriptor. Optional
parameters are shown in square brackets (

Interface Syntax
GPIB GPIB[board]::primary address[::secondary
address][::INSTR]
VXI VXI::VXI logical address[::INSTR]
GPIB-VXI GPIB-VXI[board][::GPIB-VXI primary address]::VXI

logical address[::INSTR]

Serial ASRL[board][::INSTR]

© MNational Instruments Corporation 32-3 LabVIEW Function and VI Reference Manual

Chapter 32 Instrument Driver Template VIs

The GPIB keyword is used with GPIB instruments. The VXI keyword is used for either
embedded or MXIbus controllers. The GPIB-VXI keyword is used for a National Instruments
GPIB-VXI controller.

The following table shows the default values for optional parameters.

Optional Parameter Default Value
board 0
secondary address none
GPIB-VXI primary address 1

Additionally, the Initialize VI can perform selectable ID query and reset operations. In other
words, you can disable the ID query when you are attempting to use the driver with a similar
but different instrument without modifying the driver source code. Also, you can enable or
disable the reset operation. This feature is useful for debugging when resetting would take the
instrument out of the state you were trying to test.

PREFIX Message-Based Template and Register-Based Template

The PREFIX Message-Based and Register-Based Template VIs are the starting point for
developing your own instrument driver VIs. The template VIs have all required instrument
driver controls, and instructions for modification for a particular instrument.

WIS zegzion REFIH | dup 154 seszion
1 Remy
2rrar in [ho ermar] F"— gl errar oLt

PREFIX Register-Based Template

The PREFIX Register-Based Template VI is a template for creating a register-based VI for
your particular instrument.

WISA zegzion HEFIH] dup %154 seszion

| R
2Irar in [ho ermar] sz Tigl] error oLt

PREFIX Reset

All LabVIEW instrument drivers have a Reset VI that places the instrument in a default state.
The default state that the Reset VI places the instrument in should be documented in the help
information for the Reset VI. In an IEEE 488.2 instrument, this VI sends the command string
*RST to the instrument. When you reset the instrument from the Initialize VI, this VI is called.

LabVIEW Function and VI Reference Manual 32-4 © MNational Instruments Corporation

Chapter 32 Instrument Driver Template Vis

Also, you can call the Reset VI separately. If the instrument cannot perform reset, the
Reset VI should return the literal striRgset Not Supported

WS4 sezsion dup V154 zeszion
_ Beg
error in [no emor| {Resat | error out

PREFIX Revision Query

LabVIEW instrument drivers have a Revision Query VI. This VI outputs the following:
e The revision of the instrument driver.

* The firmware revision of the instrument being used. (If the instrument firmware revision
cannot be queried, the Revision Query VI shaetdrn the literal stringirmware
Revision Not Supported J)

WISA sezzion FREFLE dup W54 sezsion
) =imi'" Instr Driver R evisian
errar in [no erraor) ““‘“’“MF‘“LE Inztr Firmesare Bevigion

errar out

PREFIX Self-Test

If an instrument has self-test capability, the LabVIEW instrument dsiveuld contain a
Self-Test VI to instruct the instrument to perform a self-test and return the result of that
self-test. If the instrument cannot perform a self-test, the Self-Test VI returns the literal string
Self-Test Not Supported

WISA zezzion FREFIE dup 154 zeszion
_Em‘— Self-Test Ermar
EITOr it [0 epror) seeeeee SdE Tart “‘Lﬂ Self-Test Responsze

error ot

PREFIX Utility Clean UP Initialize

Closes an open VISA session if there is an error during initialization. This VI should be called
only from the Initialize VI.

WS4 seszion [FREFTE dup 154 zeszion

i

ermar in [ho errar) {CLEAHUF | &rrar oLt

© MNational Instruments Corporation 32-5 LabVIEW Function and VI Reference Manual

Chapter 32 Instrument Driver Template VIs

PREFIX Utility Default Instrument Setup

Sends a default command string to the instrument whenever ¥l8éwsessionis opened,
or the instrument is reset. Use this VI as a subVI for the Initialize and Reset VIs.

W54 zession FREFIT dup VIS4, zeszion

&rmar in [ho errar] {[EFAULT | &rrar aut

PREFIX VI Tree

The VI Tree VI is a non-executable VI that shows the functional structure of the instrument
driver. It contains the Getting Started VI, application VIs, and all of the component VIs.

LabVIEW Function and VI Reference Manual 32-6 © MNational Instruments Corporation

VISA Library Reference

This chapter describes the VISA Library Reference operations and
attributes.

The following figure shows th&ISA palette, which you access by
selectingFunctions»Iinstrument /0 »VISA.

s Functions B4 |
Ingtrument 1/0

[
e
3]

&
=
5L

AL di

w

=
=

==
2=
- | [

-
|l

e’
-!!—.!!—!!‘ =B «=Instrument 1/0
- 3 I YISA

i) 55
] i | e |

-D:WISA

—
[E] LA =] [E=E] [E]
ERSYIO vsﬁs'\'m E::S:II: atfﬁ!'\'lo atf‘“\'“'
F E‘g‘EI =R =R w R
Ed | s ¥ & 3
;', z—‘? ﬁ H
e % Event
LT [EEH] L7 LA 1A
abow, [|abe~, [[CLR || S5TE || TRE | [T
R [E7]| [t [E0E]| | 4e3 (0] [[EE]| | 42+ (=] | Higgha

[E] LA =]]
8 & N el 20
Lo C=1H || R =1H | | = = TH| #izd |(Low

© MNational Instruments Corporation 33-1 LabVIEW Function and VI Reference Manual

Chapter 33 VISA Library Reference

The VISA palette includes the following subpalettes:

L]

Operations

Event Handling Functions
High-Level Event Access
Low-Level Registry Access
Serial Functions

This section describes the VISA Library Reference operations.

VISA Library Reference Parameters
Most of the VISA Library operations use the following parameters:

VISA sessionis a unique logical identifier used to communicate with
aresource. It is created and linked to a resource by the VISA Open
function. It then is used by other VISA functions to access the resource
and its attributes. The dup VISA session is a copy of the VISA session
that is passed out of the VISA functions. By passing the VISA session
in and out of functions, you can simplify dataflow programming by
chaining functions together. This is similar to the dup file refnums used
by the File 1/O functions.

VISA sessionis set to thénstr class by default. You can change the
class type by popping up on the VISA session control in edit mode and
selecting a different class. The following classes currently are
supported:

— Instr

— GPIB Instr

— VXI/GPIB-VXI/VME RBD Instr
— VXI/GPIB-VXI MBD Instr
— Serial Instr

— Generic Event

— Service Request Event
— Trigger Event

— VXI Signal Event

— VXI/VME Interrupt Event
— Resource Manager

LabVIEW Function and VI Reference Manual 33-2 © MNational Instruments Corporation

Chapter 33 VISA Library Reference

— PXl Instr
— VXI/GPIB-VXI/VME MemAcc

Note The Generic Event, Service Request Event, Trigger Event, VXI Signal Event,
VXI/VME Interrupt Event, and Resource Manager classes can only be passed in
as a VISA session with the VISA Close function and the VISA Property Node.

© MNational Instruments Corporation

VISA functions vary in the class ®SA sessionthat can be wired to
them. The valid classes for each function are indicated in the
documentation. For example, the functions onHigh Level

Register AccesandLow Level Register Accespalettes do not

accept VISA sessions of class GPIB Instr or Serial Instr. If you wire
VISA sessiorto a function that does not accept the class of the session,
or if you wire two VISA sessions of differing classes together, your
diagram will be broken and the error will be reported as a Class
Conflict.

error in anderror out terminals comprise the error clusters in each
VISA function. An error cluster contains three fields. The status field
is a Boolean that is TRUE when an error occurs and FALSE when no
error occurscode fieldis a VISA error code value if an error occurs
during a VISA function. Appendix AError Codes lists the VISA
Reference Library error codesource fieldis a string that describes
where the error has occurred. By wiring énsor out of each function

to theerror in of the next function, the first error condition is recorded
and propagated to the end of the diagram where it is reported in only
one place.

33-3 LabVIEW Function and VI Reference Manual

Chapter 33 VISA Library Reference

VISA Operation Descriptions

These functions appear on the melIBA palette. The valid classes for these functions are
Instr (default), GPIB Instr, Serial Instr, VXI/GPIB-VXI/VME RBD Instr, and
VXI/GPIB-VXI MBD Instr.

Note The following Easy VISA VIs provide a simple interface to the functions they use.
If optimizing performance is important for your application, use the VISA
primitives, also located in this palette.

Easy VISA Find Resources

Finds all the VXI, Serial, and GPIB resources that are available for communication.

gearch (Al Devices) 154 find lizt

ERSYID

I return count
F A
— errar out

EITar in [0 error] sy

Easy VISA Read

Reads data from the resource specified by the resource name. The maximum number of bytes
to be read is determined by the byte count.

resource name
bytes to read [1024)
timeout [10zec)
&rrar in [hio erar]

read buffer
- — return count
= grror out

Easy VISA Serial Write and Read

Writes a command string to the specified serial device then reads the response data. The read
is terminated when the specified termination character is received or after receiving the
number of bytes specified in the bytes to read parameter, whichever is first. If a termination
character is required for writing to the instrument, it needs to be included in the write buffer
string.

parity [0:nione]
termination char [Oxd =" ..
baud rate [3600] E—

_ [esource name r A
wirite: buffer [0 M) Pag S
bytes ta read (1024) R
timeout [10zec]

ermar in (o errar]

data hitz [3]

stap bitz [F: 1 stop Bit] -
flovs contral [0:MNaone]

read return count
read buffer
errar out

L

LabVIEW Function and VI Reference Manual 33-4 © MNational Instruments Corporation

Chapter 33 VISA Library Reference

Easy VISA Write and Read

Writes a command string to the specified device then reads the response data.

bytes to read [1024)

resource name
write buffer [10M]
timeout [10zec)

ermar in [ho erar)

L] [
EREY |

read buffer

nd

mlp

w = write return count
read return count
errar out

Easy VISA Write
Writes a command string to the specified device.
rezource name [C=r] .
wite buffer ["*IDN 7]~ labe% WIIE Teturm count
L= errar oLt

tirmeaout [10zec)
2Iror in [no error)

mln

VISA Assert Trigger
Asserts a software or hardware trigger, depending on the interface type.
VISA seszsion U_:_SRAG dup VIS4 zezzion
protocol [default; 0] -
errar in [ho error) = errar out

VISA Clear
Performs an IEEE 488.1-style clear of the device. For VXI, this is the Word Serial Clear
command; for GPIB systems, this is the Selected Device Clear command. For Serial, this
sends the strintCLS In

YISA session VES'I-iJR dup V154 sezsion
error in [no error] L= IE| Error out

VISA Close
Closes a specified device session or event object. VISA Close accepts all available classes.
For a listing of available classes, see\Wh®A Library Reference Parameteysction earlier
in this chapter.

YISA session

L5

2Iror in [no error) error out

© MNational Instruments Corporation 33-5 LabVIEW Function and VI Reference Manual

Chapter 33 VISA Library Reference

VISA Find Resource

Queries the system to locate the devices associated with a specified interface.

expression [*"]

erar in (o erar)

find lizt

L retumn count
PR grror oulk

L5

¢

The following tables show the expression parameter descriptions for the VISA Find

Resource VI.
Instrument Resources Expression
GPIB GPIB[0-9]*::?*INSTR
VXI VXI?*INSTR
GPIB-VXI GPIB-VXI?*INSTR

GPIB and GPIB-VXI

GPIB?*INSTR

All VXI 2*V/XI[0-9]*::2*INSTR
Serial ASRL[0-9]*::?*INSTR
All 2*INSTR

Memory Resources

Expression

VXI VXI?*MEMACC
GPIB-VXI GPIB-VXI?*MEMACC
All VXI 2*VXI[0-9]*::7*MEMACC
Al *MEMACC

VISA Lock

Establishes locked access to the specified resource.

lock twpe [Exnclusive; 1]
YISA zession
tirmeowt (0]

requested key

ermar in [ho erar)

'.Es.u dup W54 zeszion
- accezs ke
Zd=TH eror ouk

=

LabVIEW Function and VI Reference Manual

33-6 © National Instruments Corporation

Chapter 33 VISA Library Reference

For more information about VISA locking and shared locking, refer to Chapter 8,
LabVIEW VISA Tutoriglin theLabVIEW User Manual

VISA Open

Opens a session to the specified device and returns a session identifier that can be used to call
any other operations of that device.

timeaut (1] ————
YISA zession [for class] WA WISA zezzion

resource name [™) '"‘_l_
access mode mﬂ“"

error in [no eror)

' Jemen grror Ut

The following table shows the grammar for the address string. Optional string segments are
shown in square brackefs]().

Interface Syntax
VXI VXI[board]::VXI logical address[::INSTR]
GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]
GPIB GPIB[board]::primary address[::secondary

address][::INSTR]

ASRL ASRL[board][::INSTR]
VXI VXl[board]::MEMACC
GPIB-VXI GPIB-VXI[board]::MEMACC

The VXI keyword is used for VXI instruments via either embedded or MXIbus controllers.
The GPIB-VXI keyword is used for a GPIB-VXI controller. The GPIB keyword can be used
to establish communication with a GPIB device. The ASRL keyword is used to establish
communication with an asynchronous serial (such as RS-232) device.

The following table shows the default value for optional string segments.

Optional String Segments Default Value
board 0
secondary address none

© MNational Instruments Corporation 33-7 LabVIEW Function and VI Reference Manual

Chapter 33 VISA Library Reference

The following table shows examples of address strings.

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VXI interface VXIO.

GPIB-VXI::9:INSTR A VXI device at logical address 9 in a GPIB-VXI controlled
system.

GPIB::1::0:INSTR A GPIB device at primary address 1, secondary addresg 0 in
GPIB interface O.

ASRL1:INSTR A serial device attached to interface ASRL1.

VXI::MEMACC Board-level register access to the VXI interface.

GPIB-VXI1::MEMACC Board-level register access to GPIB-VXI interface
number 1.

For the access mode parameter, the VRIUEXCLUSIVE_LOCK (1) is used to acquire an
exclusive lock immediately upon opening a session; if a lock cannot be acquired, the session
is closed and an error is returned.

The valuevi_LOAD_CONFIG (4) is used to configure attributes to values specified by some
external configuration utility, such as T&M Explorer (on Windows 95/NT) or VISAconf
(on Windows 3, Solaris 2, and HP-UX).

VISA Read

Reads data from a device. Whether the data is transferred synchronously or asynchronously
is platform-dependent.

YISA zession 'u"-'t-lf-'-ﬂ dup 154 zession
byte count (0] - b =, read buffer
2ITar in [ho errgr] === = return cont
error ot

LabVIEW Function and VI Reference Manual 33-8 © MNational Instruments Corporation

Chapter 33 VISA Library Reference

VISA Read STB
Reads the service requssttusfrom a message-based device. For example, on the
IEEE 488.2 interface, the message is read by polling devices. For other types of interfaces,
a message is sent in response to a service request to retrieve status information. If the status
information is only one byte long, the most significant byte is returned with the zero value.

YIS5A session HEA | dup %154 session
. S shatus
Er1ar in (o erraor] e 2 (1] ermar aut

VISA Status Description

Retrieves a user-readable string that describes the status code presemtedrin

¥I5A zession LG dup %154 zezsion
_ agc L status description
error in [ho error B2 et grar ot

VISA Unlock
Relinquishes the lock previously obtained using the VISA Lock function.
YISA session l;-f-'-ﬂ | dup V154 session
error in [no ermor| 4=+ (B error out

VISA Write
Writes data to the device. Whether the data is transferred synchronously or asynchronously is
platform-dependent.

Naea |

¥I5A zeszion dup 154, seszion

return count

wirite: buffer [~F
&Irar in [ho errar] ===

L5 A
b,
w0

efrar ouk

© MNational Instruments Corporation

33-9

LabVIEW Function and VI Reference Manual

Chapter 33 VISA Library Reference

Event Handling Functions

This section describes the VISA Event Handling functions. Valid classes for these
functions are Instr (default), GPIB Instr, Serial Instr, VXI/GPIB-VXI/VME RBD Instr,
and VXI/GPIB-VXI MBD Instr.

You can find the VISA Event Handling functions in MESA palette, which you access by
selectingFunctions»instrument 1/0 »VISA.

Event Handling

wsa |Ea |[wea |wsa | [wea
ERS¥IN vja:vm :sazsgllan:- atfas'rlo atfﬂ'l'lﬁ
F EHEI R [EE]| | R [E0E] w R
EA | [Ea He F
N Y G [event :
C vemt —HEwent Handling
wea |iEa |[Wea |esa |[wea
abow, [|abe~, [[CLR || STE || TRG | S [
R [E0]| |wEiE| | E0]| | G| e | High [55a |wWea | [wea ﬂs.q
o[z -o [P
lE.S'.-'J LESAE. l;.f-‘.ﬂ T ws:hc T—’ x| 4
Lo = TH || RS =TH| | = = TH L

2izd (Lo [654 B][wsa g

ROS .
oy R

VISA Disahle Event
Disables servicing of an event. This operation prevents new event occurrences from being
queued. However, event occurrences already queued are not lost; use the VISA Discard
Events VI if you want to discard queued events.

¥I5A zession (5] dup V154, seszzion
event type - 40
mechanizm [1: YI_COUELE] f error oLt
2rar in [ho errar]

VISA Discard Events

Discards all pending occurrences of the specified event types and mechanisms from the
specified session.

YISA zession ([GEE] dup W54 sezsion

event type - L T
mechanizm [1: YI_QUEUE] f—ﬁm ermor clugter

errar in [ho errar]

LabVIEW Function and VI Reference Manual 33-10 © MNational Instruments Corporation

Chapter 33 VISA Library Reference

VISA Enable Event
Enables notification of a specified event.
¥ISA zeszion HEA dup 154, seszion
event type _l_—' o4
mechanizm [1: Y_OUELE) mﬂ“' Eror out
ermar in (o errar)

7= Note You must call the VISA Enable Event VI for a given session before using
VISA Wait on Event VI.

VISA Wait On Event
Suspends execution of a thread of application and waits for an ewmrdftypefor a time
period not to exceed that specifiedtbyeout. Refer to individual event descriptions for
context definitions. If the specifieaent typeis All Events, the operation waits for any event
that is enabled for the given session.

timeaut (0] ———
YISA session (L] dup VIS4 seszzion
event type 4.7 L event type
event sessian

event seszion [for class] f

2Irar in [hio erar]

r

errar out

7= Note You must first call the VISA Enable Event VI for the specified session before using
VISA Wait on Event VI.

© MNational Instruments Corporation 33-11 LabVIEW Function and VI Reference Manual

Chapter 33 VISA Library Reference

High Level Register Access Functions

This section describes the VISA High Level Register Access functions. Valid classes for these
functions are Instr (default), VXI/GPIB-VXI/VME RBD Instr, VXI/GPIB-VXI MBD Instr,

and VXI/GPIB-VXI/VME MemAcc. To access the VISA High Level Register Access
functions, pop up on the High Level icon on YHSA palette.

5 VISA |

High L evel Reqgister Access
wed |[WEa | [Wea | [WEa | [Wwea
ERSYIN w!ﬁi\'ll) E;ig:llal) atfﬁi'\'ll:l atfﬁs\'“'
F EEEI R [EC]| | R [0 w R
Viza_ | [=a e
e %
wEa |[Ea | [Wea | [WEa | [wea
abcw, [|abi-, || CLR || STE || TRG
R B3| [wEr 4=+ (2] [4a [ETE]

rzd=H «—1=UHigh Level Register Access
FEd | [WEa @] e Wz
6 g "l ane| 2
E = | e = | e = | szt [[Low [WF3 |[w=a L.r.'s.qM

a L) [6] PN

[(e (=] [[EE] (=]

8 16 32 8 16 32
P |]]] | |

[EE] [(=] [EEE] L4454 LA5A

g Ml Mgz g Mg B Zz H
|4- |4- |4- u+ l]-h u+

VISA In8 /In16 / In32

Reads 8 bits, 16 bits, or 32 bits of data, respectively, from the specified memory space

(assigned memory base plus offset). These functions do not require VISA Map Address to be
called prior to their invocation.

address space [ATE: 1] ———
¥I5A zession [GEE] dup Y154 seszzion
offset [0] - 8 L value
EITar in [ho error] === I+ erar oLt

[T] (K]
“_ Wisa in 1§ Wiga in 32 e

LabVIEW Function and VI Reference Manual 33-12 © MNational Instruments Corporation

Chapter 33 VISA Library Reference

The following table lists the valid entries for specifying address space.

Address Space Value Description
1) Address the A16 address space of the VXI/MXI bus
(2) Address the A24 address space of the VXI/MXI bus
3) Address the A32 address space of the VXI/MXI bus

VISA Memory Allocation

Returns an offset into a device’s region that has been allocated for use by the session.

The memory can be allocated on either the device itself or on the computer’s system memory.
If the device to which the given VISA Session refers is located on the local interface card,
the memory can be allocated either on the device itself or on the computer's system memory.
The memory region referenced bffset that is returned from this function can be

accessed with the high-level functions VISA Move In8 / Move In16 / Move In32 and

VISA Move Out8 / Move Outl6 / Move Out32, or it can be mapped using the

VISA MapAddress function.

YIS5A sezsion

zize (0] -

Er1or in [ho error) ===

TFIEA dup W54 zezzion
g & affzet
[ul

A errar out

VISA Memory Free

Frees the memory previously allocated by the VISA Memory Allocation function. If the
specifiedoffsethas been mapped using the VISA Map Address function, it must be

unmapped before the memory can be freed.

YISA session

[E]

offset (0] - 1l
erar in (o emor] ===t

dup VIS4 zeszzion

errar out

© MNational Instruments Corporation

33-13

LabVIEW Function and VI Reference Manual

Chapter 33 VISA Library Reference

VISA Move In8 / Move In16 / Move In32

Moves a block of data from device memory to local memory in accesses of 8 bits, 16 bits, or
32 bits, respectively. The VISA MoveXiX functions use the specified address space to read

8 bits, 16 bits, or 32 bits of data, respectively, from the specified offset. These functions do
not require the VISA Map Address to be called prior to their invocation.

address space [ATE 1] ———

¥I5A zession 'ufg-ﬂn dup 154, sezzion
offset [0] - = data
“' error auk

count [0] -
Ermar in [ho erar] mr

LA) (=]
16 2 0isa Move In 1§ YWisa Move In 32 |32
e i

The following table lists the valid entries for specifying address space.

Value Description
Q) Address the A16 address space of the VXI/MXI bus.
(2 Address the A24 address space of the VXI/MXI bus.
3) Address the A32 address space of the VXI/MXI bus.

VISA Move Out8 / Move Out16 / Move Qut32

Moves a block of data from local memory to the specified address and offset and uses the
specified address space to write 8 bits, 16 bits, or 32 bits of data, respectively, to the specified
offset. These functions do not require the VISA Map Address function to be called prior to
their invocation.

address space [ATE: 1] ———
YISA sezsion WA dup 154, seszion

I—8
affset [0] _'

data []] —=lo errar out
Ermor in [ho ermar] mﬂm
HEA ']
16 5 Visa Move Cut 16 Visa Move Qut 32 [z2R
Eil l]lh

LabVIEW Function and VI Reference Manual 33-14 © MNational Instruments Corporation

Chapter 33 VISA Library Reference

The following table lists the valid entries for specifying address space.

Value Description
1) Address the A16 address space of the VXI/MXI bus.
(2) Address the A24 address space of the VXI/MXI bus.
3) Address the A32 address space of the VXI/MXI bus.
VISA Out8 / Out16 / Out32

Writes 8 bits, 16 bits, or 32 bits of data, respectively, to the specified memory space (assigned
memory base plus offset). These functions do not require the VISA Map Address function to
be called prior to their invocation.

address space [A16: 1] ———
YISA zession [EEE] dup VIS4 zezsion

offzet (0] - 8
wealue [0] f[’"
&rrar in [ho errar]

] _ 5
Visa Out 16 Visa Out 32 |52
0+ L1 o[

The following table lists the valid entries for specifying address space.

errar out

Value Description
Q) Address the A16 address space of the VXI/MXI bus.
2) Address the A24 address space of the VXI/MXI bus.
3) Address the A32 address space of the VXI/MXI bus.

© MNational Instruments Corporation 33-15 LabVIEW Function and VI Reference Manual

Chapter 33 VISA Library Reference

Low Level Register Access Functions

This section describes the VISA Low Level Register Access functions. Valid classes for these
functions are Instr (default), VXI/GPIB-VXIVXE RBD Instr, VXI/GPIB-VXI MBD Instr,

and VXI/GPIB-VXI/VME MemAcc. To access the VISA Low Level Register Access
functions, pop up on the Low Level icon on MSA palette.

B VISA =)

Low Level Register Access

e | [WA | A

ERSYIN o ;p.;-”.;. a:asvm

F (Fl wizl|p

(X ¥ 4+ k

F En‘a 1] % Event

EA ws.q ws.q

abi:, RG | 2

B ﬁ «m ngh

Lz AEA

8 ol 20

\Ed =T 212 fllew 0] ow Level Register Access
WA |[WEa | [WEea | [WEa
P 0 2 | PP
WA |[WEa |[WEa |[WEa |[Wea | [eEa
8 16 2 8
A | i

VISA Map Address

Maps a specified memory space. The memory space that is mapped is dependent on the type
of interface specified bYISA sessionand theaddress spacgarameter. Once the window

is mapped, VISA tracks the window that is mapped. This behavior dictates that VISA can
only map one window for each VISA session.

address space [A16 1] ———
VISA seszsion 1AEA dup VIS4 zezzion

map baze (0] -

map size (0] f error cluzter
&frar in [no error) :
ACCESE [FalSE]

LabVIEW Function and VI Reference Manual 33-16 © MNational Instruments Corporation

Chapter 33 VISA Library Reference

The following table lists the valid entries for specifying address space.

Value Description
1) Address the A16 address space of the VXI/MXI bus.
(2) Address the A24 address space of the VXI/MXI bus.
3) Address the A32 address space of the VXI/MXI bus.

VISA Memory Allocation

For information about the VISA Memory Allocation function, seeHligh Level Register
Access Functionsection of this chapter.

VISA Memory Free

For information about the VISA Memory Free function, seeHigh Level Register Access
Functionssection of this chapter.

VISA Peek8 / Peek16 / Peek32
Reads an 8-bit, 16-bit, or 32-bit value, respectively, from the address location specified in
offset The address must be a valid memory address in the current process mapped by a
previous VISA Map Address function call.

YISA session [EEE] dup Y54 sezsion

aoffzet (0] - {:3 L walue

EIT0r iR [No error] === eror out
[T A
& Visa Peek 16 Wisa Peek 32 |22

VISA Poke8 / Poke16 / Poke32
Writes an 8-bit, 16-bit, or 32-bit value, respectively, to the specified address and stores the
content of the value to the address pointed toffset The address must be a valid memory
address in the current process mapped by a previous VISA Map Address function call.

¥I5A session [EEE] dup 54 seszsion
offset (0] - 8

walue [0] —l_r‘ error out

2Irar in [hio erar]

16 Yisa Poke 16 Visa Poke 32 32

© MNational Instruments Corporation 33-17 LabVIEW Function and VI Reference Manual

Chapter 33 VISA Library Reference

VISA Unmap Address
Unmaps memory space previously mapped by VISA Map Address.
¥I5A zession HEA dup 154, seszzion
ermar in [ho ermar] errar oLt

VISA Serial Functions

This section describes the VISA functions that are specific to serial ports.
Valid classes for these functions are Instr (default) and Serial Instr.

To access the VISA Serial functions, pop up on the Low Level icon on the
VISA palette.

! VISA

YISA Sernial

e |[WEA | [wEa |[wea |[wsa
ERSYID| w:n;\!m :r:s:I:) atfnsl”;:. Eﬁs\'lﬁ
F EEEI R [EC]| | R [0 w
e | s | | 5 | I
-::; x"\"
: ': ; —HVISA Serial
wEa |[WEA |[wEa |[wea |[wsa
abcw, ||abe, [:LR STB TRG
[-4l =18 | L =TH| 2 | E=TH | =S = TH R |]
\h
e | [WEa ws.a (7] *0 %@
ol |

Flush Serial Buffer

Flushes the serial buffer.

VISA zession J-'S-d‘ dup W54 seszion
mask [16] - %Q
i error out

107 in [Nno error] ===

Flushing the receive buffer (16) discards the contents, while flushing the output buffer (32)
waits for any remaining contents in the transmit buffer to be sent to the device. To discard any
remaining data in the transmit buffer, you need to use the discard output buffer mask (128).
To flush more than one buffer simultaneously, combine the buffer masks by using an O-Ring.

LabVIEW Function and VI Reference Manual 33-18 © MNational Instruments Corporation

Chapter 33 VISA Library Reference

Set Serial Buffer Size
Sets the size of the serial buffer.

¥IS5A session '..r.'s.a‘;-:' dup 154 session
mask [16] —'_Qo@|
gize [0] r‘ error ouk
Erar in (o erraor)

Valid values fomask are Serial receive buffer (16) and Serial transmit buffer (32). To set the
size of both buffers simultaneously, combine the buffer masks by using an O-Ring.

VISA Property Node

This section describes the VISA Library attributes. The VISA Property
Node gets and/or sets the indicated attributes. The node is expandable;
evaluation starts from the top and proceeds downward until an error or until
the final evaluation occurs.

To access the property node, sefamctions»instrument I/O»VISA .
Then select the Property Node icon located on the bottom row of the
VISA palette.

it Instrument 170

VISA

s S|l

L ~HIVISA

Property Node

LA s LA LS A LA

ERSYIN w!ﬁ!'flﬁ Esﬁ:!;'II“\?l atfﬁ!'flo atf““m
F EEEI R &) R w R |
Wz _ | A =* & 3

c?g % Event

[HEE] [HEE] [HEE] L#5A [
abc., ||abe-, || CLR || STB || TRG 4'_'
e [E50]| (3] e [T | | 4o [T |+ (]| Higgh
L5 A [EGE] l-".'.S'.EI l-l'.'.S‘.a'l
a a ¢ 1—
e [EE] | |4 [|0 ?l?-f Low
The VISA Property Node only displays attributes for the class of the
session that is wired to it. You can change the class of a VISA Property

Node as long as you have not wired it 8dI8A session Once a
VISA sessionis wired to a VISA Property Node, it adapts to the class of

© MNational Instruments Corporation 33-19 LabVIEW Function and VI Reference Manual

Chapter 33 VISA Library Reference

the session and any displayed attributes that are not valid for that class
become invalid (indicated by turning the attribute item black).

Because the Property Node can be used in other contexts in LabVIEW, the
Property Node might default to a class other than a VISA class if you place
it on a diagram by itself. When you wire it t&/ESA session it becomes a
VISA class.

VISA Property Node Descriptions

The following VISA Property Node categories are available.

Fast Data Channel

Specifies the following information:

°
°
L]

General Settings

Channel number

Data transfers through channel pairs
Enabling signal

Normal-mode or streaming-mode transfers

Determine the following properties:

GPIB Settings

Maximum event queue length

Unique VISA resource hame
Resource lock state

Timeout value for accessing the device
Communication trigger mechanism

Information used to document the functionality in your
VISA application

Specify the following information:

What the primary and secondary addresses of a GPIB device are
If the GPIB device needs to be readdressed before every transfer
If the GPIB device is unaddressed after each read and write operation

LabVIEW Function and VI Reference Manual 33-20 © MNational Instruments Corporation

Chapter 33 VISA Library Reference

Interface Information

Provides information about the VISA interface type, the board number of
the interface and the board number of the parent device.

Message-Based Settings
Determine the following aspects of VISA message-based communication:
e The I/O Protocol (GPIB, Serial, VXI)
» Whether to send an END indicator in write operations
* Whether to ignore an END indicator in read operations
* Whether to terminate read operations with a special character

Modem Line Settings

Determine the current state of the following signals used in modem
communication: CTS, DCD, DSR, DTR, RI, and RTS.

PXI Resources

Specify the address type, the address base and address size of devices at
slots BARO through BARS.

PXI Settings

Specify the following information: device number, function number,
subsytem manufacturer information, and subsystem model code.

Register-Based Settings
Determine the following aspects of VISA register-based communication:
» |dentification of the device manufacturer
* Model of the device
« Physical slot location of the device

* Number of elements in block-move operations at both the source and
memory addresses

* (Windows) Base address, size, and access to space

© MNational Instruments Corporation 33-21 LabVIEW Function and VI Reference Manual

Chapter 33 VISA Library Reference

Serial Settings

Specify the following: number of bytes at the serial port, baud rate, data
bits, parity, stop bits, flow control, and termination method for read and
write operations.

Version Information

Provides information about the version and the manufacturer’'s name of the
VISA implementation, as well as the version of the VISA specification.

VME/VXE Settings

Determine the necessary addresses, access privileges, memory space, and
byte orders necessary for VXI communication.

LabVIEW Function and VI Reference Manual 33-22 © MNational Instruments Corporation

Traditional GPIB Functions

This chapter describes the Traditional GPIB functions.

The following figure shows th&raditional GPIB Functions palette
which you access by selectiRgnctions»instrument I/0O »GPIB.

s Functions |
Instrument 1/0

123) (| F

El
w
w

[=]
o
[a]
[=]=]
B |]
| E

\/
.
oy

o|li]
=l

S8Y5 oy
| [o~ Instrument 170
(151 | T = DES et
= [
E- E‘
= o]
LT @

For examples of how to use the Traditional GPIB functions,
seeexamples\inst\smplgpib.llb

© MNational Instruments Corporation 34-1 LabVIEW Function and VI Reference Manual

Chapter 34 Traditional GPIB Functions

Traditional GPIB Function Parameters

Most of the Traditional GPIB functions use the following parameters:

address stringcontains the address of the GPIB device with which the
function communicates. You can input both the primary and secondary
addresses iaddress stringby using the fornprimary+secondary

Both primary andsecondaryare decimal values, sopfimary is 2
andsecondaryis 3,address stringis 2+3.

If you do not specify an address, the functions do not perform
addressing before they attempt to read and write the string. They
assume you have either sent these commands another way or that
another Controller is in charge and therefore responsible for the
addressing. If the Controller is supposed to address the device but does
not do so before the time limit expires, the functions terminate with
GPIB error 6 (timeout) and set bit 14gtatus. If the GPIB is not the
Controller-In-Charge, do not specigldress string

When there are multiple GPIB Controllers that LabVIEW can use,

a prefix toaddress stringin the formiD:address ~ (or ID: if no

address is necessary) determines the Controller that a specific function
uses. If a Controller ID is not present, the functions assume
Controller (or bus) 0.

statusis a 16-bit Boolean array in which each bit describes a state of
the GPIB Controller. If an error occurs, bit 15 is set. &trer code

field of theerror out cluster is a GPIB error code only if bit 15 of
statusis set.

error in anderror out terminals comprise the error clusters in each
Traditional GPIB function. The error cluster contains three fields. The
statusfield is a Boolean which is TRUE when an error occurs, FALSE
when no error occursode fieldwill be a GPIB error code value if an
error occurs during a GPIB functiosource fieldis a string which
describes where the error has occurred. I6thtus field of theerror

in parameter to a function is set, the function is not executed and the
same error cluster is passed out. By wiringetrer out of each

function to theerror in of the next function, the first error condition is
recorded and propagated to the end of the diagram where it is reported
in only one place.

LabVIEW Function and VI Reference Manual 34-2 © MNational Instruments Corporation

Chapter 34 Traditional GPIB Functions

Traditional GPIB Function Behavior

The GPIB Read and GPIB Write functions leave the device in the
addressed state when they finish executing. If your device cannot tolerate
functioning in the addressed state, use the GPIB Misc function to send the
appropriate unaddress message or configure the NI-488.2 software to
unaddress automatically for all devices on the GPIB.

The Traditional GPIB Read and Write functions can execute
asynchronously. This means other LabVIEW activity can continue while
these GPIB functions operate. When set to execute asynchronously, a small
wristwatch icon appears as part of the function icons. A pop-up item on the
Traditional GPIB Read and GPIB Write functions allows you to switch

their behavior to and from asynchronous operation.

g Show L
= Description...

=

5et Breakpoint

Show Terminals

Replace]

Cluster Tools

Create Constant
Create Control

Create Indicator

Do 1/0 synchronously

Traditional GPIB Function Descriptions

The following traditional GPIB functions are available.

GPIB Clear

Sends either Selected Device Clear (SDC) or Device Clear (DCL).

address string “ shatuz
<o

2Iror in error oLt

© MNational Instruments Corporation 34-3 LabVIEW Function and VI Reference Manual

Chapter 34 Traditional GPIB Functions

GPIB Initialization
Configures the GPIB interface atldress string

require re-addreszing (T] -
azzert REM with [FC [T]
gyztemn controller [T] .
address strifig]

LLITT g ======ar errar aut

d|Sa"|:|W DM'{-,' [F]-

GPIB Misc

Performs the GPIB operation indicateddymmand string Use this low-level function
when the previously described high-level functions are not suitable.

autput string
[ghatig
errar out

command string @

BITOF F) s

Table 34-1. Command String Device Functions

Device Functions Description
loc address Go to local.
off address Take device offline.
pct address Pass control.
ppc byte address Parallel poll configure (enable or disable).

Table 34-2. Command String Controller Functions

Controller Functions Description
cac 0/1 Become active Controller.
cmd string Send IEEE 488 commands.
dma 0/1 Set DMA mode or programmed I/O mode.
gts 0/1 Go from active Controller to standby.
ist 0/1 Set individual status bit.
llo Local lockout.
loc Place Controller in local state.

LabVIEW Function and VI Reference Manual 34-4 © MNational Instruments Corporation

Chapter 34 Traditional GPIB Functions

Table 34-2. Command String Controller Functions (Continued)

Controller Functions Description
off Take controller offline.
ppc byte Parallel poll configure (enable or disable).
ppu Parallel poll unconfigure all devices.
rpp Conduct parallel poll.
rsc 0/1 Request or release system control.
rsv byte Request service and/or set the serial poll status byte.
sic Send interface clear and set remote enable.
sre 0/1 Set or clear remote enable.

To specify the GPIB Controller used by this function, useramand

string in the form ID:xxx , where ID is the GPIB Controller (bus number)
andxxx is the three-character command and its corresponding arguments,
if any. If you do not specify a Controller ID, LabVIEW assumes 0.

GPIB Read
Readshyte countnumber of bytes from the GPIB deviceaaldress string

tirmeaut mz (4832 global] .
addresz string = & data
byte count = “”"“”“”‘w zhatuz

rode [0] e error auk
£010r N nﬂﬁm

You use the SetTimeOut function to change the default value (the 488.2 global timeout) of
timeout ms. Initially, timeout ms defaults to 10,000. See the description of the SetTimeOut
function in Chapter 35:GPIB 488.2 Functiongor more information.

GPIB Serial Poll

Performs a serial poll of the device indicatedabgress string

zenial poll byte
-

EITar jp ey
P e iy ot

addrezs string

© MNational Instruments Corporation 34-5 LabVIEW Function and VI Reference Manual

Chapter 34 Traditional GPIB Functions

GPIB Status

Shows the status of the GPIB Controller indicate@dbgress stringafter the previous
GPIB operation.

address string | | Et;tll.ése”m
il _I—“‘ﬂ byte count
efrar out

GPIB Trigger
Sends GET (Group Execute Trigger) to the device indicatedithyess string

addreszz zting “ ghatus
. < JEE

EITor in error out

GPIB Wait

Waits for the state(s) indicated Wit state vectorat the device indicated lagddress string

tirneout s (488.2 global) —————

addrezs sting & shatus
wait state wechor =] beereees rpor ot
erar jn e

Wait for GPIB RQS
Waits for the device indicated layldress stringto assert RQS.
address string [Bi== I bt
timeout ms (488.2 globall ——] m P e
Erar h -

GPIB Write
Writesdata to the GPIB device identified address string

timeout mz [488.2 global)] —_l_

addrezs sénr:g statuz
ata
mode [D]f efror ouk
EITar in

LabVIEW Function and VI Reference Manual 34-6 © MNational Instruments Corporation

Chapter 34 Traditional GPIB Functions

GPIB Device and Controller Functions

This section describes the functions listed in the GPIB Misc function
description. The device functions send configuration information to a
specific instrument (device). The GPIB Controller functions configure the
Controller or send IEEE 488 commands to which all instruments respond.
Notice that there are both device and Controller versions ppihandloc
commands. The syntax and use of the commands are slightly different for
each version.

You can use these functions with all GPIB Controllers accessible by
LabVIEW, unless stated otherwise in the function description below.

An ECMD error (17) results when you execute a function for a GPIB
Controller without the specified capability. The function syntax is strict.
Each function recognizes only lowercase characters and allows only one
space between the function name and the arguments.

Device Functions

loc - Go to local
syntax loc address

loc temporarily moves devices from a remote program mode to a
local mode.

addresds the GPIB address of the device. This argument indicates both
primary and secondary addresses if you use thegamary + secondary
whereprimary andsecondaryare the decimal values of the primary and
secondary addresses. For examplesifharyis 2 andsecondarys 3, then
addresss 2 + 3.

loc sends the Go To Local (GTL) message to the GPIB device.

off — Take device offline
syntax off address

off takes the device at the specified GPIB address offline. This is only
needed when sharing a device with another application which is using the
NI 488 GPIB Library.

addressds the GPIB address of the device. This argument indicates both
primary and secondary addresses if you use thegammary + secondary

© MNational Instruments Corporation 34-7 LabVIEW Function and VI Reference Manual

Chapter 34 Traditional GPIB Functions

whereprimary andsecondaryare the decimal values of the primary and
secondary addresses. For examplgrifharyis 2 andsecondarys 3, then
addresds 2 + 3.

pct — Pass control
syntax pct address

pct passes Controller-in-Charge (CIC) authority to the device at the
specified address. The GPIB Controller becomes idle automatically.
The function assumes that the device to wigichpasses control has
Controller capability.

addresss the GPIB address of the device. This argument indicates both
primary and secondary addresses if you use thegammary + secondary
whereprimary andsecondaryare the decimal values of the primary and
secondary addresses. For examplgrifharyis 2 andsecondarys 3, then
addresds 2 + 3.

pct sends the following command sequence:

1. Talk address of the device

2. Secondary address of the device, if applicable
3. Take Control (TCT)

ppc — Parallel poll configure
syntax ppc byte address

ppc enables the instrument to respond to parallel polls.

byteis 0 or a valid parallel poll enable (PPE) commantytgis 0, the
parallel poll disable (PPD) byte 0x70 is sent to disable the device from
responding to a parallel poll. Each of the 16 PPE messages selects a
GPIB data line (DIO1 through DIO8) and sense (1 or 0) that the device
must use when it responds to the Identify (IDY) message during a parallel
poll. The device compares tie sense and drives the indicated DIO line
TRUE or FALSE.

addresss the GPIB address of the device. This argument indicates both
primary and secondary addresses if you use thegammary + secondary
whereprimary andsecondaryare the decimal values of the primary and
secondary addresses. For examplgrifharyis 2 andsecondarys 3, then
addresdss 2 + 3.

LabVIEW Function and VI Reference Manual 34-8 © MNational Instruments Corporation

Chapter 34 Traditional GPIB Functions

Controller Functions

cac — Become active Controller
syntax cacO (take control synchronously)

cacl (take control immediately)

cactakes control either synchronously or immediately (and in some cases
asynchronously). You generally do not need to useabinction because
other functions, such @&snd andrpp, take control automatically.

If you try to take control synchronously when a data handshake is in
progress, the function postpones the take control action until the handshake
is complete. If a handshake is not in progress, the function executes the take
control action immediately. Taking control synchronously is not guaranteed

if a read or write operation completes with a timeout or other error.

You should take control asynchronously when it is impossible to gain
control synchronously (for example, after a timeout error).

The ECIC error results if the GPIB Controller is not CIC.

cmd — Send IEEE 488 commands

syntax cmd string

cmd sends GPIB command messages. These command messages include
device talk and listen addresses, secondary addresses, serial and parallel
poll configuration messages, and device clear and trigger messages.

You do not usemd to transmit programming instructions to devices. The
GPIB Read and GPIB Write functions transmit programming instructions
and other device-dependent information.

string contains the command bytes the Controller sends. ASCII characters
represent these bytesdmd string. If you must send nondisplayable
characters, you can enable backslash codes on the string control or string
constant or you can use a format function to list the commands in
hexadecimal.

© MNational Instruments Corporation 34-9 LabVIEW Function and VI Reference Manual

Chapter 34 Traditional GPIB Functions

dma - Set DMA mode or programmed I/0 mode

syntax

dma 0 (use programmed 1/O)
dma 1 (use DMA)
dma indicates whether data transfers use DMA.

Some GPIB boards do not have DMA capability. If you try to execute
dma 1, the function returns GPIB error 11 to indicate no capability.

gts — Go from active Controller to standby

syntax

gts 0 (no shadow handshaking)
gts 1 (shadow handshaking)
Description:

gts sets the GPIB Controller to the Controller Standby state and unasserts
the ATN signal if it is the active Controller. Normally, the GPIB Controller

is involved in the data transf@ts permits GPIB devices to transfer data
without involving the GPIB Controller.

If shadow handshaking is active, the GPIB Controller participates in the
GPIB transfer as a Listener, but does not accept any data. When it detects
the END message, the GPIB Controller asserts the Not Ready For Data
(NRFD) to create a handshake holdoff state.

If shadow handshaking is not active, the GPIB Controller performs neither
shadow handshaking nor a handshake holdoff.

If you activate the shadow handshake option, the GPIB Controller
participates in a data handshake as a Listener without actually reading the
data. It monitors the transfer for the END message and stops subsequent
transfers. This mechanism allows the GPIB Controller to take control
synchronously on subsequent operations sucmalsor rpp .

After sending th@ts command, you should always wait for END before
you initiate another GPIB command. You can do this with the GPIB Wait
function.

The ECIC error results if the GPIB Controller is not CIC.

LabVIEW Function and VI Reference Manual 34-10 © MNational Instruments Corporation

Chapter 34 Traditional GPIB Functions

ist — Set individual status bit
syntax ist 0 (individual status bit is cleared)

ist 1 (individual status bit is set)
ist sets the sense of the individual statgf pit.

You useist when the GPIB Controller is not the CIC but participates in a
parallel poll conducted by a device that is the active Controller. The CIC
conducts a parallel poll by asserting the EOI and ATN signals, which send
the Identify (IDY) message. While this message is active, each device
that you configured to participate in the poll responds by asserting a
predetermined GPIB data line either TRUE or FALSE, depending on the
value of its localst bit. For example, you can assign the GPIB Controller
to drive the DIO3 data line TRUEIgt is 1 and FALSE ifst is 0.

Conversely, you can assign it to drive DIO3 TRUEtfis 0 and FALSE if

istis 1.

The Parallel Poll Enable (PPE) message in effect for each device
determines the relationship among the valuistpthe line that is driven,

and the sense at which the line is driven. The Controller is capable of
receiving this message either locally piac or remotely via a command
from the CIC. Once the PPE message execistashanges the sense at
which the GPIB Controller drives the line during the parallel poll, and the
GPIB Controller can convey a one-bit, device-dependent message to the
Controller.

llo - Local lockout
syntax llo

llo places all devices in local lockout state. This action usually inhibits
recognition of inputs from the front panel of the device.

llo sends the Local Lockout (LLO) command.

loc — Place Controller in local state
syntax loc

loc places the GPIB Controller in a local state by sending the local message
Return To Local (RTL) if it is not locked in remote mode (indicated by the
LOK bit of status). You uskec to simulate a front panel RTL switch when
you use a computer to simulate an instrument.

© MNational Instruments Corporation 34-11 LabVIEW Function and VI Reference Manual

Chapter 34 Traditional GPIB Functions

off — Take controller offline

syntax

off

off takes the controller offline. This is only needed when sharing the
controller with another application which is using the NI 488 Library.

ppc - Parallel poll configure (enable and disable)

syntax

ppc byte

ppc configures the GPIB Controller to participate in a parallel poll by
setting its Local Poll Enable (LPE) message to the valbgteflf the value
of byteis 0, the GPIB Controller unconfigures itself.

Each of the 16 Parallel Poll Enable (PPE) messages selects the GPIB data
line (DIO1 through DIO8) and sense (1 or 0) that the device must use when
responding to the Identify (IDY) message during a parallel poll. The device
interprets the assigned message and the current value of the individual
status ist) bit to determine if the selected line is driven TRUE or FALSE.

For example, if PPE=0x64, DIO5 is driven TRUEsifis 0 and FALSE if

istis 1. If PPE=0x68, DIO1 PPE message is in effect. You must know

which PPE and PPD messages are sent and determine what the responses
indicate.

ppu — Parallel poll unconfigure

syntax

ppu

ppu disables all devices from responding to parallel polls.

ppu sends the Parallel Poll Unconfigure (PPU) command.

rpp — Conduct parallel poll

syntax

rpp

rpp conducts a parallel poll of previously configured devices by asserting
the ATN and EOI signals, which sends the IDY message.

rpp places the parallel poll response in the output string as ASCII
characters.

LabVIEW Function and VI Reference Manual 34-12 © MNational Instruments Corporation

Chapter 34 Traditional GPIB Functions

rsc — Release or request system control

syntax

rsc O (release system control)
rsc 1 (request system control)

rsc releases or requests the capability of the GPIB Controller to send the
Interface Clear (IFC) and Remote Enable (REN) messages to GPIB devices
using thesic andsre functions. For the GPIB Controller to respond to IFC
sent by another Controller, the GPIB Controller must not be the System
Controller.

In most applications, the GPIB Controller is always the System Controller.
You usersc only if the computer is not the System Controller for the
duration of the program execution.

rsv — Request service and/or set the serial poll status byte

syntax

rsv byte

rsv sets the serial poll status byte of the GPIB Controllbyte If the

0x40 bit is set irbyte the GPIB Controller also requests service from the
Controller by asserting the GPIB RSQ line. For instance, if you want to
assert the GPIB RSQ line, send the ASCII chard@én which the

0x40 bit is set.

You usersv to request service from the Controller using the Service
Request (SRQ) signal and to provide a system-dependent status byte
when the Controller serial polls the GPIB port.

sic — Send interface clear

syntax

sic

siccauses the Controller to assert the IFC signal for at least 100 msec if the
Controller has System Controller authority. This action initializes the GPIB
and makes the Controller port CIC. You generallysisehen you want a
device to become CIC or to clear a bus fault condition.

The IFC signal resets only the GPIB functions of bus devices; it does not
reset internal device functions. The Device Clear (DCL) and Selected
Device Clear (SDC) commands reset the device functions. Consult the
instrument documentation to determine the effect of these messages.

© MNational Instruments Corporation 34-13 LabVIEW Function and VI Reference Manual

Chapter 34 Traditional GPIB Functions

sre — Unassert or assert remote enable
syntax sre 0 (unassert Remote Enable)

sre 1 (assert Remote Enable)

sre unasserts or asserts the GPIB REN line. Devices monitor REN when
they select between local and remote modes of operation. A device does not
actually enter remote mode until it receives its listen address.

The ESAC error occurs if the Controller is not System Controller.

LabVIEW Function and VI Reference Manual 34-14 © MNational Instruments Corporation

GPIB 488.2 Functions

This chapter describes the IEEE 488.2 (GPIB) functions.

The following figure shows th&PIB 488.2palette which you access by
selectingFunctions»Instrument 1/O»GPIB 488.2

«—IHInstrument 170
GFPIE 488.2

3 B

: ~HIGPIE 488.2
E CORFIG| [UHCOHFIG E
||| | [| [e | [l | [| [
1= B (EEE = EEEEE) E EEVEE EE E E))E E E
G ||| [| [ey | P
EIEEEEREREEEE] TeT WAIT N[E B E EE
Femp | <FEmp *--

For examples of how to use the GPIB 488.2 functions, see

examples\instr\smplgpib.llb

GPIB 488.2 Common Function Parameters

Most of the GPIB 488.2 functions use the following parameters:

e addresscontains the primary address of the GPIB device with which
the function communicates. If a secondary address is required, use the
MakeAddrfunction to put the primary and secondary addresses in the
proper format. Unless specified otherwiaddressandaddress list
are data types integer and integer array, respectively.

* The default primary address of the GPIB board is 0, with no secondary
address. It is designated as System Controller. The default timeout
value for the functions is 10 seconds. If you want to change any of

© MNational Instruments Corporation 35-1

LabVIEW Function and VI Reference Manual

Chapter 35

GPIB 488.2 Functions

these parameters, use the configuration utility included with your
GPIB board. You can also use the GPIB Init and SetTimeOut functions
to set the primary address and to change the default timeout value at
run time, but these functions affect the interface only when you use it
with LabVIEW. For more information, see the documentation supplied
with your hardware interface.

busrefers to the GPIB bus number. If you have only one GPIB
interface in your computer, the default bus number is 0. For additional
GPIB interfaces, see the software installation instructions included
with your GPIB board.

byte countrefers to the number of bytes that pass over the GPIB.

statusis a Boolean array in which each bit describes a state of the
GPIB Controller. If an error occurs, the GPIB functions set bit 15.
GPIB error is valid only if bit 15 ofstatusis set.

error in; error out. See théGPIB Traditional Function Parameters
section ofChapter 34 Traditional GPIB Functions

GPIB 488.2 Function Descriptions (Single-Device Functions)

DevClear

Clears a single device. To send the Selected Device Clear (SDC) message to several
GPIB devices, use the DevClearList function.

PPollConfig

Single-device functions perform GPIB I/O and control operations with a single GPIB device.
In general, each function accepts a single-device address as one of its inputs.

ad bus statusz
a ressf =] feo======gror aut

EM0r in

Configures a device for parallel polls.

bz
address zhatus
- COMF LG oo
dataline —l_ &rror aut

e e

LabVIEW Function and VI Reference Manual 35-2 © MNational Instruments Corporation

Chapter 35 GPIB 488.2 Functions

PassControl
Passes control to another device with Controller capability.
bus FURTEG: shatuz
addres_s =] erar aut
2Irar Ifn

ReadStatus

Serial polls a single device to get its status byte.

addreszs —

bz zenal poll rezponze
iy et L2
eIl i

Receive
Reads data bytes from a GPIB device.

b data ztring
Sy
address — status
rmode f = 1 byte count
caunt errar out
IO jf =

Receive terminates when the function does one of the following:
* reads the number of bytes requested
* detects an error
* exceeds the time limit
« detects the END message (EOI asserted)

» detects the EOS character (assuming the value supplieddehas
enabled this option)

Send
Sends data bytes to a single GPIB device.
bz status
address [byte count

rmode f e pror ot

data string

errar ir-l Errrrrrrrer

© MNational Instruments Corporation 35-3 LabVIEW Function and VI Reference Manual

Chapter 35 GPIB 488.2 Functions

Trigger

Triggers a single device. To send a single message that triggers several GPIB devices, use the
TriggerList function.

buz shatuz

address !
= [= === emor out

2707 i

GPIB 488.2 Multiple-Device Function Descriptions

The multiple-device functions perform GPIB I/O and control operations with several GPIB
devices at once. In general, each function accepts an array of addresses as one of its inputs.

AlISPoll

Serial polls all devices.

bus BT zenial poll byte lizt
address list=—"] aEE— zhatuz
2Irar in “"Lm byte count
efrar out

Although the AlISPoll function is general enough to serial poll any number of GPIB devices,
you should use the ReadStatus function when you serial poll only one GPIB device.

DevClearList
Clears multiple devices simultaneously.

bus (o>
L status
address ist=—
: =] Bl Elf====== error out
EIrar in

EnableLocal
Enables local mode for multiple devices.
t";JS T ghatus
address ||§t [] Elf======errar out
2Irar 1h

LabVIEW Function and VI Reference Manual 35-4 © MNational Instruments Corporation

Chapter 35 GPIB 488.2 Functions

EnableRemote
Enables remote programming of multiple GPIB devices.

bus P
- status
addreszs list
; E & Elf======= errar out
EIror in

FindRQS
Determines which device is requesting service.
bz R requester status bute
address lizt =] TR status
2I7or in “"Lm requester index
errar out

PPoll

Performs a parallel poll.

parallel poll byte
[ghatiyg
efrar out

b

£rrar i s] [] [

PPollUnconfig
Unconfigures devices for parallel polls. The function unconfigures the GPIB devices whose
addresses are contained in #uelress listarray for parallel polls; that is, they no longer
participate in polls.

T —rC

- —
address Il_st UHEGHFIG
_Iar i

status

e grror ok

SendList

Sends data bytes to multiple GPIB devices. This function is similar to Send, except that
SendList sends data to multiple Listeners with only one transmission.

bz A shatus
address L [byte count

mode f P rror out

data strir'!g

EIOf [f) =

© MNational Instruments Corporation 35-5 LabVIEW Function and VI Reference Manual

Chapter 35 GPIB 488.2 Functions

TriggerList
Triggers multiple devices simultaneously.
t";‘S £ TRG > shakuz
address ||§t -—] 9EE snar out
EITar in

GPIB 488.2 Bus Management Function Descriptions

The bus management functions perform system-wide functions or report system-wide status.

FindLstn
Finds all Listeners on the GPIB. You normally use this function to detect the presence
of devices at particular addresses because most GPIB devices have the ability to listen.
When you detect them, you can usually interrogate the devices to determine their identity.

bz s liztener address list
addrezs lizt = shatuz
[irrit f EIEE 1 nurmber of izteners
EI7ar in errar oLt

ResetSys
Performs bus initialization, message exchange initialization, and device initialization. First,
the function asserts Remote Enable (REN), followed by Interface Clear (IFC), unaddressing
all devices and making the GPIB board (the System Controller) the Controller-in-Charge.

Second, the function sends the Device Clear (DCL) message to all connected devices.
This ensures that all IEEE 488.2-compatible devices can receive the Reset (RST) message
that follows.

Third, the function sends the *RST message to all devices whose addresses are contained in
theaddress listarray. This message initializes device-specific functions within each device.

bz SREED
status
address list=—"]
h [] Elp=======2rror cut
Erar ih

SendIFC

Clears the GPIB functions with Interface Clear (IFC). When you issue the GPIB Device
IFC message, the interface functions of all connected devices return to their cleared states.

LabVIEW Function and VI Reference Manual 35-6 © MNational Instruments Corporation

Chapter 35 GPIB 488.2 Functions

You should use this function as part of a GPIB initialization. It forces the GPIB board to be
Controller of the GPIB and ensures that the connected devices are all unaddressed and that
the interface functions of the devices are in their idle states.

buz {IFC ghatusz

2I70r i =1 =51 =] eror oLt

SendLLO

Sends the Local Lockout (LLO) message to all devices. When the function sends the

GPIB Local Lockout message, a device cannot independently choose the local or remote
state. While Local Lockout is in effect, only the Controller can alter the local or remote state
of the devices by sending the appropriate GPIB messages.You should use SendLLO only in
unusual local/remote situations, particularly those in which you must lock all devices into
local programming state. Use the SetRWLS Function when you want to place devices in
Remote Mode With Lockout State.

bus {0 ghatus

efrar in = = =] errar out

SetRWLS

Places particular devices in the Remote With Lockout State. The function sends Remote
Enable (REN) to the GPIB devices listedanfdress list It also places all devices in Lockout
State, which prevents them from independently returning to local programming mode without
intervention by the Controller.

|:"_-43 {RILE: zhatus
address list=—]
: Bl Bl Elf===== emor out
Errar in

TestSRQ

Determines the current state of the SRQ line. This function is similar in format to the
WaitSRQ function, except that WaitSRQ suspends itself while it waits for an occurrence of
SRQ, and TestSRQ immediately returns the current SRQ state.

................. SHu

[status
errar out

buz
BI0r) s TEST

© MNational Instruments Corporation 35-7 LabVIEW Function and VI Reference Manual

Chapter 35 GPIB 488.2 Functions

TestSys

Directs multiple devices to conduct IEEE 488.2 self-tests.

bz T reslt ligt
address st=—" aEE—1 ztatuz
EIrar in “"Lm failed devices
errar out

WaitSRQ

Waits until a device asserts Service Request. The function suspends execution until a
Service Request (SRQ) line.

GPIB device connected on the GPIB asserts the

This function is similar in format to TestSRQ, except that TestSRQ returns the SRQ status
immediately, whereas WaitSRQ suspends the program for the duration of the timeout period

(but no longer) waiting for an SRQ to occur.

bz
2ITOF f sy

WRIT

GPIB 488.2 Low-Level I/0 Function Descriptions

The low-level functions let you create a more specific, detailed program than higher-level
functions. You use low-level functions for unusual situations or for situations requiring

additional flexibility.

RcvRespMsg

Reads data bytes from a previously addressed device. This function assumes that another
function, such as ReceiveSetup, Receive, or SendCmds, has already addressed the

GPIB Talkers and Listeners. You use RcvRespMsg specifically to skip the addressing step of
GPIB management. You normally use the Receive function to perform the entire sequence of

addressing and then to receive the data bytes.

buz
rode
count
£IT0r I

{a:ﬂ]m:

KEZPMZ0]

|

mln

g

data string
status
byte count
errar out

LabVIEW Function and VI Reference Manual 35-8

© National Instruments Corporation

Chapter 35 GPIB 488.2 Functions

ReceiveSetup
Prepares a device to send data bytes and prepares the GPIB board to read data bytes. After you
call this function, you can use a function such as RcvRespMsg to transfer the data from the
Talker. In this way, you eliminate the need to readdress the devices between blocks of reads.

bus feme status
addreszs — SETUR byte count
110 i error out
SendCmds
Sends GPIB command bytes.
bus “33113" status
command string ~* EMDg byte count
EMmor in error out

You normally do not need to use SendCmds for GPIB operation. You use it when specialized
command sequences, not provided for in other functions, must be sent over the GPIB.

SendDataBytes
Sends data bytes to previously addressed devices.
bz status
made ME---—' — byte count
data ztring mr‘ efror alk
0N iF

SendSetup
Prepares particular devices to receive data bytes. You normally follow a call to this function
with a call to a function such as SendDataBytes to actually transfer the data to the Listeners.
This sequence eliminates the need to readdress the devices between blocks of sends.

bz “‘Eﬂb status
addrezs list = SETUR — byte count
10T iH errar ouk
© MNational Instruments Corporation 35-9 LabVIEW Function and VI Reference Manual

Chapter 35 GPIB 488.2 Functions

GPIB 488.2 General Function Descriptions

The general functions are useful for special situations.

MakeAddr

Combinegrimary address andsecondary addressn a specially formattegacked
addressfor devices that require both a primary and secondary GPIB address.

primary address
gecondary address —]
EIrar in

packed address

WAKE Jpocoomecs arror ayt

SetTimeOut

Changes the global timeout period for all GPIB 488.2 functions. This function also sets the
default timeout period for all GPIB functions.

T

new timeout [10000] presious limeout

LabVIEW Function and VI Reference Manual 35-10 © MNational Instruments Corporation

Serial Port Vis

This chapter describes the VIs for serial port operations.

The following figure shows th8erial palette that you access by selecting
Functions»Instrument 1/O»Serial.

~~HInstrument 1/0

2 —HiSerial

F

H
-
s
SERTAL
FORT

For examples of how to use the Serial Port Vls, see
examples\instr\smplserl.llb

Serial Port VI Descriptions

The following Serial Port VIs are available.

Bytes at Serial Port

Returns inbyte countthe number of bytes in the input buffer of the serial port indicated in
port number.

gtring read
error code

port number
requested byte count

[0 R

© MNational Instruments Corporation 36-1 LabVIEW Function and VI Reference Manual

Chapter 36 Serial Port VIs

Serial Port Break

Sends a break on the output port specifieddsynumber for a period of time at least as long
as thedelay input requests.

part fmber

d
delay [ms) eror code

Serial Port Init
Initializes the selected serial port to the specified settings.

flovy control eb, Seeeseeeemnceg

buffer size ———
part hurmber SERTHL
baud rate -]

[T
data bitz P
zhop bitz —l_

parity

ermor code

Serial Port Read

Reads the number of characters specifieteuested byte countfrom the serial port
indicated inport number.

port nurmber |En}; string read
requested hyte count eror code

Serial Port Write

Writes the data istring to write to the serial port indicated port number.

port fmber

i . eror code
ztnng to wnte

LabVIEW Function and VI Reference Manual 36-2 © MNational Instruments Corporation

Part IV

Analysis Vis

Part IV, Analysis ViIsdescribes the Analysis VIs. This part contains the
following chapters:

Chapter 37|ntroduction to Analysis in LabVIEMhtroduces the
LabVIEW Analysis VIs. It also provides a description of how the VIs
are organized, instructions for accessing the VIs and obtaining online
help, and a description of Analysis VI error reporting.

Chapter 38signal Generation Visdescribes the VIs that generate
one-dimensional arrays with specific waveform patterns.

Chapter 39Digital Signal Processing V]slescribes the Vs that
process and analyze an acquired or simulated signal. The Digital
Signal Processing Vls perform frequency domain transformations,
frequency domain analysis, time domain analysis, and other
transforms, such as the Fourier, Hartley, and Hilbert transforms.

Chapter 40Measurement V|slescribes the Measurement VIs, which
are streamlined to perform DFT-based and FFT-based analysis with
signal acquisition for frequency measurement applications as seen in
typical frequency measurement instruments, such as dynamic signal
analyzers.

Chapter 41Filter Vls, describes the VIs that implement IIR, FIR, and
nonlinear filters.

Chapter 42Window VIsdescribes the VIs that implement smoothing
windows.

Chapter 43Curve Fitting VIs describes the Vls that perform curve
fitting or regression analysis.

Chapter 44Probability and Statistics V]glescribes the VIs that
perform probability, descriptive statistics, analysis of variance, and
interpolation functions.

Chapter 45L.inear Algebra Visdescribes the Vis that perform real
and complex matrix related computation and analysis.

Part IV Analysis VIs

e Chapter 46Array Operation Visdescribes the Vls that perform
common, one- and two-dimensional numerical array operations.

« Chapter 47Additional Numerical Method V]slescribes the VIs that
use numerical methods to perform root-finding, numerical integration,
and peak detection.

LabVIEW Function and VI Reference Manual V-2 © MNational Instruments Corporation

Introduction to Analysis
in LabVIEW

This chapter introduces the LabVIEW Analysis VIs, a description of how
the VIs are organized, instructions for accessing the VIs and obtaining
online help, and a description of Analysis VI error reporting.

To access thAnalysis palette from the block diagram window, choose
Functions»Analysisand proceed through the hierarchical menus to select
the VI you want. You can place the icon corresponding to that VI in the
block diagram and then wire it.

i Functions

© MNational Instruments Corporation 37-1 LabVIEW Function and VI Reference Manual

Chapter 37 Introduction to Analysis in LabVIEW

Full Development System

The base Analysis VI library is a subset of the advanced analysis VI library
available in the full development system. The base analysis library includes
VIs for statistical analysis, linear algebra, and numerical analysis. The
advanced analysis library includes more VIs in these areas as well as Vs
for signal generation, time and frequency-domain algorithms, windowing
routines, digital filters, evaluations, and regressions.

If the Vs in the base analysis library do not satisfy your needs, then you
can add the LabVIEW Advanced Analysis Libraries to the G Base Package.
After you upgrade, you have all the analysis tools available in the Full
Development System.

Refer to Chapter 38 through Chapter 47, which introduce each analysis
subpalette, for information on how to access a particular function or VI
palette.

Analysis VI Overview

The LabVIEW analysis VIs efficiently process blocks of information
represented in digital form. They cover the following major processing
areas:

e Pattern generation

« Digital signal processing

¢ Measurement-based analysis

e Digital filtering

e Smoothing windows

« Probability and statistical analysis

e Curve fitting

e Linear algebra

¢ Numerical analysis

The Analysis VIs perform numerical operations using the central
processing unit (CPU) and a floating-point coprocessor (FPU). Many of the

VIs take advantage of the concurrent processing capabilities of the CPU
and the FPU, thereby minimizing execution time of data analysis tasks.

LabVIEW Function and VI Reference Manual 37-2 © MNational Instruments Corporation

Chapter 37 Introduction to Analysis in LabVIEW

The Analysis VIs use in-place data processing algorithms. That is, the
algorithms allocate minimal data space and process the data within that
space. In-place processing minimizes memory requirements, so you can
process larger data blocks. The only memory limitation for these Vls is the
amount of RAM available in your computer. Refer to ybabVIEW

User Manualfor instructions on configuring the memory allocation for
LabVIEW.

The analysis Vls are powerful enough for experts to build sophisticated
analysis applications quickly and efficiently. At the same time, they
are simple enough for novices to analyze data without being expert
programmers in DSP, digital filters, statistics, or numerical analysis.

Analysis VI Organization

After installation, the ten analysis VI libraries appear inRhiactions
palette. TheAnalysis palette includes the following subpalettes:

* Signal Generationcontains VIs that generate digital patterns and
waveforms.

« Digital Signal Processingcontains VIs that perform frequency
domain transformations, frequency domain analysis, time domain
analysis, and other transforms such as the Hartley and Hilbert
transforms.

» Measurementcontains VIs that perform measurement-oriented
functions such as single-sided spectrums, scaled windowing, and peak
power and frequency estimation.

* Filters contains Vls that perform IIR, FIR, and nonlinear, digital
filtering functions.

e Windows contains VIs that perform data windowing.

* Probability and Statistics contains VIs that perform descriptive
statistics functions, such as identifying the mean or the standard
deviation of a set of data, as well as inferential statistics functions for
probability and analysis of variance (ANOVA).

» Curve Fitting contains VIs that perform curve fitting functions and
interpolations.

e Linear Algebra contains Vls that perform algebraic functions for real
and complex vectors and matrices.

© MNational Instruments Corporation 37-3 LabVIEW Function and VI Reference Manual

Chapter 37 Introduction to Analysis in LabVIEW

* Array Operations contains VIs that perform common, one- and
two-dimensional numerical array operations, such as linear evaluation
and scaling.

* Additional Numerical Methods contains Vls that use numerical
methods to perform root-finding, numerical integration, and peak
detection.

You can reorganize the folders and the Vls to suit your needs and
applications. You can also rebuild the original structure by removing
the VIs from your hard disk and then reinstalling them from the
distribution disks.

Notation and Naming Conventions

To help you identify the type of parameters and operations, this section of
the manual uses the following notation and naming conventions unless
otherwise specified in a VI description. Although there are a few scalar
functions and operations, most of the analysis VIs process large blocks of
data in the form of 1D arrays (or vectors) and 2D arrays (or matrices).

Normal lower case letters represent scalars or constants. For example,

aa
T[1
b=1.234.

Capital letters represent arrays. For example,
xy
AY
Y=aX+h.
In generalX andY denote 1D arrays, arg B, andC represent matrices.

Array indexes in LabVIEW are zero-based. The index of the first element
in the array, regardless of its dimension, is zero. The following sequence of
numbers represents a 1D arbagontainingn elements.

X = { X X0, Xy e X1}
The following scalar quantity represents ifleelement of the sequenxe

X, 0<i<n

LabVIEW Function and VI Reference Manual 37-4 © MNational Instruments Corporation

Chapter 37 Introduction to Analysis in LabVIEW

The first element in the sequencexd'and the last element in the sequence
is Xn—1, for a total ofn elements.

The following sequence of numbers represents a 2D array containing
nrows andm columns.

8o d1 8p2 -+ Gom-1
89 813 8 - By

A 8y 8y o By

10811812 -+ @_1m-1]

The total number of elements in the 2D array is the produtaofim.
The first index corresponds to the row number, and the second index
corresponds to the column number. The following scalar quantity
represents the element located onitheow and theth column.

gjj,0si<nand0sj<m
The first element i is a5, and the last elementag _ 1m_1.

Unless otherwise specified, this manual uses the following simplified array
operation notations.

Setting the elements of an array to a scalar constant is represented by
X=a,

which corresponds to the sequence

X={a,a4, ...,a}
and is used instead of
xj=a, fori=0,1,2,..n-1.

Multiplying the elements of an array by a scalar constant is represented by
Y =aX

which corresponds to the sequence

Y = {axg, axq, axo, ..., % —_1}

© MNational Instruments Corporation 37-5 LabVIEW Function and VI Reference Manual

Chapter 37 Introduction to Analysis in LabVIEW

and is used instead of
yj=ax, fori=0,1,2,..n-1
Similarly, multiplying a 2D array by a scalar constant is represented by
B=kA

which corresponds to the sequence

kagy kap, Kkap ... Kagm_g
ka,, ka; ka, ... ka,_;
B=| kay kay kay ... kayy ;

K10 K&y _11 Kay_15 .. Kay 1y

and is used instead of

bij =kaIj ,fori=0,1,2,...n~1and =0,1, 2, ..m-1.

Empty arrays are possible in LabVIEW. An array with no elements is an
empty array and is represented by

Empty =NULL=@ ={}.

In general, operations on empty arrays result in empty, output arrays or
undefined results.

LabVIEW Function and VI Reference Manual 37-6 © MNational Instruments Corporation

Signal Generation Vis

This chapter describes the Vls that generate one-dimensional arrays with
specific waveform patterns.

You can combine these VIs with the arithmetic functions discussed in
Chapter 4Numeric Functionsto generate more elaborate waveforms.

For example, if you want to generate an amplitude modulated pulse, you
multiply a pulse pattern by a sinusoidal pattern.

To access th8ignal Generationpalette, seledtunction»Analysis»
Signal Generation The following illustration shows the options that are
available on th&ignal Generationpalette.

»—FlAnalysis

Signal Generation

3 HeEm ¥
i
..—U:USignal Generalion

]
Wi
1

For examples of how to use the signal generation VIs, see the examples
located inexamples\analysis\sigxmpl.llb

© MNational Instruments Corporation 38-1 LabVIEW Function and VI Reference Manual

Chapter 38 Signal Generation Vs

Signal Generation VI Descriptions

The following Signal Generation VlIs are available.

Arbitrary Wave

Generates an array containing an arbitrary wave.

Wwiave Table N

san_'lples i Arhitram Wave
amplitude TJM’:LL phaze out
f 8 efrar
phaze in —l_
reset I:IhEISE RS
interpolation

If the sequenceg representévrbitrary Wave , then the VI generates the pattern according to
the following formula:

y[i] = a* arb(phase]), fori=0, 1, 2,...n—1,
wherea is amplitude, n is the number afamples
arb(phase]) = WT((phasei] modulo 360)1/360)
wherem is the size of th&vave Tablearray.
If interpolation = 0 (no interpolation), theWwT(x) = Wave Tabldint(x)].

If interpolation = 1 (linear interpolation), theWwT(X) is equal to the linearly interpolated
value ofWave Tabldint(x)] andWave Tablg(int(x)+1) modulom).

phasei] = initial_phase +#*360.0*, wheref is the frequency in normalized units of
cycles/sample, initial_phasepfase inif reset phasds true, or initial_phase is thphase
out from the previous execution of this Virdset phasds false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from an arbitrary
wave function generator. If the input contre$etphaseis false, subsequent calls to a specific
instance of this VI produce the outgrbitrary Wave array containing the nesamplesof

the arbitrary wave.

phase outis set to phasg], and this reentrant VI uses this value as its pbase inif reset
phaseis false the next time the VI executes.

LabVIEW Function and VI Reference Manual 38-2 © MNational Instruments Corporation

Chapter 38 Signal Generation Vs

Chirp Pattern

Generates an array containing a chirp pattern.

zamples g ——— Chirp Pattem
arnplitude — e g

prg g efrar

f

If the sequenc¥ represent€hirp Pattern, the VI generates the pattern according to the
following formula:

yi =A*sin((@2i+b)i), fori=0,1,2,..n-1,

whereA isamplitude, a = 2rm(f2—f1)/n, b = 2rf1, f1 is the beginning frequency in normalized
units of cycles/sampld? is the ending frequency in normalized units of cycles/sample, and
n is the number ofamples

Gaussian White Noise

Generates a Gaussian-distributed, pseudorandom pattern whose statistical profile
is (4, 0) = (0,s), wheres is the absolute value of the specifidndard deviation

zamples N Gaussian Moise Pattern
standard deviation = B
seed eFrar

To generate the pattern, the VI uses a modified version of the Very-Long-Cycle random
number generator algorithm based upon the Central Limit Theorem. Given that the
probability density functiorf(x), of the Gaussian-distribut€giaussian Noise Patterns:

1 oimxd
09 = Jz__nsemzmsu ,

wheres is the absolute value of the specifsdndard deviation and that you can compute
the expected valueg{+}, using the formula:

00

E(x) = J’xf(x)dx,

—00

© MNational Instruments Corporation 38-3 LabVIEW Function and VI Reference Manual

Chapter 38 Signal Generation Vs

then the expected mean valueand the expected standard deviation vajyef the

pseudorandom sequence are:

n=E{x} =0,

o = [E{(x-w}]" % = s.

The pseudorandom sequence produces approxim&fedardples before the pattern repeats

itself.

Impulse Pattern

Generates an array containing an impulse pattern.

zamples
armplitude
delay

Irnpulse Pattern

errar

If Impulse Patternis represented by the sequence X, the VI generates the pattern according

to the following formula:

U a ifi
. -0 ifi
1 0

0

=d

0 elsewhere

fori=0,1,2,..,n-1

wherea is amplitude, d is delay, andn is the number ocdamples

Periodic Random Noise

Generates an array containing periodic random noise (PRN).

zamples

gpectral amplitude —

seed — |

Perindic Randarn Maoize
errar

The output array contains all frequencies which can be represented with an integral number

of cycles in the requested numbersamples Each frequency-domain component has a
magnitude obpectral amplitude and random phase.

You can think of the output array of PRN as a summation of sinusoidal signals with the same

amplitudes but with random phases. The unifpefctral amplitudeis the same as the output
Periodic Random Noiseand is a linear measure of amplitude, similar to other signal

generation VIs.

LabVIEW Function and VI Reference Manual 38-4

© National Instruments Corporation

Chapter 38 Signal Generation Vs

The VI generates the same periodic random sequence for a given sestivalue. The VI
does not reseed the random phase generaeedfis negative.

The output sequence is bounded by an amplitudpectral amplitude * samples

You can use PRN to compute the frequency response of a linear system in one time record

instead of averaging the frequency response over several time records, as you must for
nonperiodic random noise sources.

You do not need to window PRN before performing spectral analysis; PRN is self-windowing
and, therefore, has no spectral leakage because PRN contains only integral-cycle sinusoids.

Pulse Pattern

Generates an array containing a pulse pattern.

zamples
]

amplitude
delay f
width

Pulze Pattemn
efrar

If the sequencX representfulse Pattern the VI generates the pattern according to the
following formula:

Ea ifd<i<(d+w) fori=0,1,2,..n-1.

Eb-o elsewhere

wherea is amplitude, d is delay, w is width, andn is the number ocdamples

Ramp Pattern

Generates an array containing a ramp pattern.

samples Farmp Fattern
end
start errar

© MNational Instruments Corporation 38-5 LabVIEW Function and VI Reference Manual

Chapter 38 Signal Generation Vs

If the sequenc& representRamp Pattern, the VI generates the pattern according to the
formula:

X = Xpt+ilx fori=0,1,2,...n-1,

Xn-1—Xg
n-1
The VI does not impose conditions on the relationship betstehandend. Therefore, it

can generate ramp-up and ramp-down patterns.

whereAx = Xn_11S end, Xg is start, andn is the number adamples

Sawtooth Wave
Generates an array containing a sawtooth wave.

rezet phage e
zamples PR S awtooth W ave
arnplitude - %_'— phaze out
e T ey

—I

phasze in

If the sequenc¥ representSawtooth Wave the VI generates the pattern according to the
following formula:

y[i] = a* sawtooth(phasd]), fori =0, 1, 2, ...n-1,

wherea is theamplitude, n is the number ofamples

[P
| R 0<p<180
sawtooth(phade]) = O

Dp _ <D<
180 2.0 180< p <360

p = phasd] modulo 360.0, phasi[= initial_phase #*360.0%, f is the frequency in
normalized units of cycles/sample; initial_phaspliase inif reset phaseis true; or
initial_phase is th@hase outfrom the previous execution of this instance of the Véset
phaseis false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from a sawtooth
wave function generator. If the input contredet phasas false, subsequent calls to a specific
instance of the VI produce the out@awtooth Wavearray containing the nesamplesof

a sawtooth wave.

phase outis set to phasg], and, ifreset phasds false, the next time the VI executes this
reentrant VI uses this value as its rnavase in

LabVIEW Function and VI Reference Manual 38-6 © MNational Instruments Corporation

Chapter 38 Signal Generation Vs

Sinc Pattern
Generates an array containing a sinc pattern.

sarmples
amplitude ——
delay — At

Sinc Pattern

errar

If the sequence Y represei@mc Pattern, the VI generates the pattern according to the
following formula:

y, = asing(iAt —d), fori =0, 1, 2,...n-1,

where sing(x) =

%LD(—) aisamplitude, At is the sampling intervalelta t, d is

delay, andn is the number aamples

The main lobe of the sinc function, sirk(is the part of the sinc curve bounded by the
region —1< x< 1.

When k| = 1, the sinc{ = 0.0, and the peak value of the sinc function occurs when

x = 0. Using I'Hépital's Rule, you can show that sinc(0) = 1 and is its peak value. Thus, the
main lobe is the region of the sinc curve encompassed by the first set of zeros to the left and
the right of the sinc value.

Sine Pattern
Generates an array containing a sinusoidal pattern.

samples
arnplitude ——
phaseldegrees] — e
cycles

Sinusoidal Pattern

errar

If the sequenc¥ representSinusoidal Pattern the VI generates the pattern according to the
following formula:
y, = asin(x) ,fori=0, 1, 2,...n-1,

i TT
wherex; = 2m K + iy .ais theamplitude, k is the number ofyclesin the pattern,
! n 180

@, is the initialphase(degrees) andn is the number cdamples

© MNational Instruments Corporation 38-7 LabVIEW Function and VI Reference Manual

Chapter 38 Signal Generation Vs

Sine Wave
Generates an array containing a sine wave.

FE‘SE‘t phaSE'
samples g Sine Wave
amplitude = phaze out
f — error
phaze in —

If the sequenc¥ representSine Wave the VI generates the pattern according to the
following formula:

y; =a* sin(phasd]), fori =0, 1, 2, ...n-1,

wherea is amplitude and phasé] = initial_phase #*360.0%; f is the frequency in
normalized units of cycles/sample; initial_phasphase inif reset phases true; or
initial_phase is thghase outfrom the previous execution of this instance of the VI if
reset phasds false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from a sine wave
function generator. If the input conti@set phasds false, subsequent calls to a specific
instance of the VI produce the outfgihe Wavearray containing the negsamplesof a

sine wave.

phase outis set to phasg], and ifreset phases false the next time the VI executes, this
reentrant VI uses this value as the rphase in

Square Wave
Generates an array containing a square wave.

reaget phage e .

zamples '1:'.""“""*' Square Wave
amplitude phasze out
F f
. & errar
phas=e in

duty cycle ()

If the sequenc¥ representSquare Wave the VI generates the pattern according to the
following formula:

y; =a* square(phasg), fori =0, 1, 2, ...n-1,

LabVIEW Function and VI Reference Manual 38-8 © MNational Instruments Corporation

Chapter 38 Signal Generation Vs

wherea is amplitude; n is the number odamples

0 rduty.
- 1.0 0<p< D100360H

squaré¢ phade]) = El_ uty
110 mseogs p<360

wherep = phasé] modulo 360.0duty= duty cycle, phasdi] = initial_phase #*360.0%;

fis the frequency in normalized units of cycles/sample, initial _phadeaise inif reset
phaseis true; or initial_phase is thehase outfrom the previous execution of this instance of
the VI if reset phasds false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from a square wave
function generator. If the input contn@set phases false, subsequent calls to a specific
instance of this VI produce the out@quare Wavearray containing the negamplesof a

square wave.

phase outis set to phasg], and ifreset phases false the next time the VI executes, this
reentrant VI uses this value as its rghvase in

Triangle Wave
Generates an array containing a triangle wave.

rE‘SE‘t phaEE\,
zamples g Triangle Wave
amplitude ——] phasze out
f _'_g errar
phaze in —

If the sequenc¥ represent3riangle Wave, the VI generates the pattern according to the
following formula:

y; =a* tri(phasef[]), fori =0, 1, 2, ...n-1

wherea is amplitude; n is the number ocdamples

0p
E 20 0<p<90
O

tri(phasdi]) = 02— 90<p<270
57790
32 44 270<p<360

+ <p<

90 P

© MNational Instruments Corporation 38-9 LabVIEW Function and VI Reference Manual

Chapter 38 Signal Generation Vs

wherep = (phased] modulo 360.0); phasg[= initial_phase #*360.0%; f is the frequency
in normalized units of cycles/sample; initial_phasphiase inif reset phases true; or
initial_phase is th@hase outfrom the previous execution of this instance of the Véset
phaseis false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from a triangle wave
function generator. If the input conti@set phasds false, subsequent calls to a specific
instance of the VI produce the outfutangle Wave array containing the nesamplesof a
triangle wave.

phase outis set to phasg], and ifreset phases false the next time the VI executes, this
reentrant VI uses this value as its rngase in

Uniform White Noise

Generates a uniformly distributed, pseudorandom pattern whose values are in the range
[-a:a], wherea is the absolute value amplitude.

SaﬂjD|ES [rifarm ' hite Maise
ampg::s o —F ermar

The VI generates the pseudorandom sequence using a modified version of the
Very-Long-Cycle random number generator algorithm. Given that the probability density
function,f(x), of the uniformly distributedJniform White Noise is

01 .
if —a<x<a
f(x) = 22

elsewhere

wherea is the absolute value of the specifadplitude, and given that you can compute the
expected valueg&{+}, using the formula

[

E(x) = Ix(f(x))dx

—00

LabVIEW Function and VI Reference Manual 38-10 © MNational Instruments Corporation

Chapter 38 Signal Generation Vs

then the expected mean valueand the expected standard deviation valuef the
pseudorandom sequence are

n=E{x} =0,

o=[E{(x-wA1"? = %:0.57735.

The pseudorandom sequence produces approximdfedgidples before the pattern repeats
itself.

© MNational Instruments Corporation 38-11 LabVIEW Function and VI Reference Manual

Digital Signal Processing Vis

This chapter describes the Vls that process and analyze an acquired or
simulated signal. The Digital Signal Processing Vls perform frequency
domain transformations, frequency domain analysis, time domain analysis,
and other transforms, such as the Fourier, Hartley, and Hilbert transforms.

To access thBigital Signal Processingpalette, seledtunction»
Analysis»Digital Signal ProcessingThe following illustration shows
the options available on thgigital Signal Processingpalette.

—IHlAnalypsis

Digital Signal Processing
» 3 k
e[’
-—HDigital Signal Proceszing

FiltersM| wie)h

file — g
| F | Foo | F o

H, i)
HortLey

- -
i

For examples of how to use the digital signal processing Vls, see the
examples located iexamples\analysis\dspxmpl.llb

© MNational Instruments Corporation 39-1 LabVIEW Function and VI Reference Manual

Chapter 39 Digital Signal Processing VIs

Signal Processing VI Descriptions

The following Signal Processing VIs are available.

AutoCorrelation
Computes the autocorrelation of the input sequénce

B b e—
e] Ris

errar

The autocorrelatioR (t) of a functionx(t) is defined as

[

R = x(t) O x(®) = J’x(r)x(t+ T)dt,

—00

where the symbdll denotes correlation.

For the discrete implementation of this VI, Yatepresent a sequence whose indexing can be
negative, leh be the number of elements in the input sequEne@d assume that the indexed
elements oK that lie outside its range are equal to zero,

=0, j<0 orjzn.
Then the VI obtains the elementsYofising

n-1
y = Zxkxj+k forj= -(n-1), --2),..., -2, -1,0,1,2,.n— 1.
k=0

The elements of the output sequeRee are related to the elements in the sequéfting
RXX1 :yi—(n—l) fori = 0,1,2,..,82-2.

Notice that the number of elements in the output sequexices 2n — 1. Because you cannot
use negative numbers to index LabVIEW arrays, the corresponding correlation vad@® at
is thenth element of the output sequerRex. ThereforeRxx represents the correlation
values that the VI shifted times in indexing. The following block diagram shows one way
to display the correct indexing for the autocorrelation function.

LabVIEW Function and VI Reference Manual 39-2 © MNational Instruments Corporation

Chapter 39 Digital Signal Processing VIs

Samples

] -
Eiion

The following graph is the result of the preceding block diagram.

IZ5-
AutoCorrelation
20.0-
10.0-
n.n-wm\nmm MWMW
7.3

T T T T T T T T T
-39 -80 -&0 -40 -20 0O 20 40 &0 20 99

Complex FFT

Computes the Fourier transform of the input sequeénce

FFT {1}

Brrar

Fiiy

You can use this VI to perform an FFT on an array of complex numeric representations.
If Y represents the complex output sequence, then
Y =F{X}.

You also can use this VI to perform the following operations whéas one of the complex
LabVIEW data types.
* The FFT of a complex-valued sequepce

e The DFT of a complex-valued sequence

© MNational Instruments Corporation 39-3 LabVIEW Function and VI Reference Manual

Chapter 39

Digital Signal Processing VIs

This VI first analyzes the input data, and based on this analysis, it calculates the Fourier
transform of the data by executing one of the preceding options. All these routines take
advantage of the concurrent processing capabilities of the CPU and FPU.

When the number of samples in the input sequnisea valid power of 2,
n=2"form=1, 2,3, ..., 23,

wherenis the number of samples, the VI computes the fast Fourier transform by applying the
split-radix algorithm. The largest complex FFT the VI can computé&is 8,388,608 (8M).

When the number of samples in the input sequnisenot a valid power of 2,
nz2"form=1, 2,3, ..., 23,

wheren is the number of samples, the VI computes the discrete Fourier transform by
applying the chirp-z algorithm. The largest complex DFT that can be computed is
2221 =4,194,303 (4M — 1).

Note Because the VI performs the transform in place, advantages of the FFT include

speed and memory efficiency. The size of the input sequence, however, must be a
power of 2. The DFT can efficiently process any size sequence, but the DFT is
slower than the FFT and uses more memory, because it must store intermediate
results during processing.

LetY be the complex output sequence arxk the number of samples in it. It can be shown
that

Yooi = Y_

which means you can interpret tme<(i)t" element ofY as the -t" element of the sequence,
if it could be physically realized, which represents the neggftinarmonic.

Convolution

Computes the convolution of the input sequencesdy.
¥ g T
Y v A errar

LabVIEW Function and VI Reference Manual 39-4 © MNational Instruments Corporation

Chapter 39 Digital Signal Processing VIs

The convolutiorh(t), of the signalx(t) andy(t) is defined as

[

h(®) = x()*y(t) = J'X(T)y(t—T)dT

where the symbol denotes convolution.

For the discrete implementation of the convolutiony kefpresent the output sequedcty,
letn be the number of elements in the input sequinead letm be the number of elements
in the input sequencé Assuming that indexed elementsXofndY that lie outside their
range are zero,

=0, i<0 ori=n
and
y;=0, j<0 orjzm,

then you obtain the elementsthofising

n-1
h, = Xyi_ fori=0,1,2,.., size-1,
2,

size =n+m-1,

where size denotes the total number of elements in the output seiueivce

Cross Power
Computes the cross power spectrum of the input sequraegy.

" A =
& -
T S | arFar

The cross poweB,(f), of the signalx(t) andy(t) is defined as
Sy(f) =X ()Y(f)
whereX'(f) is the complex conjugate ¥{f), X(f) = F{x(t)}, and Y(f) = F{y(t)}.

© MNational Instruments Corporation 39-5 LabVIEW Function and VI Reference Manual

Chapter 39 Digital Signal Processing VIs

This VI uses the FFT or DFT routine to compute the cross power spectrum, which is given by

Sy = SFHOOF(,
whereS,, represents the complex output sequedixg andn is the number of samples that
can accommodate both input sequeriesndy.
The largest cross power that the VI can compute via the FP¥ (8,288,608 or 8M).
When the number of samplesXnandY are equal and are a valid power of 2,
n=m=22fork=1, 2,3, ..., 23,

wheren is the number of samples ¥y andmis the number of samples Y the VI makes

direct calls to the FFT routine to compute the complex, cross power sequence. This method
is extremely efficient in both execution time and memory management because the VI
performs the operations in place.

When the number of samplesXnandY are not equal,
nzm,

wheren is the number of samplesX andmis the number of samplesYhthe VI first
resizes the smaller sequence by padding it with zeros to match the size of the larger sequence.
If this size is a valid power of 2,

max(,m) = Xfork=1, 2, 3, ..., 23,

the VI computes the cross power spectrum using the FFT; otherwise the VI uses the slower
DFT to compute the cross power spectrum. Thus, the size of the complex output sequence is

size = maxg,m).

CrossCorrelation
Computes the cross correlation of the input sequeXi@ewy.

s H%‘ Ry
b Tl errar

LabVIEW Function and VI Reference Manual 39-6 © MNational Instruments Corporation

Chapter 39 Digital Signal Processing VIs

The cross correlatioR,(t) of the signal(t) andy(t) is defined as

[

Ry() = x(t) O y(t) = IX(T)y(t+ T)dt,

—00

where the symbdll denotes correlation.

For the discrete implementation of this VI, hetepresent a sequence whose indexing can be
negative, leh be the number of elements in the input sequehdet m be the number of
elements in the sequen¥égand assume that the indexed elemen¥ afidY that lie outside
their range are equal to zero,

X=0,j<0 orj=n,
and

y;=0, j<0 orjzm
Then the VI obtains the elementstafising

n-1

h, = ZXKyJ-Jrk forj=-(M-1),-0-2),..., -2,-1,0,1, 2,.m-1.
k=0

The elements of the output sequeRsy are related to the elements in the sequéripe
Rxyi =h_(n_yy fori=0,1,2,..,size-1,

size=n+m-1

where size is the number of elements in the output seqtxyce

Because you cannot index LabVIEW arrays with negative numbers, the corresponding
cross correlation value ait 0 is then™ element of the output sequerRey. Therefore,
Rxy represents the correlation values that the VI shiftéghes in indexing.

© MNational Instruments Corporation 39-7 LabVIEW Function and VI Reference Manual

Chapter 39 Digital Signal Processing VIs

The following block diagram shows one way to index the CrossCorrelation VI.

195 ==
]

H|H
w
£

n

“Width

g
Samples Y
200

Drelay

The following graph is the result of the preceding block diagram.

100.0-

agn0-| CrossCorrelation

00—

40.0-

20.0-

0.o 1]]]]

99 =50 0 S0 100 150 193
Decimate
Decimates the input sequernXdy thedecimating factor and theaveragingbinary control.
L — o R Decimated A”ay
decimating fau:_tu:ur U i airar
averaging -

If Y represents the output sequeDsximated Array, the VI obtains the elements of the
sequencé using

LabVIEW Function and VI Reference Manual 39-8 © MNational Instruments Corporation

Chapter 39 Digital Signal Processing VIs

CKim if ave is false

O . .
y; = %m‘l . . fori =0, 1, 2,..., size—1
Dmkzox(im y if ave is true

iva = no
size = trun%nnm,

wheren is the number of elementsXh) mis thedecimating factor, aveis theaveraging
option, andsizeis the number of elements in the output sequ@am@mated Array.

Deconvolution
Computes the deconvolution of the input sequeXce¥ andy.

HoEY HA H
Y v errar

The VI can use Fourier identities to realize the convolution operation because
X(t) * y(t) = X(f) Y(f)

is a Fourier transform pair, where the symbdenotes convolution, and the deconvolution is
the inverse of the convolution operationh(f) is the signal resulting from the deconvolution
of the signalx(t) andy(t), the VI obtaind(t) using the equation

- X(Oo
h(t) = F Ov(p0”

whereX(f) is the Fourier transform oft), andY(f) is the Fourier transform gft).

The VI performs the discrete implementation of the deconvolution using the following steps:
1. Compute the Fourier transform of the input sequanty .
2. Compute the Fourier transform of the input sequéhce

3. Divide the Fourier transform &f * Y by the Fourier transform &. Call the new
sequencé.

4. Compute the inverse Fourier transfornHafo obtain the deconvoluted sequeice

& Note The deconvolution operation is a numerically unstable operation, and it is not
always possible to solve the system numerically. Computing the deconvolution via

© MNational Instruments Corporation 39-9 LabVIEW Function and VI Reference Manual

Chapter 39 Digital Signal Processing VIs

FFTs is perhaps the most stable generic algorithm not requiring sophisticated
DSP techniques. However, it is not free of errors (for example, when there are
zeros in the Fourier transform of the input sequence Y).

Derivative x(t)
Performs a discrete differentiation of the sampled signal

W T |
e d/el

ifitial condition ="

final conditian it
i

error

The differentiatiorf(t) of a functionF(t) is defined as
- d
f(t) = OItF(t).
Let Y represent the sampled output sequehtet. The discrete implementation is given by
.= i(x- -x_q) fori=0,1,2,..n-1
Yi = 2dt i+l i—1 T My &y e !

wheren is the number of samplesit),
X_1 Is specified bynitial condition wheni = 0, and
X, is specified byinal condition wheni =n-1.

Theinitial condition andfinal condition minimize the error at the boundaries.

Fast Hilbert Transform
Computes the fast Hilbert transform of the input sequ&nce

HAH) Hilbert{}

Hilbrt erFar

The Hilbert transform of a functiax(t) is defined as

00

h() = H{x(®)} = —%[tx(_—Tidt.

—00

LabVIEW Function and VI Reference Manual 39-10 © MNational Instruments Corporation

Chapter 39 Digital Signal Processing VIs

Using Fourier identities, you can show the Fourier transform of the Hilbert transfa(thisf
h(t) < H(f) =—j sgnf) X(f)
wherex(t) <= X(f) is a Fourier transform pair and

1
0
1

sgn(f) =

DFDDD
—h —h

The VI completes the following steps to perform the discrete implementation of the Hilbert
transform with the aid of the FFT routines based upoh(the- H(f) Fourier transform pair
(refer to the output format of the FFT VI for more information):

1. Fourier transform the input sequence Y = F{X}.

Set the DC component to zerdg = 0.

If the sequenck¥ is an even size, set the Nyquist component to 2ggg:= 0.
Multiply the positive harmonics byj—

a s~ DN

Multiply the negative harmonics pyCall the new sequent& which is of the form
Hk= —j sgnf) Yi.
6. Inverse Fourier transfori to obtain the Hilbert transform .

You use the Hilbert transform to extract instantaneous phase information, obtain the
envelope of an oscillating signal, obtain single-sideband spectra, detect echoes, and reduce
sampling rates.

Note Because the VI sets the DC and Nyquist components to zero when the number of
elements in the input sequence is even, you cannot always recover the original
signal with an inverse Hilbert transform. The Hilbert transform works well with
bandpass limited signals, which exclude the DC and the Nyquist components.

© MNational Instruments Corporation 39-11 LabVIEW Function and VI Reference Manual

Chapter 39 Digital Signal Processing VIs

FHT
Computes the fast Hartley transform (FHT) of the input sequénce
» Hix} Hartlep <4t
Houtlay errar

The Hartley transform of a functiott) is defined as

[

X() = Ix(t)cas(2Tt dlt

where cas() = cosk) + sinf).

If Y represents the output sequehiztley{X} obtained via the FHT, thexis obtained
through the discrete implementation of the Hartley integral:

n-1 .
Y, = zxicag%'k% fork=0,1, 2, ...n-1.
=0

wheren is the number of elements X

FHT maps real-valued sequences into real-valued frequency domain sequences. You can use
it instead of the Fourier transform to convolve signals, deconvolve signals, correlate signals,
and find the power spectrum. You can also derive the Fourier transform from the Hartley
transform.

When the sequences to be processed are real-valued sequences, the Fourier transform
produces complex-valued sequences in which half of the information is redundant. The
advantage of using the FHT instead of the FFT transform is that the FHT uses half the
memory to produce the same information the FFT produces. Further, the FHT is calculated in
place and is as efficient as the FFT. The disadvantage of the FHT is that the size of the input
sequence must be a valid power of 2.

LabVIEW Function and VI Reference Manual 39-12 © MNational Instruments Corporation

Chapter 39 Digital Signal Processing VIs

Integral x(t)

Performs the discrete integration of the sampled signal

W — LIt
initial condition —— | Integral &
final n:u:un-:hh-:é? —E-;_ : J——

The integraF(t) of a functionf(t) is defined as

F(t) = J'f(t)dt

LetY represent the sampled output sequéntEgral X. The VI obtains the elements 6f
using

i
1 .
y, = éZ(xj_1+4xj +X,,)dt fori=0,1,2,..n-1,
=0

wheren is the number of elementsX x_ is specified bynitial condition wheni = 0, and
X, is specified byfinal condition wheni =n-1.

initial condition andfinal condition minimize the overall error by increasing the accuracy at
the boundaries, especially when the number of samples is small. Determining boundary
conditions before the fact enhances accuracy.

Inverse Complex FFT

Computes the inverse Fourier transform of the complex input seqaEicEX }.

F (i}

FFT {4}

errar

You can use this VI to perform an inverse FFT on an array of one of the LabVIEW complex
numeric representations.

© MNational Instruments Corporation 39-13 LabVIEW Function and VI Reference Manual

Chapter 39

Digital Signal Processing VIs

If Y represents the output sequence, then

Y=F~1{X].
You can use this VI to perform the following operations whEMm {X} has one of the
complex LabVIEW data types:
e The inverse FFT of a complex-valued sequéexice
e The inverse DFT of a complex-valued sequeXice

This FFT VI first analyzes the input data, and, based on this analysis, inverse Fourier
transforms the data by executing one of the preceding options. All these routines take
advantage of the concurrent processing capabilities of the CPU and FPU.

When the number of samples in the input sequiise valid power of 2,
n=2m form=1, 2, 3,..., 23,

wherenis the number of samples, the VI computes the inverse FFT by applying the split-radix
algorithm. The longest sequence with an inverse complex FFT that the VI can compute is
223=8,388,608 (8M).

When the number of samples in the input sequrisenot a valid power of 2,
n#2m form=1,2,3, ..., 23,
wheren is the number of samples, the VI computes the inverse DFT by applying the chirp-z

algorithm. The longest sequence with an inverse complex DFT that the VI can compute
is 222—1 (4,194,303 or 4M —1).

Note Because the VI performs the transform in place, advantages of the FFT include

speed and memory efficiency. The size of the input sequence, however, must be a
power of 2. The DFT can efficiently process any size sequence, but the DFT is
slower than the FFT and uses more memory because it must store intermediate
results during processing.

Inverse Fast Hilbert Transform

Computes the inverse fast Hilbert transform of the input sequénce

intI{l Irv Hilbert £33
Hilksz errar

LabVIEW Function and VI Reference Manual 39-14 © MNational Instruments Corporation

Chapter 39 Digital Signal Processing VIs

The inverse Hilbert transform of a functib(t) is defined as

h() = HY{h(t)} = h(T) Yar.

—00

Using the definition of the Hilbert transform

h(t) = H{x()} = IX‘T’d

you obtain the inverse Hilbert transform by negating the forward Hilbert transform

x(®) =H7{h(®} = - H{h(®}.

The VI completes the following steps to perform the discrete implementation of the inverse
Hilbert transform with the aid of the Hilbert transform.

1. Hilbert transform the input sequenge Y = H{X}.
2. NegateY to obtain the inverse Hilbert transform ~1{ X} = -Y.

Inverse FHT
Computes the inverse fast Hartley transform (FHT) of the input seqdence

]
y {m': In FHT £33
Howtlay errar

The inverse Hartley transform of a functi¥(f) is defined as

00

x(t) = J’X(f)cas(atft) o

where cas() = cosk) + sin).

© MNational Instruments Corporation 39-15 LabVIEW Function and VI Reference Manual

Chapter 39

Digital Signal Processing VIs

If Y represents the output sequeieeFHT {X} , the VI calculate¥ through the discrete
implementation of the inverse Hartley integral:

n-1
_1 2tk _
Y, = nZXicasT,fork—O, 1,2,..h-1.
i=0

wheren is the number of elements X

The inverse Hartley transform maps real-valued frequency sequences into real-valued
sequences. You can use it instead of the inverse Fourier transform to convolve, deconvolve,
and correlate signals. You can also derive the Fourier transform from the Hartley transform.

See thé=HT section earlier in this chapter for a comparison of the Fourier and Hartley
transforms.

Inverse Real FFT

Computes the Inverse Real Fast Fourier Transform (FFT) or the Inverse Real Discrete Fourier
Transform (DFT) of the input sequeneBT{X} .

F)

FFT{x}

Errar

The input sequence is complex-valued. This VI automatically determines the following
options:

« Inverse Real FFT of a complex-valued sequence if the size is a power of 2.
* Inverse Real DFT of a complex-valued sequence if the size is not a power of 2.

This VI executes inverse FFT routines if the size of the input sequence is a valid power of 2:
size=% m=1,2, ..., 23.

If the size of the input sequence is not a power of 2, this VI calls an efficient Inverse DFT
routine.

The output sequence = Inverse Real FFTHFT{X}] is real and it returns in one real array.

LabVIEW Function and VI Reference Manual 39-16 © MNational Instruments Corporation

Chapter 39 Digital Signal Processing VIs

Power Spectrum
Computes the power spectrum of the input sequEnce

v E Fower Spectum

efrar

ThePower SpectrumS,(f) of a functionx(t) is defined as

Suf) =X (OX(A) = |X(f) |2
whereX(f) = F{x(t)}, and X' (f) is the complex conjugate Xff).

This VI uses the FFT and DFT routines to compute the power spectrum, which is given by

Sp = SIF{X}?,
n

whereS,, represents the output sequeRogver Spectrum andn is the number of samples
in the input sequence.

When the number of samples,in the input sequence is a valid power of 2,
n=2M form=1,2,3, ..., 23,

this VI computes the FFT of a real-valued sequence using the split-radix algorithm and
efficiently scales the magnitude square. The largest power spectrum the VI can compute using
the FFT is 23 (8,388,608 or 8M).

When the number of samples in the input sequ#risenot a valid power of 2,
n#2m form=1, 2, 3,..., 23,

wheren is the number of samples, this VI computes the discrete Fourier transform of a
real-valued sequence using the chirp-z algorithm and scales the magnitude square. The largest
power spectrum the VI can compute using the fast DF#2is2(4,194,303 or 4M - 1).

The FFT computation of the power spectrum is time and memory efficient because the
transform is real and done in the same space. However, the size of the input sequence must be
exactly a power of 2. The DFT version efficiently computes the power spectrum of any size
sequence. The DFT version is slower than the FFT version, uses more memory, and is not as
efficient in scaling.

© MNational Instruments Corporation 39-17 LabVIEW Function and VI Reference Manual

Chapter 39

Digital Signal Processing VIs

LetY be the Fourier transform of the input sequexXcend lein be the number of samples in
it. It can be shown that

Yail® = Y4

You can interpret the power in the<{i) element ofY as the power in theit element of the
sequence, which represents the power imtgativei!™ harmonic. You can find the total
power for thet harmonic (DC and Nyquist component not included) using

Power ini"™" harmonic= 2 = |Y|12+ Y,

3

. N
2 <i<-= .
O<i 5

The total power in the DC and Nyquist components|‘a5§ |‘é,§}g|2 , respectively.

Real FFT

Computes the Real Fast Fourier Transform (FFT) or the Real Discrete Fourier Transform
(DFT) of the input sequence.

FFT{i}

Brrar

Fix}

The input sequence is real-valued. The Real FFT VI automatically determines the options,
which are the following:

e FFT of areal-valued sequence
e DFT of a real-valued sequence

The Real FFT VI executes FFT routines if the size of the input sequence is a valid power of 2:
size=»m=1,2,..,23.

If the size of the input sequence is not a power of 2, the Real FFT VI calls an efficient
Real DFT routine.

The output sequencé= Real FFTK] is complex and returns in one complex array:

Y =YRe +jYIm

LabVIEW Function and VI Reference Manual 39-18 © MNational Instruments Corporation

Chapter 39 Digital Signal Processing VIs

Unwrap Phase
Unwraps thé?hasearray by eliminating discontinuities whose absolute values exceed

Unwrapped Phase
Fhaze

errar

i

Y[il = Clip {XIil}
Clips the elements dhput Array to within the bounds specified loypper limit and
lower limit .

Input At ay Lkl) Clipped Array
upper Timit .,
Tovwet Tirnit L errar

Let the sequencérepresent the output seque@ipped Array ; then the elements dfare
related to the elements wiput Array by

g e
Y, = X bsx<a fori=0,1,2,...n-1,
%<b

wheren is the number of elementslmput Array , a is upper limit, andb is lower limit.

YI[i] = X[i-n]
Shifts the elements imput Array by the specified number of shifts.

Input Array
shifts:n

Shifted Array

errar

© MNational Instruments Corporation 39-19 LabVIEW Function and VI Reference Manual

Chapter 39 Digital Signal Processing VIs

Let the sequencérepresent the output sequergtefted Array ; then the elements ofare
related to the elements ¥fby

K e if O<i—shifts<n fori=0,1,2,...,n-1,
Yi = 0O
EO elsewhere

wheren is the number of elementslimput Array .

Note This VI does not rotate the elements in the array. The VI disposes of the elements
of the input sequence shifted outside the range, and you cannot recover them by
shifting the array in the opposite direction.

Zero Padder
Resizes the input sequerloput Array to the next higher valid power of 2, sets the new
trailing elements of the sequence to zero, and leaves the élsinents unchanged, where
nis the number of samples in the input sequence.

Input Array mlllp:ﬂ cero Padded Array

This VI is useful when the size of the acquired data buffers is not a power of 2, and you want
to take advantage of fast processing algorithms in the analysis VIs. These algorithms include
Fourier transforms, power spectrum, and FHTs, which are extremely efficient for buffer sizes

that are a power of 2.

LabVIEW Function and VI Reference Manual 39-20 © MNational Instruments Corporation

Measurement Vs

This chapter describes the Measurement Vls, which are streamlined to
perform DFT-based and FFT-based analysis with signal acquisition

for frequency measurement applications as seen in typical frequency
measurement instruments, such as dynamic signal analyzers.

To access th®leasurementpalette, seledtunction»Analysis»
Measurement The following illustration shows the options that are
available on thdeasurementpalette.

o—UllAnalysziz
Measurement

F T{H}"- '
Lk, ‘El‘ -—1EHMeazurement

it I
v Tit

Pt

el

For examples of how to use the measurement Vls, see the examples
using data acquisition located éramples\analysis\measure\

dagmeas.llb and using simulated signalseramples\analysis\
measure\measxmpl.llb

© MNational Instruments Corporation 40-1 LabVIEW Function and VI Reference Manual

Chapter 40 Measurement Vs

Measurement VI Descriptions

The following Measurement VIs are available.

AC & DC Estimator

Computes an estimate of the AC and DC levels of the input signal.

. L AL estimate [Vims)
Signal [+ il DC estimate [+]

Amplitude and Phase Spectrum
Computes the single-sided, scaled amplitude spectrum magnitude and phase of a real
time-domain signal.

Signal [\ Arnp Spectum Mag [Wims)

urwrap phage [T] - il Amp Spectium Phaze [radianz)
dt Ep sty df

The VI computes the amplitude spectrum as

FFT(Signal)
N

whereN is the number of points in ti&gnal array. The VI then converts the amplitude
spectrum to single-sided rms magnitude and phase spectra.

Auto Power Spectrum
Computes the single-sided, scaled, auto power spectrum of a time-domain signal.

Signal [W] Power Spectrurn [¥2 mz)
dt o df

This VI computes the power spectrum as

FFT*(Signal) x FFT(Signal)
N2

whereN is the number of points in ti&gnalarray and * denotes complex conjugate. The VI
then converts the power spectrum into a single-sided power spectrum result.

LabVIEW Function and VI Reference Manual 40-2 © MNational Instruments Corporation

Chapter 40 Measurement VIs

Cross Power Spectrum

Computes the single-sided, scaled, cross power spectrum of two real-time signals. The cross

power spectrum gives the product of the amplitude of the signals X and Y and the difference
between their phases (phase of Y minus phase of X).

Signal & (V) RO Cross Power BY Spectrum Mag (Y"2rms)
Signal ¥ (¥ S:E',:'_.‘r"ﬁ':u“ Cross Power XY Spectrum Phase (radians)
dt Sy df

This VI computes the cross power spectrum as

FFET*(Signal X) x FFT(Signal Y)
N2

whereN is the number of points iBignal X or Signal Y arrays. The VI then converts the
cross power spectrum to single-sided magnitude and phase spectra.

Harmonic Analyzer

© MNational Instruments Corporation 40-3

Finds the fundamental and harmonic components (amplitude and frequency) present in
the inputAuto Power Spectrum and computes the percent of total harmonic distortion
(%THD) and the total harmonic distortion plus noi%€fHD + Noise).

frame size

duto Power Spectrum Harronic Amplitudes
¥ harmonics — L= Harrnonic Frequencies

windaw f % % THD
zarmpling rate

% THD + Moize
fundarmental frrequency

You must pass the windowed, auto power spectrum of your signal to this VI for it to function
correctly. You should pass your time-domain signal through the scaled time domain window

and then through the Auto Power Spectrum, connecting the Auto Power Spectrum output to
this VI.

LabVIEW Function and VI Reference Manual

Chapter 40 Measurement Vs

The following illustration shows an example of using this VI.

Auto Power Spectirurn

BiE
=;=
H

frame size
132

st em| F""/gﬁwf u:.;m.:

harmonics

window

fundamental frequency

DEBL] | Harmonic Arnplitudes

1]

—

Harrnonic Frequencies

THC

3
% THL + Noize

=ampling rate
DBL

Impulse Response Function
Computes the impulse response of a network based on real sigr&itsal (X Stimulus)

and Y Signal Y Responsg

Signal & SHmUTUS e——
] e [Fip 122 RE2zponse
Signal % Fesponse ¥

Thelmpulse Responsas in the time domain, so you do not need to convert time units to
frequency units. Thenpulse Responses the inverse transform of the transfer function.
This VI computesmpulse Responseas

Cross Power(Stimulus, Response)
Inverse FFT - .
[Power Spectrum(Stimulus)

Network Functions (avg)
Computes several network response functions of two, real time-domain signals X

(Stimulus Signal) and Y Response Signal

rmlir'-:-ﬁ Power Spectrum (avg)

Stimuluzs Signal ., Frequency Response [avg)
Response Signal == i Coherence Function I:III..1%
4t - Impulse Rezponse [avqg)

df

The signals X$timulus Signa) and Y Response Signalinclude coherence, averaged cross
power spectrum magnitude and phase, averaged transfer fukcgougéncy Responsg

and averagetinpulse Response

LabVIEW Function and VI Reference Manual 40-4 © MNational Instruments Corporation

Chapter 40 Measurement VIs

You usually compute these functions on the stimulus and response signals from a network
under test. The coherence function shows the frequency contentR¥shenseSignal Y

due toStimulus Signal X and measures the validity of the network frequency response
measurement.

You can use this VI to measure the coherence between any two signals. The VI averages
multiple stimulus and response signals to get valid coherence measurébnesgs?ower
Spectrumandimpulse Responsare the rms averaged versions of the similarly named Vis.
Frequency Responseés the rms averaged version of the frequency response outputs of the
Transfer Function VI.

Peak Detector
For information on this VI, see Chapter #Additional Numerical Method Vlsin this
manual.

Power & Frequency Estimate
Computes the estimated power and frequency around a peak in the power spectrum of a
time-domain signal.

Power Spectrum (Y2 rrs) =——————mass
peak frequency Cmax) —
uf T est power peak

window constants s n
df —I_
span

With this VI, you can achieve good frequency estimates for measured frequencies that lie
between frequency lines on the spectrum. The VI makes corrections for the window function
you use.

ezt frequency peak

Pulse Parameters

Analyzes the input sequeniefor a pulse pattern and determines the best set of pulse
parameters that describes the pulse.

slew rate
| —— overshoot
izetirne
— E':'g%:éﬁtude
under=zhoot

error
falltirne
width
delay

© MNational Instruments Corporation 40-5 LabVIEW Function and VI Reference Manual

Chapter 40 Measurement Vs

The waveform-related parameters slew rate overshoot topline op), amplitude,

baseline l§asg, andundershoot The time-related parameters asetime, falltime,

width (duration), andielay.

This VI completes the following steps to calculate the output parameters:
Finds the maximum and minimum values in the input sequéence

2. Generates the histogram of the pulse with 1% range resolution.
3. Determines the upper and lower modes to establisiophendbasevalues.
4. Findsovershoot amplitude, andundershootfromtop, base maximum, and minimum

values.
5. ScansX and determineslew rate risetime, falltime , width, anddelay.

The VI interpolatesvidth anddelay to obtain a more accurate result not onlyvafth and
delay, but also oflew rate risetime, andfalltime .

If X contains a train of pulses, the VI uses the train to detewwwarshoot top, amplitude,
base andundershoot, but uses only the first pulse in the train to estalslistv rate,
risetime, falltime, width, and delay

Note Because pulses commonly occur in the negative direction, this VI can discriminate
between positive and negative pulses and can analyzethequence correctly.
You do not need to process the sequence before analyzing it.

Scaled Time Domain Window
Applies the selected window to the time-domain signal.

‘wWaveform ERE =} ‘wWindowed “Waveform
&Em
windaw En""',aﬁw]zmwindnw canstants

The VI scales the result so that when the power or amplitude spectifimddwed

Waveform is computed, all windows provide the same level within the accuracy constraints
of the window. This VI also returns importaMindow Constantsfor the selected window.
These constants are useful when you use VIs that perform computations on the power
spectrum, such as the Power & Frequency Estimate and Spectrum Unit Conversion VIs.

LabVIEW Function and VI Reference Manual 40-6 © MNational Instruments Corporation

Chapter 40 Measurement VIs

Spectrum Unit Conversion

Converts either the power, amplitude, or gain (amplitude ratio) spectrum to alternate formats
including Log (decibel and dbm) and spectral density.

signal unit ()

Spectrum Spectrum
spectrum type
log ATinear prnnnnnn cpeciEUn UNit
dizplay unit
df

window constants

Threshold Peak Detector
For information on the this VI, see Chapter Additional Numerical Method Vls
Transfer Function

Computes the transfer function (also known as the frequency response) from the time-domain
Stimulus Signal andResponse Signafrom a network under test.

Stirmulus Signal My = AL Frequency Response Mag (gain)
Fesponse Signal F. #:!x“ Frequency Response Fhase (radians)
dt o

This VI computes the transfer function of a system based on the real signals X

(Stimulus Signal) and Y Response Signdl The output is the amplitude gain of the
network, which is unitless.

The VI computer frequency response is

Cross Power(Stimulus, Response)
Power Spectrum(Stimulus)

© MNational Instruments Corporation 40-7 LabVIEW Function and VI Reference Manual

Filter Vis

This chapter describes the Vls that implement IIR, FIR, and nonlinear
filters.

To access thEilters palette, seledtunction»Analysis»Filters
The following illustration shows the options that are available on the
Filters palette.

<~ Analyziz

3 VEm *
Fis)
Ll |

el

[
Fl

=1

For examples of how to use the Filter VIs, see the examples located in
examples\analysis\fltrxmpl.llb

© MNational Instruments Corporation 41-1 LabVIEW Function and VI Reference Manual

Chapter 41 Filter Vls

Filter VI Descriptions

The following Filter VIs are available.

Bessel Coefficients

Generates the set of filter coefficients to implement an IIR filter as specified by the
Bessel filter model. You can then pass these coefficients to the IR Cascade Filter VI.

filter type
zampling freq: f2 ——— % L cospfoooooon [|R Filter Cluster
high cutaff freq: fh —h
Tow cutoff freq: f1 — L ordkr

.

errar

arder

The Bessel Coefficients VI is a subVI of the Bessel Filter VI.

Bessel Filter
Generates a digital, Bessel filter ustiiter type , sampling freq: fs, high cutoff freq: th,
low cutoff freq: fl, andorder by calling the Bessel Coefficients VI. The VI then calls the
[IRCascade Filter to filter th¥ sequence using this model to obtain a Bdsiielred X
sequence.

filker type
Filtered =

Errar

zampling freq; fz
high cutaff freq: b
v cutoff freq: £l
arder

LabVIEW Function and VI Reference Manual 41-2 © MNational Instruments Corporation

Butterworth Coefficients

Chapter 41 Filter Vis

Generates the set of filter coefficients to implement an IIR filter as specified by the
Butterworth filter model. You can pass these filter coefficie& [ilter Cluster) to the
IIR Cascade Filter VI to filter a sequence of data.

filter type

zampling freq: f=
high cutoff freq: fh
Towr cutoff freq: 11

order

IR Filter Cluster

errar

This VI is a subVI of the Butterworth Filter VI.

Butterworth Filter

Generates a digital Butterworth filter usisampling freq: fs, low cutoff freq: fl, high cutoff
freq: th, order, andfilter type by calling the Butterworth Coefficients VI. The Butterworth
Filter VI then calls the IIR Cascade Filter VI to filter tiesequence using this model to get

a ButterworthFiltered X sequence.

Tow cutoff freg: 11
order

sampling freq: fs - F

Filtered ¥

high cutoff freq: th —_II—

indt feont (indt F) e

errar

Cascade — Direct Coefficients

Converts IIR filter coefficients from the cascade form to the direct form.

[IR Filker Clugher seeme=

[]i—%

Reverze Coefficients
Fonward Coefficients

As an example, you can convert a cascade filter, composed of two second-order stages, to a

direct form filter as follows:

Reverse Coefficientsiaf 1, asq, a0, a9 — {1.0, a4, ay, ag, a4}

Forward COEfﬁCientS:t{Ol, bll* b21, boz, b121 b22} - {bo, bl! b2, b3, b4}

See the IIR Cascade Filter VI for information about cascade form filtering, the IIR Filter VI

for information on direct form filtering

© MNational Instruments Corporation 4

1-3

LabVIEW Function and VI Reference Manual

Chapter 41 Filter Vls

Chebyshev Coefficients

Generates the set of filter coefficients to implement an IIR filter as specified by the Chebyshev
filter model. You can pass these coefficients to the IIR Cluster Filter VI to filter a sequence
of data.

filter type ——
zampling freq: f= [T

.) g1
high cutoff freq: fh —f ;

low cutaff fireq: 1 f

ripple(dE)
arder

The Chebyshev Coefficients VI is a subVI of the Chebyshev Filter VI.

IR Filter Cluster

error

Chebyshev Filter

Generates a digital, Chebyshev filter ussiagnpling freq: fs, low cutoff freq: fl,

high cutoff freq: th, ripple, order, andfilter type by calling the Chebyshev Coefficients VI.
The Chebyshev Filter VI filters thé¢ sequence using this model to obtain a Chebyshev
Filtered X sequence by calling the IIR Cascade Filter VI.

filter type ——
b wr

- Filtered &

errar

sampling freq: fz —
high cutoff freq: fh —_Il—ﬂ
lowe cutoff fireg: 11
rippleldE)

order

it Scant Cingt F) s

Convolution
For information about Convolution, see Chapter3igjtal Signal Processing Vis

LabVIEW Function and VI Reference Manual 41-4 © MNational Instruments Corporation

Chapter 41 Filter Vis

Elliptic Coefficients
Generates the set of filter coefficients to implement a digital elliptic IIR filter. You can pass
these coefficients to the IIR Cascade Filter VI.

filter type ——
=sampling freq: f= Fr ¥ Conef IR Filter Cluster

high cutaff freq: fh T |*E errar

lomw cutoff freq: 1 ff' r
passband ripple [dE])
stopband attenuation (dB)

The Elliptic Coefficients VI is a subVI of the Elliptic Filter VI.

Elliptic Filter
Generates a digital, elliptic filter usirsgmpling freq: fs, low cutoff freq: fl,
high cutoff freq: fh, filter type, passband ripple stopband attenuation andorder by
calling the Elliptic Coefficients VI. The Elliptic Filter VI then calls the IIR Filter VI to
filter the X sequence using this model to obtain an elliptitered X sequence.

filter type
passband ripple(dB) ———
M HLE
zampling freq: fs 1 |}
high cutoff freq: fh __II_ .
Tonw cutoff freq: £
stopband attenuation(dEl

arder
init Sfcont ('il'l'it :F:| ;

- Filtered ¥

errar

Equiripple BandPass
Generates a bandpass FIR filter with equi-ripple characteristics using the Parks-McClellan
algorithm anchigher pass freq lower pass freq # of taps lower stop freq, higher
stop freq, andsampling freq: fs. The VI then filters the input sequen€do obtain the
bandpass, filtered, linear-phase sequéiltered Data.

higher pass freq

Iower pass freq ——— |
k] H fu% Filtered Data

R Brror

¥ of taps

lower =top freq
higher stop frreq
zampling freq: f=

© MNational Instruments Corporation 41-5 LabVIEW Function and VI Reference Manual

Chapter 41 Filter Vls

The first stopband of the filter region goes from zero (D@uer stop freq. The passband
region goes fronbwer pass freqto higher pass freq and the second stopband region goes
from higher stop freqto the Nyquist frequency.

Equiripple BandStop
Generates a bandstop FIR digital filter with equi-ripple characteristics using the
Parks-McClellan algorithm artdgher pass freq lower pass freq # of taps lower stop
freq, higher stop freq, andsampling frequency: fs The VI then filters the input sequence
X to obtain the bandstop, filtered, linear-phase sequeitteeed Data.

higher pass freqg
lower pass freq —— |
ks "f;:;u 3

¥ of taps r .
lowrer stop freq
higher =top freg
zampling freq: f=

The first passband region of the filter goes from zero (D@wer pass freq The stopband
region goes fronbower stop freqto higher stop freq, and the second passband region goes
from higher pass freqto the Nyquist frequency.

Filtered Data
errar

Equiripple HighPass
Generates a highpass FIR filter with equi-ripple characteristics using the Parks-McClellan
algorithm and# of taps stop freq, high freq, andsampling freq. The VI then filters the input
sequence to obtain the highpass, filtered, linear-phase sequeilteeed Data.

R R Filtered Data
> arrar
¥ of taps
=top fireq

. high freg
zampling freq: f=

The stopband of the filter goes from zero (DC3ttmp freq. The transition band goes from
stop freq to high freq, and the passband goes frbigh freq to the Nyquist frequency.

LabVIEW Function and VI Reference Manual 41-6 © MNational Instruments Corporation

Chapter 41 Filter Vis

Equiripple LowPass

Generates a lowpass FIR filter with equiripple characteristics using the Parks-McClellan
algorithm and thé of taps pass freq stop freq, andsampling freg. The VI then filters the
input sequenc¥ to obtain the lowpass filtered, linear-phase sequEitiszed Data.

" Filtered Data
: ekrar
¥ of taps
pass freq
_ =top freq
zampling freq: f=

The passband of the filter goes from zero (DQ)ass freq The transition band goes from
pass freqto stop freq, and the stopband goes fratop freq to the Nyquist frequency.

FIR Narrowband Coefficients

Generates a set of filter coefficients to implement a digital interpolated FIR filter. You can
pass these coefficients to the FIR Narrowband Filter VI to filter the data.

ripple: rp

zampling freq: f=

passband: fpass

stopband : fstop

center freq: fo

attenuation (db): &y ——
filter type

3
YT,
Fx

T

Ap

oo |F IR Coefficients
error

The following figures show how the narrowband filter parameters define the lowpass,
highpass, bandpass, and bandstop filters. The passband ripple is shgwrhedfifer

response on the Y axis is shown on a linear scale. For this reason, the stopband atégnuation
was mapped to a linear attenuation using the following equations:

A, = —20logd,

© MNational Instruments Corporation 41-7 LabVIEW Function and VI Reference Manual

Chapter 41 Filter Vls

IHf| &

§ IR TR TSR LN III I

7N 3

0 | |

Tpass Tstop f.fz f
Figure 41-1. Lowpass Filter
IH{f| &

_________________ [cmm—w-- 1+
e =3h
B4 O A
i} | i]

fstop Tpass foz f

Figure 41-2. Highpass Filter

Figure 41-3. Bandpass Filter

LabVIEW Function and VI Reference Manual 41-8 © MNational Instruments Corporation

Chapter 41 Filter Vis

IHTI &

Figure 41-4. Bandstop Filter

FIR Narrowband Filter

Filters the input sequenéeusing the IFIR filter specified bfIR Coefficients as designed
by the FIR Narrowband Filter Coefficients VI.

* Hogly =+ Filtered ¥

IFIE Coeffizients IFIf erFar

FIR Windowed Coefficients

Generates the set of filter coefficients you need to implement a FIR windowed filter.

filter type
zampling freq; fz
high cutaff freq; th
lowva cutoff freq: fl
Laps

waindoe

FIR “indowed Coeffizients

errar

FIR Windowed Filter

Filters the input data sequengg,using the set of windowed FIR filter coefficients specified
by sampling freq: fs, low cutoff freq: fl, high cutoff freq: fh, and number afaps.

filker tppe
*

Filtered Drata
errar

gampling freq: fs
[cutaff freq: f
high cukaff freq: b
laps

window

© MNational Instruments Corporation 41-9 LabVIEW Function and VI Reference Manual

Chapter 41

Filter Vis

lIR Cascade Filter

Filters the input sequen&eusing the cascade form of the IIR filter specified byl tRd-ilter
Cluster.

Filtered =
errar

~ HH

IR Filter Cluster === 4l
init/cont [initF) - easeade

This IR implementation is called cascade because it is a cascade of second- or fourth-order
filter stages. The output of one filter stage is the input to the next filter stage Norfiétkr
stages.

ulil] o— stage1 stage 2 stage Mg o vl

Cascaded Filtter Stages

Second-Order Filtering

Each second-order stage (stage nurkbet, 2, ...Ng) has two reverse coefficients(, a,,),

and three forward coefficientbd, by, byy). The total number of reverse coefficientsig 2

and the total number of forward coefficients i3The reverse coefficients and the forward
coefficients array contain the coefficients for one stage followed by the coefficients for the
next stage, and so on. For example, an IIR filter composed of two second-order stages must
have a total of four reverse coefficients and six forward coefficients, as follows:

reverse coefficients =afj 1, ay1, a1, ayo}
forward coefficients = l@Ol’ bll! b21, boz, blZ’ b22}

Fourth-Order Filtering

For fourth order cascade stages, the filtering is implemented in the same manner as in the
second-order stages, but each stage must have four reverse coefégjgntsdy,) and five
forward coefficientslfgy, ..., bgy).

LabVIEW Function and VI Reference Manual 41-10 © MNational Instruments Corporation

Chapter 41 Filter Vis

lIR Cascade Filter with Integrated Circuit

Filters the input sequenck, using the cascade form of the IIR filter specified by the
IIR Filter Cluster .

" xl:::”:: v Filtered
lIR Filter Cluster wmeoseee] 2o Uoy ——-=Final Filter State
Initial Filter State =——r—_YLG—1 aprpor

IR Filter

Filters the input sequengeusing the direct form IR filter specified BReverse Coefficients
andForward Coefficients.

init Seont Cinit :F)

A

Rewverse Coefficients
Forward Coefficients

Filtered

errar

If y represents the output sequeRdtered X, the VI obtains the elementsfising

1 -1 m-1 0
= =0 bx _;— ay. .0,
Yi ao& 7N =] kZl «Yi kD

1=0

wheren is the number oforward Coefficients (represented blg;), andm is the number of
Reverse Coefficient{represented ba).

lIR Filter with Integrated Circuit

Filters the input sequengeusing the direct form IR filter specified Reverse Coefficients
andForward Coefficients.

v, Filtered
Reverze Coefficients -Eb, i &mor
Farward Coefficients /L. Final # Conditions
[mitial ¥ Conditionz Final ' Conditions

Imitial " Conditions

© MNational Instruments Corporation 41-11 LabVIEW Function and VI Reference Manual

Chapter 41 Filter Vls

If y represents the output sequekdtered X, the VI obtains the elementsyfising

1 Dn—l m-1 0
Yi = gogjzobjxi - _kzlakyi_%,

wheren is the number oforward Coefficients (represented bly;), andm is the number of
Reverse Coefficient{represented bg,).

Inv Chebyshev Coefficients
Generates the set of filter coefficients to implement an IIR filter as specified by the Chebyshev
Il Filter model. You can pass these coefficients to the IIR Cascade Filter VI to filter a sequence

of data.

filter type —]
zampling freq: f= t=T IR Filter Cluster
high cutoff freq: th —I ;

Tow cutoff fireq: 1 f :
attenuationidB)

arder

errar

The Inv Chebyshev Coefficients VI is a subVI of the Inverse Chebyshev Filter VI.

Inverse Chebyshev Filter
Generates a digital, Chebyshev Il filter using the specsfieapling freq:fs,
high cutoff freq: fh, low cutoff freq: fl, attenuation in decibelsfilter type, and filter
order by calling the Inv Chebyshev Coefficients VI. The Inverse Chebyshev Filter VI filters
the input sequencé using this model to obtain a Chebyshefiltered X sequence by
calling the IR Filter VI.

Filtered ¥
eror

filter type ——
:x: Hr
zampling freq: fz —J
high cuteff fireq: fh —_II—
lony cutoff fireg: £
attenuationdB]

arder
init S cont (init i e

o

.

LabVIEW Function and VI Reference Manual 41-12 © MNational Instruments Corporation

Chapter 41 Filter Vis

Median Filter
Applies a median filter afank to the input sequencé
E ‘HEE| Filtered Data
rank M el

If Y represents the output sequeRdtered Data, and ifJ; represents a subset of the input
sequence centered about thH& element oX

Ji = {Xirs Xicpts -0 X1 Xy Xisds ooy Xirr 10 Xinr s

and if the indexed elements outside the rang¢ efual zero, the VI obtains the elements
of y using

y; = Median(;) fori=0,1,2,..n-1,

wheren is the number of elements in the input sequéficandr is the filterrank.

Parks-McClellan
Generates a set of linear-phase FIR multiband digital filter coefficients #isihtaps
sampling freq: fs, Band Parameters andfilter type.

® of taps FIR

otz
—
r

w3

sampling freq: fs — ripple
Band Parameters WF [— errar
filter type

%

5 Note This VI finds the coefficients using iterative techniques based upon an error
criterion. Although you specify valid filter parameters, the algorithm might fail to
converge.

© MNational Instruments Corporation 41-13 LabVIEW Function and VI Reference Manual

Chapter 41 Filter Vls

The Parks-McClellan VI generates only the filter coefficients. It does not perform the
filtering function. To filter a sequenceé using the set of FIR filter coefficienks use the
Convolution VI withX andh as the input sequences.

Band Parameters

The equi-ripple filters use a similar technique to filter the data.

LabVIEW Function and VI Reference Manual 41-14 © MNational Instruments Corporation

Window VIs

This chapter describes the Vls that implement smoothing windows.

To access th&/indows palette, seledtunction»Analysis»Windows
The following illustration shows the options that are available on the
Windows palette.

I Analysis
¥ Ve *
Fin)
| L, |
:'.1: re | i) B "'Trg*‘-’
" “m‘; .—ﬁWinduws
T Y
| | e |
Farayr E*"’
| "
pro

For examples of how to use the window Vls, see the examples located in
examples\analysis\windxmpl.llb

© MNational Instruments Corporation 42-1 LabVIEW Function and VI Reference Manual

Chapter 42 Window Vls

Window VI Descriptions

The following Window VIs are available.

Blackman Window
Applies a Blackman window to the input sequeKce

Bladmen Blackmanf=}

If y represents the output sequeBtackman{X}, the VI obtains the elements
of y from

yi =% [0.42 — 0.50 cos() + 0.08 cos(@)] fori=0,1,2,...n-1,

27

w = —
n

wheren is the number of elements X

Blackman-Harris Window
Applies a three-term, Blackman-Harris window to the input sequénce

Elackrnan-Harris{x}

errar

If y represents the output sequeBtackman-Harris{X} , the VI obtains the elements
of y from

yi =% [0.42323 — 0.49755 cosj + 0.07922 cos(®)]

fori=0,1,2,..n-1

wheren is the number of elements X

LabVIEW Function and VI Reference Manual 42-2 © MNational Instruments Corporation

Chapter 42 Window Vs

Cosine Tapered Window
Applies a cosine tapered window to the input sequ&nce

o G
ﬁmﬂﬁb

If y represents the output seque@asine Tapered{X}, the VI obtains the elementsyfrom

Cozine Tapered{x}

errar

0.5¢;(1—cosw) fori=0,1,2, .. m-1, and fori=n-m,n-m+1, .., n-1
=0

Y 00X elsewhere

21
wherew = TT[,

m = roun%g, and

wherenis the number of elements in the input sequétice

Using this window is the equivalent of applying the Hanning window to the first and last 10%
of the input sequence.

Exact Blackman Window
Applies an Exact Blackman window to the input sequétice

. Exact Blackmanii}

errar

If y represents the output sequeBsact Blackman{X}, the VI obtains the elements
of y from

i =X [ag—aq cosfy) +a, cos(2v)] fori =0,1, 2, ...n-1

wheren is the number of elements ag = 7938/186083; = 9240/18608, and
ap = 1430/18608.

© MNational Instruments Corporation 42-3 LabVIEW Function and VI Reference Manual

Chapter 42 Window Vls

Exponential Window
Applies an exponential window to the input sequexice

= "‘IE*P Exponential{s}
final value 'Fm Eerak

If y represents the output sequeBsp@onential{X}, the VI obtains the elementsyfrom

yi =X exp@i) fori=0,1,2,..n-1,

= In(f)
a= -1

wheref isfinal value, andn is the number of samplesih

You can use this VI to analyze transients.

Flat Top Window
Applies a flat top window to the input sequence
y H F.,.'g"'& Flattop{s}
" error i

If y represents the output sequehtatop{X}, the VI obtains the elementsyfrom
y; =X [0.2810639 — 0.5208972 ceg(+ 0.1980399 cos(@)]

fori=0,1,2,..n-1

wheren is the number of elements X

Force Window
Applies a force window to the input sequepce

=,
duby cycle(Z]

Force §<}
Error

LabVIEW Function and VI Reference Manual 42-4 © MNational Instruments Corporation

Chapter 42 Window Vs

If y represents the output sequeRoece{X}, the VI obtains the elementsyfrom

x, if0<isd

O
y, = B fori=0,1,2,...,n1
! 0o elsewhere
O

d = (0.01)f)(duty cycle(%)), wheren is the number of elementsXih

You also can use this VI to analyze transients.

General Cosine Window
Applies a general, cosine window to the input sequ&nce

H
Cozine Coefficients

B
;

GenCosf<}
efror

2

k.

If a represents th€osine Coefficientsnput sequence andrepresents the output sequence
GenCos{X]}, the VI obtains the elementsyfrom

m-1
Y = X z (-1)*a,cos(kw) fori=0,1,2, .01
K=0
wo2m
n

wheren is the number of elementsX) andmis the number o€osine Coefficients

© MNational Instruments Corporation 42-5 LabVIEW Function and VI Reference Manual

Chapter 42 Window Vls

Hamming Window
Applies a Hamming window to the input sequeice

Harning

If y represents the output sequehim@mming{X}, the VI obtains the elementsyfrom

Harmmingf}

errar

yi =% [0.54 — 0.46 cos()] fori=0,1,2,..n-1,

wheren is the number of elements in the input sequéfice

Hanning Window
Applies a Hanning window to the input sequeice

Harrireg

Hanning £x5}

errar

If y represents the output sequehiaaning {X}, the VI obtains the elementsyfising
Yy =0.5% [1 —cos)] fori=0, 1,2, ..n-1,

AL

w = =—
n

wheren is the number of elements X

Kaiser-Bessel Window
Applies a Kaiser-Bessel window to the input sequet(te

#I s k.aizer-Bessel it}

beta E*‘“ &Iror

LabVIEW Function and VI Reference Manual 42-6 © MNational Instruments Corporation

Chapter 42 Window Vs

If y represents the output sequentaiser-Bessel{X(t)}, the VI obtains the elements

of y from

/ 2
y, = xi% fori=0,1,2,..n-1

_ ik
a= K

=]
N |
=

wheren is the number of elementsX{t), andlg(s) is the zero-order modified Bessel

function.

Triangle Window
Applies a triangular window to the input sequeice

Thangs Triangle{:}

The Triangle smoothing window is also known as the Bartlett smoothing window

errar

Note
If y represents the output sequemidangle{X}, the VI obtains the elementsyfrom

y, =x tri(w) fori =0, 1, 2, ...n—1,

where trigv) = 1 — |, andn is the number of elementsin

© MNational Instruments Corporation 42-7 LabVIEW Function and VI Reference Manual

Curve Fitting Vls

This chapter describes the Vls that perform curve fitting or regression
analysis.

To access th€urve Fitting palette, choosEunctions»
Analysis»Curve Fitting, as shown in the following illustration.

o—UllAnalysziz
Curve Fitting

3 Em ¥
st i)
Lilul, |

Fit F

»—1HICurve Fitting

Faly Rat
Intetp || Interp

Spline
Intetp

For examples of how to use the regression VIs, see the examples located in
examples\analysis\regressn.llb

© MNational Instruments Corporation 43-1 LabVIEW Function and VI Reference Manual

Chapter 43 Curve Fitting Vs

Curve Fitting VI Descriptions

The following Curve Fitting VIs are available.

Exponential Fit
Finds the exponential curve values and the set of exponential coeffaeplitude and
damping, which describe the exponential curve that best represents the input data set.

Y \Malues v, P Best Exponential Fit
.. 2 amplitude

Walues ' — damping

mse

errar

The general form of the exponential fit is given by
F =ae™,

whereF is the output sequen8est Exponential Fit, X is the input sequencéValues, ais
theamplitude, andt is thedamping constant.

The VI obtainamseusing the formula

n-1

= 1< (1 _y)2
mse = n.zo(ﬂ y|) ’
| =

wheref is the output sequen@est Exponential Fit y is the input sequencé Values, and
n is the number of data points.

Exponential Fit Coefficients
Finds the set of exponential coefficieataplitude anddamping, which describe the
exponential curve that best represents the input data set.

Y Malues armplitude
p .
% Malues Eﬁrn_';p:ng

This VI is a subVI of the Exponential Fit VI.

LabVIEW Function and VI Reference Manual 43-2 © MNational Instruments Corporation

Chapter 43 Curve Fitting Vls

The general form of the exponential fit is given by
F =ae™,

whereF is the sequence representing the best fitted vaXuepresents the input sequence
X Values, ais amplitude, andt is thedamping constant.

General LS Linear Fit

Finds the Best Fit k-dimensional plane and the set of linear coefficients using the least
chi-square method for observation data sets

{Xios Xi1s --- X1, ¥;} wherei =0, 1, ...n—1.nis the number of your observation data sets.

Standard Deviation —————
H Gen L= Coefficients
Y Walues — N

s = Best Fit
covanance selechar f LinEt % mze

algorithm error
————— [ovanance

You can use this VI to solve multiple linear regression problems. You can also use it to solve
for the linear coefficients in a multiple-function equation.

General Polynomial Fit

Finds the polynomial curve values and the s€dynomial Fit Coefficients which describe
the polynomial curve that best represents the input data set.

W Malues Folny FiF] Ees=t Folynornial Fit
A Nalues —r '!'._a._I—F"-:-]gn-:-mia] Fit Coefficient=s
polynormial arder — S —mze

algaorithrn error

The general form of the polynomial fit is given by

m
— j
f = Zajxi
i=0

wheref represents the output sequeBest Polynomial Fit, x represents the input sequence
X Values, a represents thBolynomial Fit Coefficients, andm is thepolynomial order.

© MNational Instruments Corporation 43-3 LabVIEW Function and VI Reference Manual

Chapter 43 Curve Fitting Vs

Linear Fit

Finds the line values and the set of linear coefficislafgeandintercept, which describe the
line that best represents the input data set.

Best Linear Fit
Y Walues Slape
WO ATUEE e— intercept
mse
| error

The general form of the linear fit is given by
F =mX+b,

whereF represents the output sequeBest Linear Fit, X represents the input sequence
X Values, mis slope andb isintercept.

The VI obtaingnseusing the formula

n-1

= 1S (1 _y)?
mse = n.zo(ﬂ y|) ’
| =

whereF represents the output sequeBest Linear Fit, y represents the input sequence
Y Values, andn is the number of data points.

Linear Fit Coefficients

Finds the set of linear coefficierdbpeandintercept, which describe the line that best
represents the input data set.

T HATUES —— S22 _Slﬁpe .
intercep
w Malues e -

This VI is a subVI of the Linear Fit VI.
The general form of the linear fit is given by
F =mX+Db,

whereF is the sequence representing the best fitted vaXuepresents the input sequence
X Values, mis theslope andb is theintercept.

LabVIEW Function and VI Reference Manual 43-4 © MNational Instruments Corporation

Chapter 43 Curve Fitting Vls

Nonlinear Lev-Mar Fit

Uses the Levenberg-Marquardt method to determine a nonlinear set of coefficients that
minimize a chi-square quantity.

Standard Dewiation 11 Covariance
= u-\:-n['Li.nFl. Best Fit Coefficients

Y --_I ‘“I.ff“:;_ I_I—E:e-St Fit
Initial Guesz Coefficients b = mse
rnax iteration —I_ _l— errar

derivative

Polynomial Interpolation

Interpolates or extrapolates the functfatx, given a set of points é(y) where
f(x) = Yo f is any function, and given a number;The VI calculates outpumterpolatlon
value Pn 1(X), where R—1 is the unique polynomial of degrae 1 that passes through the

n points é(i, yi).
s Paly interpolation value
H I interpolation error
® s eFror

Rational Interpolation
Interpolates or extrapolatéatx using a rational function.

Yodrray Fat interpolation walue
m Array I 4 interpalation erraor
walue e Errar

The rational function

P(X) _ Po+PyXi+ ... +PoX"
Q(x) G+ ayX+ ... +gx’

passes through all the points formedvbfrray andX Array . P andQ are polynomials, and
the rational function is unique, given a seth @bints é(y) wheref(x) =Y fis any function,
and given a numbexrin the range of thm values. ThIS VI caIcuIates the outpmlErpoIatlon
valueyusingy = P(x) If the number of points is odd, the degrees of freedéhanfiQ
are 92— If the num)kger of pomts is even, the degrees of freedﬁmmé —1 , and the
degrees of freedom &f are” , whera is the total number of points formed ¥yArray and

2
X Array .

© MNational Instruments Corporation 43-5 LabVIEW Function and VI Reference Manual

Chapter 43 Curve Fitting Vs

Spline Interpolant
Returns an arraiterpolant of lengthn, which contains the second derivatives of the spline
interpolating functiorg(x) at the tabulated poinis, wherei = 0, 1, ...n-1. Input arrays
X Array andY Array are of lengtin and contain a tabulated functhn, f(xl) with
Xo<X1<..Xp_1. Initial boundary andfinal boundary are the first derivative of the
interpolating function g(x) at points 0 and 1, respectively.

oAEray

. ”:'H ""-EF-E'J fil:-LI-I'E Interpalant
initial boundary —| Irke
final I:u:-un-:lar'a ——| peobuort: srrar

If initial boundary andfinal boundary are equal to or greater than®f0the VI sets the
corresponding boundary condition for a natural spline, with zero second derivative on that
boundary.

The interpolating functiog(x) passes through all the points

{x.yih 90%) = Vi
wherei =0, 1,...n-1.

The VI obtains the interpolating functigyix) by interpolating every intervakj, x.1] with a
cubic polynomial functiorpi(x) that meets the following conditions:

P =Y

* P+ =VYia

* g(x) has continuous first and second derivatives everywhere in the sange f]:
- o (%) =P, (%)
- R"(x) =P, (%)

For the preceding conditionss 0, 1, ...n—2.

From the last conditionp” (x;) = p;, (X) ,we derive the following equations:

X — X| 1 X+1 Xi_1 Xiv1—X
I)" 3 959 (X0

:yi+1_yi YiTYia

i=1,2,.n-2
Xie1 =X X=X

LabVIEW Function and VI Reference Manual 43-6 © MNational Instruments Corporation

Chapter 43 Curve Fitting Vls

These are—2 linear equations with unknowns g“(x_)
1

i=0,1,....n=1. This VI computesg"(xo) g"(x) fromitial boundary andfinal
n_

boundary using the formula

. _VYi+1—Yi 3A2-1 "
d(x) = x:+i—x:+ 5 (Xi+17%)9"(x)
3B2-1 "
+T(Xi+l_xi)g (Xi11)"
Here,
A= Jixr7X B=1-A= X
Xi+1 X X1 X

You can derive this formula from the preceding conditions. This VI then g%@go)

g (X._) to solve all theg (x) for=1,..n-2.¢g (%) is the outpulnterpolant.

You can usénterpolant as an input to the Spline Interpolation VI to interpolas any
value of X< X< X,_; .

Spline Interpolation
Performs a cubic spline interpolationfatx, given a tabulated function.

E Spline interpolation value

Interpalant Interp

errar

This VI performs cubic spline interpolation using a tabulated function in the form of
Y, :f(xi) fori =0, 1, ...n—1, and given the second derivatieterpolant that the VI
obtains from the Spline Interpolant VI. The valueafust be in the range &f values.
The points are formed by the input arraandY, andn is the total number of points.
On the intervallx;, X; . 1] , the outpuniterpolation value y is defined by

y = Ayi+Byi+1+Cy'i +Dy"i +1,

and

— Xiy1—X
Xiv1—X

© MNational Instruments Corporation 43-7 LabVIEW Function and VI Reference Manual

Chapter 43 Curve Fitting Vs
B=1-A

C = gA=A)(x1—x),

D = 2(B*-B)(x .1 -x)"

LabVIEW Function and VI Reference Manual 43-8 © MNational Instruments Corporation

Probability and Statistics VIs

This chapter describes the Vls that perform probability, descriptive
statistics, analysis of variance, and interpolation functions.

To access thBrobability and Statistics palette, choose
Functions»Analysis»Probability and Statistics, as shown in
the following illustration.

| = Analysiz
|l Probability and Statistics

Fow) =
L]

witl M|, Fit b

e}l

ility and Statistics

% fon P
':rx2 ‘“52

2o

4
x AHUYA

For examples of how to use the statistics VIs, see the examples located in
examples\analysis\statxmpl.llb

Note These Vls are not available in the Base Analysis package.

© MNational Instruments Corporation 44-1 LabVIEW Function and VI Reference Manual

Chapter 44 Probability and Statistics VIs

Probability and Statistics VI Descriptions

The following Probability and Statistics VIs are available.

1D ANOVA

Takes an array, of experimental observations made at varleuslsof a factor, with at least

one observation per level, and performs a one-way analysis of variance in the fixed effect
model. In the one-way analysis of variance, the VI tests whether the level of the factor has an
effect on the experimental outcome.

—f
[ssa
XJ D Lsae
Inodex AMOYA mse
of lewvels J_ _I—msa
sz
errar
SigA

Factors and Levels

A factor is a basis for categorizing data. For example, if you count the number of sit-ups
individuals can do, one basis of categorization is age. For age, you might have the following
levels:

Level O 6 years old to 10 years old
Level 1 11 years old to 15 years old
Level 2 16 years old to 20 years old

Now, suppose that you make a series of observations to see how many sit-ups people can do.
If you take a random sampling of five people, you might find the following results:

Person 1 8 years old (level 0) 10 sit-ups
Person2 12 years old (level 1) 15 sit-ups
Person 3 16 years old (level 2) 20 sit-ups
Person4 20 years old (level 2) 25 sit-ups
Person5 13 years old (level 1) 17 sit-ups

Notice that you have made at least one observation per level. To perform an analysis of
variance, you must make at least one observation per level.

To perform the analysis of variance, you specify an afraf observations, with values 10,
15, 20, 25, and 17. The arrigex specifies the level (or category) to which each observation

LabVIEW Function and VI Reference Manual 44-2 © MNational Instruments Corporation

Chapter 44 Probability and Statistics VIs

applies. In this cas#ndex has the values 0, 1, 2, 2, and 1. Finally, there are three possible
levels, so you pass in a value of 3 for #hef levelsparameter.

2D ANOVA

Takes an array of experimental observations made at various levels of two factors and
performs a two-way analysis of variance.

A levels ———
®

Index & Zh 19 &
) Index B AMHOYA 51:3 E
obzervations per cell 1] HE

B levels — I error

Factors, Levels, and Cells

A factor is a basis for categorizing data. For example, if you count the number of sit-ups
individuals can do, one basis of categorization is age. For age, you might have the following
levels:

Level O 6 years old to 10 years old
Level 1 11 years old to 15 years old

Another possible factor is weight, with the following levels:
Level O less than 50 kg

Level 1 between 50 and 75 kg

Level 2 more than 75 kg

Now, suppose that you made a series of observations to see how many sit-ups people could
do. If you took a random sampling ofpeople, you might find the following results:

Person 1 8 years old (level 0) 30 kg (level 0) 10 sit-ups
Person 2 12 years old (level 1) 40 kg (level 0) 15 sit-ups
Person 3 15 years old (level 1) 76 kg (level 2) 20 sit-ups
Person4 14 years old (level 1) 60 kg (level 1) 25 sit-ups
Person 5 9 years old (level 0) 51 kg (level 1) 17 sit-ups
Person 6 10 years old (level 0) 80 kg (level 2) 4 sit ups
and so on.

If you plot observations as a function of factor A and factor B, they fall into cells of a matrix
with factor A as rows and factor B as columns. Each cell must contain at least one observation,
and each cell must contain the same number of observations.

© MNational Instruments Corporation 44-3 LabVIEW Function and VI Reference Manual

Chapter 44 Probability and Statistics VIs

To perform the analysis of variance, you specify an afra observations, with values 10,
15, 20, 25, 17, and 4. The ardagex A specifies the level (or category) of factor A to which
each observation applies. In this case, the array would have the values 0, 1, 1, 1, 0, and 0.

The arrayindex B specifies the level (or category) of factor B to which each observation
applies. In this case, the array would have the values 0, 0, 2, 1, 1, and 2. Finally, there are two
possible levels for factor A and three possible levels for factor B, so you pass in a value of 2
for the A levelsparameter, and a value of 3 for Bidevelsparameter.

You can apply any one of the following models, wHeis the specifiedbservations
per cell:

« Model 1: Fixed-effects with no interaction and one observation per cell (per specified
levelsx andy of the factors A and B, respectively).

* Model 2: Fixed-effects with interaction ahd> 1 observations per cell.

* Model 3: Either of the mixed-effects models with interactionlardl observations
per cell.

* Model 4: Random-effects with interaction and 1 observations per cell.

3D ANOVA

Takes an array of experimental observations made at various levels of three factors and
performs a three-way analysis of variance. In any ANOVA, you look for evidence that the
factors or interactions among factors have a significant effect on experimental outcomes.
What varies with each model is the method used to do this.

Levels sy
S

Infa
— 3D S
:nge:-: .g. ~ —JAmava === Significance
ndex — emar
Index C

observations per cell

The three-way ANOVA models are as follows, whiiis the number obbservations
per cell:

* Fixed-effects with interaction arid> 1 observations per cell.

« Any of the six mixed-effects models with interaction arel 1 observations per cell.

+ Random-effects with interaction ahd> 1 observations per cell.

A factor is a basis for categorizing data. A cell of data consists of all those experimental
observations that fall in particular levels of the three factors. The number of observations that

fall in a cell must be some constant numheryhich does not vary between cells. See the
description of factors, levels, and cells in the 2D ANOVA VI description. Remember that a

LabVIEW Function and VI Reference Manual 44-4 © MNational Instruments Corporation

Chapter 44 Probability and Statistics VIs

cell in this 3D ANOVA VI is the intersection of three factors instead of two as described in
the 2D ANOVA VI description.

Chi Square Distribution

Computes the one-sid@dobability , p, of thex2 distributed random variablg, with the
specifieddegrees of freedom

x K= probability
degrees of freedom Dist errar

p = Prob {X <x},

where X isx2 distributed withn degrees of freedomp is probability , n is degrees of
freedom, andx is the value.

Contingency Table
Classifies and tallies objects of experimentation according to two schemes of categorization.

Cortin- =
Table Ealec! probability
Toble error

With the? test of homogeneity, the VI takes a random sample of some fixed size from each
of the categories in one categorization scheme. For each of the samples, the VI categorizes
the objects of experimentation according to the second scheme, and tallies them. The VI tests
the hypothesis to determine whether the populations from which each sample is taken are
identically distributed with respect to the second categorization scheme.

With thex? test of independence, the VI takes only one sample from the total population. The
VI then categorizes each object and tallies it in two categorization schemes. The VI tests the
hypothesis that the categorization schemes are independent.

You must choose a level of significance for each test. This is how likely you want it to be that
the VI rejects the hypothesis when it is true. Ordinarily, you do not want it to be very likely.
So you should use a small number (0.05 or 5 percent is a common choice) to determine the
level of significance. The output paramatesbability is the level of significance at which

the hypothesis is rejected. Thugiibbability is less than the level of significance, you must
reject the hypothesis.

© MNational Instruments Corporation 44-5 LabVIEW Function and VI Reference Manual

Chapter 44 Probability and Statistics VIs

erf(x)
Evaluates the error function at the input value.

Y (5 el

erfc(x)
Evaluates the complementary error function at the input value.

= e erfolx]

F Distribution
Computes the one-sidg@dobability , p, of theF-distributed random variabl€&, with the
specifiedn andm degrees of freedom

'F'
Dist

probability

Sax

errar

p = Prob {Fn’ms x},

whereF is F-distributed p is theprobability, n specifies the first degree of freedom,
m specifies the second degree of freedom xaisdhe value.

General Histogram
Finds the discrete histogram of the input sequéhbased on the given bin specifications.

- Histogram
Eins eEmy o = i
—lﬂj # qutside
eFror

masx :
rmin —I_l
*# bins
inclusion

LabVIEW Function and VI Reference Manual 44-6 © MNational Instruments Corporation

Chapter 44 Probability and Statistics VIs

The VI obtainsHistogram as follows. First, the VI establishes all the intervals (also called
bins) based on the information in the input aB&ys. The intervals (bins) are:

ai = (Bing[i].lower: Bing[i].upper) =0, 1, 2, ...k-1
where

Bing[i].lower is the valudower in theith cluster of arrains, Bing[i].upper is the value
upper in theith cluster of arrains, k is the number of elements®ins, which consists of
the number of total intervals (bins).

Whether the two ending poinBins[i].lower andBins[i].upper of each interval (bin) are
included in the interval (biry; depends on the value loih inclusion in the corresponding
clusteri of theBins.

Histogram
Finds the discrete histogram of the input sequéhcehe histogram is a frequency count of
the number of times that a specified interval occurs in the input sequence.

n gy WX Histograr : hiix)
P Walues

NN oo

interwvals

If the input sequence is
X={0,1,3,3,4,4,4,5,5, 8},
then theHistogram: h(x) of X for eightintervals is

h(X) = {hy, hy, hy hy by h hhb={1,1,0,2,3,2,0, 1},

Notice that the histogram of the input sequeXde a function oiX.

The VI obtaindHistogram: h(x) as follows. The VI scans the input sequexide determine
the range of values in it. Then the VI establishes the interval wiigttaccording to the
specified number dhtervals,

max— min
AX = ——,
m

where max is the maximum value found in the input sequénagn is the minimum value
found in the input sequeneg andmis the specified number oftervals.

© MNational Instruments Corporation 44-7 LabVIEW Function and VI Reference Manual

Chapter 44 Probability and Statistics VIs

Let x represent the output sequenc¥®alues, because the histogram is a functioiXofThe
VI evaluates elements gfusing

X; = min+ 0.5Ax +iAx fori=0,1, 2, ...m-1.

The VI defines théth intervalAj to be the range of values er(p— 0.5Ax up to but not
including X; + 0.5Ax,

Aj = (xj — 0.5Ax : xj + 0.5Ax), fori =0, 1, 2, ...m-1,

and defines the functiop(x) to be

ifx 00 A,
yi(X) = 0O .
%) elsewhere

The function has unity value if the valuexofalls within the specified interval. Otherwise it
is zero. Notice that the intervA| is centered aboyt, and its width isd,.

The last interval),,_1, is defined asy,,,— 0.58Xx : X, + 0.54%]. In other words, if a value
is equal to max, it is counted as belonging to the last interval.

Finally, the VI evaluates the histogram sequétaesing

n-1
hy = § yi(x) fori=0,1,2,..m-1,
2

whereh;j represents the elements of the output sequdistegram: h(x), andn is the
number of elements in the input sequeXce

Inv Chi Square Distribution
Computes the value afsuch that the condition

p = Prob {X<x}

is satisfied, given thprobability value,p, of a)(2 -distributed random variabl&, with
n degrees of freedom

probability Irmoetze =

degrees of freedom Di=t EFrar

LabVIEW Function and VI Reference Manual 44-8 © MNational Instruments Corporation

Chapter 44 Probability and Statistics VIs
Inv F Distribution
Computes the value afsuch that the condition
p = {Prob, <X}

is satisfied, given thprobability valuep of an F-distributed random variabke,with n and
m degrees of freedom.

probability .
n Fhist

error

m

Inv Normal Distribution
Computes the value afsuch that the condition

p = Prob {X< x}

is satisfied, given thprobability value,p, of a Normally distributed random variab}¢,

robabilit
R | Di=t

erroar

Inv T Distribution
Computes the value afsuch that the condition

p = Prob {Th < x}

is satisfied, given thprobability value,p, of a t-distributed random variablg,with

n degrees of freedom
Irvet=e ®
TDist eFror

probability

degrees of freedom

© MNational Instruments Corporation 44-9 LabVIEW Function and VI Reference Manual

Chapter 44 Probability and Statistics VIs

Mean
Computes the mean (average) of the values in the input sedlence

rean

errar

This VI computesnean (i) using the following formula:

1n—l
p= ﬁz X,
i=0
wheren is the number of elementsXh
Median

Finds the median value of the input sequexid®y sorting the values of and selecting the
middle element(s) of the sorted array.

redian

errar

Let n be the number of elements in the input sequeéh@nd letS be the sorted sequence
of X. The VI findsmedian using the following identity:

if nis odd

median =
B(s_;+s) if niseven

m/nlalsls

wherei = ”_;l ,ank =

NIS

Mode
Finds themode of the input sequence.

= 2 mode
interwals L] EFFor

LabVIEW Function and VI Reference Manual 44-10 © MNational Instruments Corporation

Chapter 44 Probability and Statistics VIs

Moment About Mean

MSE

Computes the moment about the mean of the input seqemsiag the specifiedrder.

® H am rarnent

arder m error

Let m be the desiredrder. The VI computes thmth-ordermoment using the formula:
n-1
oy = EZ(Xi—H)m,
i=0
whereoxmis themth-ordermoment, andnis the number of elements in the input sequénce

Computes the mean squared errosg of the input sequencé&ValuesandY Values.

YW Walues LEE mse
Malues

HM=E error

The VI uses the following formula to fimdse

n-1
1
mse = ﬁz (X —yi)z,
i=o

wheren is the number of data points.

Normal Distribution

Computes the one-sid@dobability , p, of the normally distributed random variabie,
p = Prob X <x},

whereX is standard Normally distributeg,is theprobability, andx is the value.

probability

© MNational Instruments Corporation 44-11 LabVIEW Function and VI Reference Manual

Chapter 44 Probability and Statistics VIs

RMS
Computes the root mean square (rms) of the input seqence
. 'IP' rrs walue
=
RS error

Sample Variance
Computes theneanandsample varianceof the values in the input sequence

x mean

" ng zample variance
I —error

Note If you need to compute the sample standard deviatioX ofake the square root of
sample variance

Standard Deviation
Computes the mean value and the standard deviation of the values in the input

sequence.
= standard dewiation
= WHX rmean
error

This VI computestandard deviation (o,) andmean (1) using the following formula:

n

-1
z X, andh is the number of elements ¥
=0

wherep = %

LabVIEW Function and VI Reference Manual 44-12 © MNational Instruments Corporation

Chapter 44 Probability and Statistics VIs

T Distribution

Computes the one-sid@dobability , p, of the t-distributed random variabl‘éﬁ, with the
specifieddegrees of freedom

p = Prob {Th<x},

whereT is t-distributedp is probability , n is degrees of freedomandx is the value.

* T probability

degrees of freedom Dist eFFor

Variance
Computes the variance and the mean value of the input segtence

- rhean
“ o, variance
errar

This VI computesariance (0y?) andmean (i) using the following formula:
ln—l
2 _ 4 o 2
O—x - r.1Z(X| H) 1
i=0

n-1
wherep = %in , andh is the number of elements ¥
i=0

© MNational Instruments Corporation 44-13 LabVIEW Function and VI Reference Manual

Linear Algebra Vis

This chapter describes the Vls that perform real and complex matrix related
computation and analysis, including the following:

» Basic Matrix Manipulations

e Solving Linear Equations and Matrix Inverses
e Eigenvalues and Eigenvectors

* Matrix Analysis

To access thkeinear Algebra palette, choosEunctions»Analysis»
Linear Algebra, as shown in the following illustration.

~HAnalysis
Linear Algebra

3 MEm ¢
anzan | FAHE
o | L,

Filkers®| wit) ¥

|l

¥
.~ Linear Algebra

a &|[a Ial A [:] ¥
[ideEx] =:~|[555]| -"’-K=»i§

For examples of how to use the linear algebra Vls, see examples located in
examples\analysis\linaxmpl.llb

=

A=B

AxH

i

© MNational Instruments Corporation 45-1 LabVIEW Function and VI Reference Manual

Chapter 45 Linear Algebra Vls

Linear Algebra VI Descriptions

The following Linear Algebra VIs are available.

AxB

Performs the matrix multiplication of two input matrices.

B HKB ——— i = B

= e[R
If Ais ann-by-k matrix andB is ak-by-mmatrix, the matrix multiplication & andB, C = AB,
results in a matrixC, whose dimensions aneby-m. LetA represent the 2D input array
A matrix, B represent the 2D input arrBymatrix, andC represent the 2D output array* B.
The VI obtains the elements Gfusing the formula

k-1 H=012.,n-1

c = Za”b” forp) ,

1=0 a:01112|--1m_l
wheren is the number of rows iA matrix, k is the number of columns A matrix and the
number of rows iB matrix, andmis the number of columns B matrix.

Note The A x B VI performs a strict matrix multiplication and not an
element-by-element 2D multiplication. To perform an element-by-element
multiplication, you must use the LabVIEW Multiply function. In general, ABA.

A x Vector

Performs the multiplication of an input matrix and an input vector.

& = Yector

N ——

Vectar BFFar

If A is ann-by-k matrix, andX is a vector wittk elements, the multiplication & andX,
Y = AX,results in a vectoY with n elements. LeY represent the outpét x Vector. The VI
obtains the elements ¥fusing the formula

LabVIEW Function and VI Reference Manual 45-2 © MNational Instruments Corporation

Chapter 45 Linear Algebra Vls

k-1
y, = ;X , fori=0,1,2,..n-1,
2

wheren is the number of rows iA, andk is the number of columns i and the number of
elements irX.

Cholesky Factorization
Performs Cholesky factorization for a real, positive definite matrix

If the real, square matrik is positive definite, you can factor it @s= RR ,wh&e isan
upper triangular matrix, ang' s the transpos® of

Complex AxB

Performs the matrix multiplication of two input complex matrices.

&xB
arrar

If Ais ann-by-k matrix andB is ak-by-mmatrix, the matrix multiplication o andB, C = AB,
results in a matrixC, whose dimensions aneby-m. Let A represent the 2D input array
A matrix, B represent the 2D input arrBymatrix, andC represent the 2D output array B.
The VI obtains the elements Gfusing the formula

k-1 H=012.,n-1
c, = zanbu forg ,
0,12 .,m-1

=0

wheren is the number of rows iA matrix, k is the number of columns & matrix and the
number of rows iB matrix, andmis the number of columns Bimatrix.

Note The Complex A x B VI performs a strict matrix multiplication and not an
element-by-element 2D multiplication. To perform an element-by-element
multiplication, you must use the LabVIEW Multiply function. In general, A4BA.

© MNational Instruments Corporation 45-3 LabVIEW Function and VI Reference Manual

Chapter 45 Linear Algebra Vls

Complex A x Vector
Performs the multiplication of a complex input matrix and a complex input vector.

& w2 Mector

&
Wector

—="Errar

If A is ann-by-k matrix, andX is a vector wittk elements, the multiplication & andX,
Y = AX,results in a vector with n elements. LeY represent the outpit x Vector,
Xrepresents the input vectdihe VI obtains the elements Wiusing the formula

k-1
y, = g;X , fori=0,1,2,..np-1,
2

wheren is the number of rows i, andk is the number of columns ik and the number of
elements irX.

Complex Cholesky Factorization
Performs Cholesky factorization of a complex, positive definite maAtrix

———=Cholesky F

Brrar

If the complex square matriX is positive definite, it can be factored As= R'R , where
Ris an upper triangular matrix arrf’ is the complex conjugate transpB&se of

Complex Determinant
Finds thedeterminant of a complex, square matrimput Matrix .

Input Matrix A Al determinart
ad]
o

rnatrix type errar

LabVIEW Function and VI Reference Manual 45-4 © MNational Instruments Corporation

Chapter 45 Linear Algebra Vls

Let A denote a square matrix that representdrithet Matrix, and letL andU be the lower
and upper triangular matrices, respectivelyAaiuch that

A=LU,

where the main diagonal elements of the lower triangular mate arbitrarily set to one.
The VI finds thedeterminant of A by the product of the main diagonal elements of the upper
triangular matrixU:

n-1
|A| = |_| U ,
i=0

where|A| is theleterminant of A, andn is the dimension oA.

Complex Dot Product
Computes the dot product of compkéx/ector andY Vector.

A Wector A= woEY

¥ Yector o arror

Let X represent the input sequent&ector andY represent the input sequencé&/ector.
The VI obtains the dot produktY using the formula:

n-1

Xty = z)Wi ;
i=o

wheren is the number of data points. Notice that the output v&tiYe is a complex
scalar value.

© MNational Instruments Corporation 45-5 LabVIEW Function and VI Reference Manual

Chapter 45 Linear Algebra Vls

Complex Eigenvalues & Vectors
Finds theEigenvaluesand rightEigenvectorsof a square complex Input Matrix A.

Input Fatrizx _® Eigenvalues
ratrix type AK“’H Eigenvectors
output option — LR — ertar

The eigenvalue problem is to determine the nontrivial solutions for the equation:
AX = AX

whereA represents an-by-n Input Matrix , X represents a vector withelements, and

A is a scalar. Tha values ofA that satisfy the equation areHEigenvaluesof A and the
corresponding values &f are the righEigenvectorsof A. A Hermitian matrix always has
real eigenvalues.

Complex Inverse Matrix
Finds thelnverse Matrix of a complex matrixnput Matrix .

Input FMatrix A HE=—=nversze Matrix
[]=EH]

[ory errar

Matriz Type

Let A be Input Matrix and be the identity matrix. You obtalnverse Matrix by solving the
systemAB = for B.

If Ais a nonsingular matrix, you can show that the solution to the preceding system is unique
and that it corresponds to the inverse matriR of

B=A71,

andB is therefore thénverse Matrix. A nonsingular matrix is a matrix in which no row or
column contains a linear combination of any other row or column, respectively.

Note You cannot always determine beforehand whether the matrix is singular,
especially with large systems. The Complex Inverse Matrix VI detects singular
matrices and returns an error, so you do not need to verify whether you have a
valid system before using this VI.

The numerical implementation of the matrix inversion is not only numerically

intensive but, because of its recursive nature, itis also highly sensitive to round-off
error introduced by the floating point, numeric coprocessor. Although the

LabVIEW Function and VI Reference Manual 45-6 © MNational Instruments Corporation

Chapter 45 Linear Algebra Vls

computations use the maximum possible accuracy, the VI cannot always solve for
the system.

Complex LU Factorization
Performs the LU factorization of a complex, square matrix

LU factorization factors the square matfixnto two triangular matrices; one is a lower
triangular matrix. with ones on the diagonal, and the other is an upper triangular tdatrix
so that

PA=LU

whereP is a permutation matrix, which consists of the identity matrix with some rows
exchanged.

Factorization is the key step for inverting a matrix, computing the determinant of a matrix,
and solving a linear equation.

Complex Matrix Condition Number
Computes theondition number of a complex matrixnput Matrix .

Input Matrix celllA condition nurmber

.l
norm type =1[::],3"[::]| errar

Thecondition number of a matrix measures the sensitivity of the solution of a system of
linear equations to errors in the data. It gives an indication of the accuracy of the results from
the matrix inversion and linear equation solutions.

Complex Matrix Norm
Computes th@orm of a complex matrixnput Matrix .

Input Fatrizx i I'I':lr'l'ﬁlI narm
norm type |["]T3{LE']"| errar

© MNational Instruments Corporation 45-7 LabVIEW Function and VI Reference Manual

Chapter 45 Linear Algebra Vls

Thenorm of a matrix is a scalar that gives some measure of the magnitude of the elements of

the matrix. LetA represent thinput Matrix , ||A||p represent theorm of A, wherep can be
1,2,f, . Different values gb mean different types of norms that are computed.

Complex Matrix Rank
Computes theank of a rectangular, complex mattixput Matrix .

Input Matrix =—— rank rank

[]=
G

tolerance error

rank is the number of singular values of thput Matrix that are larger than thelerance
rank is the maximum number of independent rows or columns dhhe Matrix .

Complex Matrix Trace
Finds thetrace of Input Matrix .

trace

Input Matrix '=:[._ .

errar

Let A be a square matrix that represdnfsut Matrix and tr@) betrace. Thetrace of A is
the sum of the main diagonal element#\of

n-1
tr(A) = zan’

i=0
wheren is the dimension dhput Matrix .

Complex Outer Product
Computes the outer product of a compie¥ector andY Vector.

W Mectol me—] e Product
Y Wector ” [] 2 Quter Produc

errar

[senlone

LabVIEW Function and VI Reference Manual 45-8 © MNational Instruments Corporation

Chapter 45 Linear Algebra Vls

Let X represent the input sequent&ector andY represent the input sequenc&/ector.
The VI obtainguter Product using the formula:

H=012..,n-1
g =%y, for O ,
=0,12.,m-1

whereA represents the 2D output sequefieger Product, nis the number of elements in
the input sequencé Vector, andmis the number of elements in the input sequéh¥ector.

Complex Pseudolnverse Matrix
Finds the Pseudolnverse Matrix of a rectangular, complex mapis Matrix .

Input b atrix |[':'f]:'[f:] Pseudolnverse b atrix
tolerance g i Ermor

An SVD algorithmcomputesPseudolnverse MatrixA™, and treats any singular values less
than thetolerance as zeros.

If Input matrix A is square and not singula?, is the same a&™, but using the Complex
Inverse Matrix VI to computé\‘1 is more efficient than using this VI.

Complex QR Factorization
Performs QR factorization for a complex matrix A.

Q

=

&

algarithrn

[—aearror

QR factorization is also called orthogonal-triangular factorization. It factors a complex matrix
A into two matrices; one is an orthogonal ma@pand the other is an upper triangular matrix
R, so thatA = QR This VI supports the Householder algorithm.

You can use QR factorization to solve linear systems that contain less or more equations than
unknowns.

© MNational Instruments Corporation 45-9 LabVIEW Function and VI Reference Manual

Chapter 45 Linear Algebra Vls

Complex SVD Factorization

Performs the singular value decomposition (SVD) of a gdiy-n, complex matrix A
with m > n.

SVD produces three matricels S, andV, so thath = UV, whereU andV are orthogonal
matrices §, is ann-by-n diagonal matrix with the elements of ar@ypn the diagonal in
decreasing order. The diagonal elements are the singular valdes of

Create Special Complex Matrix

Generates a special, complex matrix baseohatrix type. The available matrix types are
Identity, Diagonal, Toeplitz, and Vandermonde.

Input Yectar2
n;ﬂ{fl;-;tgg:_'_ =[] Special batrix
Input Yector] Lk &rar

Create Special Matrix

Generates areal, special matrix basechatrix type. The available matrix types are ldentity,
Diagonal, Toeplitz, and Vandermonde.

[Fput VgctDrE
Tnj{:;tging— =[] Special Matrix
Input Yector] errar

Determinant
Computes théeterminant of a real, square matrlrput Matrix .

Input Matrix A 1Al determinant

=L

errar

rnatrix type

LabVIEW Function and VI Reference Manual 45-10 © MNational Instruments Corporation

Chapter 45 Linear Algebra Vls

Let A be a square matrix that represdnfsut Matrix, and letL andU represent the lower
and upper triangular matrices, respectivelyAaiuch that

A=LU,

where the main diagonal elements of the lower triangular mate arbitrarily set to one.
The VI finds thedeterminant of A by the product of the main diagonal elements of the upper

triangular matrixU

n-1
|A| = |_| U ,
i=0

where|A| is theleterminant of X, andn is the dimension oX.

Dot Product
Computes the dot product ¥fVector andY Vector.
A Mector " A= HnEY
L
Y Wector BFFor

Let X represent the input sequen¢&ector andY represent the input sequent&ector.
The VI obtains the dot produktY using the formula:

n-1

Xty = z)Wi ;
i=o

wheren is the number of data points. Notice that the output V&tlYe is a scalar value.

EigenValues & Vectors
Finds the eigenvalues and eigenvectors right of a squarénpealMatrix .

Input Matrix =—— _ * Eigenwalues
rmatrix type —'—":"x_”‘__:’f=-=Eige-nvectn:-rs
output option — | I —errar

© MNational Instruments Corporation 45-11 LabVIEW Function and VI Reference Manual

Chapter 45 Linear Algebra Vls

The eigenvalue problem is to determine the nontrivial solutions to the equation:
AX = AX

whereA is an-by-n Input Matrix , X is a vector witl elements, and is a scalar. The
nvalues ofA that satisfy the equation areEigenvaluesof A and the corresponding values
of X are the righEigenvectorsof A. A symmetric, real matrix always has real eigenvalues
and eigenvectors.

Inverse Matrix
Finds thelnverse Matrix of thelnput Matrix .

Input Matrix A == Invetrze Matrix

ratrix type errar

Let A be thenput Matrix andl be the identity matrix. You obtain tiheverse Matrix value
by solving the systerAB =1 for B.

If A is a nonsingular matrix, you can show that the solution to the preceding system is unique
and that it corresponds to theverse Matrix of A:

B=A",

andB is therefore afnverse Matrix. A nonsingular matrix is a matrix in which no row or
column contains a linear combination of any other row or column, respectively.

Note The numerical implementation of the matrix inversion is not only numerically
intensive but, because of its recursive nature, is also highly sensitive to round-off
errors introduced by the floating-point numeric coprocessor. Although the
computations use the maximum possible accuracy, the VI cannot always solve for
the system.

You cannot always determine beforehand whether the matrix is singular,
especially with large systems. The Inverse Matrix VI detects singular matrices and
returns an error, so you do not need to verify whether you have a valid system
before using this VI.

LabVIEW Function and VI Reference Manual 45-12 © MNational Instruments Corporation

Chapter 45 Linear Algebra Vls

LU Factorization
Performs the LU factorization of a real, square mahrix

LU factorization factors the square matfixnto two triangular matrices. One is a lower
triangular matrix. with ones on the diagonal. The other is an upper triangular naitrix
so that

PA = LU,

whereP is a permutation matrix, which serves as the identity matrix with some rows
exchanged.

Factorization serves as a key step for inverting a matrix, computing the determinant of a
matrix, and solving a linear equation.

Matrix Condition Number
Computes theondition number of a real matrixnput Matrix .

Input Matrix celllA condition nurnber

.l
norm type FALAIE ekFrar

The condition number of a matrix measures the sensitivity of a system solution of linear
equations to errors in the data. It gives an indication of the accuracy of the results from a
matrix inversion and a linear equation solution.

Matrix Norm
Computes th@orm of a real matrixnput Matrix .

Input Fatrizx i I'I':lr'l'ﬁlI narm
norm type |["]="["]"| errar

The norm of a matrix is a scalar that gives some measure of the magnitude of the elements in
the matrix. LetA represent thinput Matrix , the norm ofA is represented bwp , Where
pcan be 1,2,k . Different valuespmean different types of norms that are computed.

© MNational Instruments Corporation 45-13 LabVIEW Function and VI Reference Manual

Chapter 45 Linear Algebra Vls

Matrix Rank
Computes theank of a rectangular, real matrinput Matrix .
Input Matrizx =——— rank rank
tolerance [+ errar

Matrix rank is the number of singular values in timgut Matrix that are larger than
thetolerance rank is the maximum number of independent rows or columns in the
Input Matrix .

Outer Product
Computes the outer productXf\ector andY Vector.

Wectar [] [] Duter Product
" Wectar o] ol

Let X represent the input sequent®ector andY represent the input sequenc&/ector.
The VI obtainguter Product using the formula

=012 .,n-1

=012 .,m-1

a; =x Y, for

Ooooo

whereA represents the 2D output sequefeger Product, nis the number of elements in
the input sequencé Vector, andmis the number of elements in the input sequéhiector.

Pseudolnverse Matrix
Finds thePseudolnverse Matrix of a rectangular, real matrirput Matrix .

Input Matrix |I[ﬁ_]¢[f'_']' FPzeudolnverze Matrix
tolerance ".!ugeui:'l' errar

You computePseudolnverse MatrixA* by using the SVD algorithm and any singular value
less than théolerance,which are set to zero.

If Input matrix A is square and not singulat, is the same &, but using the Inverse Matrix
VI to computeA™ is more efficient than using this VI.

LabVIEW Function and VI Reference Manual 45-14 © MNational Instruments Corporation

Chapter 45 Linear Algebra Vls

QR Factorization
Performs the QR factorization of a real matkix

il

algorithrmn

QR factorization is also called orthogonal-triangular factorization. It factors a real Matrix
into two matrices. One is an orthogonal ma@ixand the other is an upper triangular matrix
R, sothatA = QR . This VI provides three methods for the factorization: householder,
givens, and fast givens.

You can use QR factorization to solve linear systems with more equations than unknowns.

Solve Complex Linear Equations
Solves a complex, linear systexX = Y.

[Fiptk b atris
F.nown Yector
matmix type

Salution Vectar

errar

Let A represent then-by-n Input Matrix , Y represent the set of elements in th&nown
Vector, andX represent the set nfelements in th&olution Vector that solves for the system

AX=Y.

When m > n, the system has more equations than unknowns, so it is an overdetermined
system. Since the solution that satisfeé= Y may not exist, the VI finds the least square
solutionX, which minimizes AX-Y]|.

Whenm < n, the system has more unknowns than equations, so it is an underdetermined
system. It might have infinite solutions that sati&¥ =Y. The VI then selects one of these
solutions.

Whenm=n, if Ais a nonsingular matrix—no row or column is a linear combination of any
other row or column, respectively—then you can solve the systeXtfpdecomposing the
Input Matrix A into its lower and upper triangular matricesandU, such that

AX=LZ=Y,

and

© MNational Instruments Corporation 45-15 LabVIEW Function and VI Reference Manual

Chapter 45 Linear Algebra Vls

can be an alternate representation of the original system. Noticgishalso am element
vector.

Triangular systems are easy to solve using recursive techniques. Consequently, when you
obtain theL andU matrices fromA, you can findZ from theLZ =Y system an& from the
UX =Z system.

Whenm# n, A can be decomposed to an orthogonal m&riand an upper triangular matrix
R, so thatA = QR, and the linear system can be representg@RX= Y. You can then solve
RX= QMY

You can easily solve this triangular system to get X using recursive techniques.

Note You cannot always determine beforehand whether the matrix is singular,
especially with large systems. The Inverse Matrix VI detects singular matrices and
returns an error, so you do not need to verify whether you have a valid system
before using this VI.

The numerical implementation of the matrix inversion is numerically intensive and,
because of its recursive nature, is also highly sensitive to round-off error introduced by the
floating-point numeric coprocessor. Although the computations use the maximum possible
accuracy, the VI cannot always solve for the system.

Solve Linear Equations
Solves a real linear systefiX =Y.

Input Matriz
kEnown Yector

rnatri= type

Solution Yector

errar

Let A be arm-by-n matrix that represents theput Matrix , Y be the set ah coefficients in
Known Vector, andX be the set af elements irSolution Vector that solves the system

AX=Y.

Whenm>n, the system has more equations than unknowns, so it is an overdetermined system.
The solution that satisfies AX =Y may not exist, so the VI finds the least square solution X,
which minimizes|AX- Y|

Whenm<n, the system has more unknowns than equations, so it is an underdetermined
systems. It may have infinite solutions that satisfy AX =Y. The VI finds one of these
solutions.

LabVIEW Function and VI Reference Manual 45-16 © MNational Instruments Corporation

Chapter 45 Linear Algebra Vls

In the case ofn=n, if Ais a nonsingular matrix—no row or column is a linear combination
of any other row or column, respectively—then you can solve the systetbjor
decomposing the input matriinto its lower and upper triangular matricesandU,

such that

AX=LZ=Y,
and
Z=UX

can be an alternate representation of the original system. Noticithalso am element
vector.

Triangular systems are easy to solve using recursive techniques. Consequently, when you
obtain thelL. andU matrices fromA, you can findZ from theLZ = Y system an& from the
UX = Z system.

In the case afn# n, A can be decomposed to an orthogonal m&rénd an upper triangular
matrix R, so thatA=QR. The linear system can then be represent&@dR¥= Y. You can then
solveRX=QTY.

You can easily solve this triangular system toxgesing recursive techniques.

Note You cannot always determine beforehand whether the matrix is singular,
especially with large systems. The Inverse Matrix VI detects singular matrices and
returns an error, so you do not need to verify whether you have a valid system
before using this VI.

The numerical implementation of the matrix inversion is numerically intensive and, because
of its recursive nature, is also highly sensitive to round-off error introduced by the
floating-point numeric coprocessor. Although the computations use the maximum possible
accuracy, the VI cannot always solve the system.

SVD Factorization

Performs the singular value decomposition (SVD) of a gidyy-n real matrixA,
withm>n.

© MNational Instruments Corporation 45-17 LabVIEW Function and VI Reference Manual

Chapter 45 Linear Algebra Vls

SVD produces three matrictls S, andV so thatA = UV, whereU andV' are orthogonal
matrices S, is ann-by-n diagonal matrix with the elements of ar@gn the diagonal in
decreasing order.

Test Complex Positive Definite
Tests whethelnput Matrix is a Positive Definite matrix.

fupe=. .. positive definibe?

error

[Fput Matris

[
GH

Test Positive Definite
Tests whethelnput Matrix is a Positive Definite matrix.

[ty pe=3

[T I itive definite?
Input b atrix] postive fents

errar

Trace
Finds thetrace of Input Matrix .

trace
Input Hatrix =——7
errar

Let A be a square matrix that represdnfmut Matrix and tr@) betrace. Thetrace of Ais
the sum of the main diagonal element#\of

tr(A) = Za” :

wheren is the dimension dhput Matrix .

LabVIEW Function and VI Reference Manual 45-18 © MNational Instruments Corporation

Array Operation Vis

This chapter describes the Vls that perform common, one- and
two-dimensional numerical array operations.

The following illustration shows th&rray Operations palette, which you
access by selectirfgunctions»Analysis»Array Operations

—IHAnalysis

Amray Dperations
»

3 Ve
| o)
| L, |

Filters

| : b :

o—1-lArray Dperations
nz_é_':'-nHa L

‘ Ky

L

=l

oo e—

© MNational Instruments Corporation 46-1 LabVIEW Function and VI Reference Manual

Chapter 46 Array Operation VIs

Array Operation VI Descriptions

The following Array Operation VIs are available.

1D Linear Evaluation
Performs a linear evaluation of the input array

W-ﬁﬁ Ylil=xi] #at+h
a: e
b eFrar

The output arraY[i] = X[i]*a + b is given by

"

=zale
offzet

Y = aX+ b,
wherea is the multiplicativescaleconstant, and is the additive constanffset

1D Polar To Rectangular

Converts two arrays of polar coordinates into two arrays of rectangular coordinates, according
to the following formulas:

X = Magnitude cosfPhasg
y = Magnitude sin(Phasé.

Magnitude [F I..::'::*__H B
Phaze T W
I— errar

1D Polynomial Evaluation
Performs a polynomial evaluation XfusingCoefficients: a

=
Coefficients: a

errar

LabVIEW Function and VI Reference Manual 46-2 © MNational Instruments Corporation

Chapter 46 Array Operation Vs

The output array is given by

m
Y = Z a, X",
n=0
wherem denotes the polynomial order.

1D Rectangular To Polar

Converts two arrays of rectangular coordinates into two arrays of polar coordinates, according
to the following formulas:

magnitude =/x2 + y?2

— il VO
phase = tant 50

HLQ/- Fi Fagnitude
hy T a Fhaze
I error

2D Linear Evaluation
Performs a linear evaluation of the two-dimensional input atray

oo

= Y= Ea+h
Y

errar

The two-dimensional output arréy= X*a + b is given by
Y = Xa+ b,

wherea denotes the multiplicative constant, dndenotes the additive constant.

© MNational Instruments Corporation 46-3 LabVIEW Function and VI Reference Manual

Chapter 46 Array Operation VIs

2D Polynomial Evaluation
Performs a polynomial evaluation of the two-dimensional input anasingCoefficients a

.o, HE v
Coefficients a "en efrar
The 2D output array is given by
m
Y = X",
nZO an

wherem denotes the polynomial order.

Normalize Matrix

Normalizes the 2D inpu¥latrix using its statistical profile (@), where p is theneanand
O is thestandard deviation, to obtain &Normalized Matrix whose statistical profile is (0,1).

_ e I Marmalized k atrix
b atrim =——— ﬂ:_| - ztandard deviation

mean
errar

The VI obtaindNormalized Matrix using

LabVIEW Function and VI Reference Manual 46-4 © MNational Instruments Corporation

Chapter 46 Array Operation Vs

n-1 m-1

Z Z (& —H)?
G = |lizo_i=o0 ,
nem

whereB represents the 2D output sequeNoemalized Matrix , A represents the 2D input
sequencéatrix with n rows andm columns, and; is the element o on thei™ row and

i column.
Normalize Vector

Normalizes the inpu¥ector using its statistical profile (@), where p is theneananda is
thestandard deviation, to obtain &Normalized Vector whose statistical profile is (0,1).

_D'E.? Ngr‘rréa]iﬁe&:l '-.-'n_a-ctt_-:-r'

ztandard dewiation
Vector 4|H LC_J_; S and
Srrar

The VI obtaindNormalized Vector using

Y:;l"l

whereY represents the output sequehlmemalized Vector, andX represents the input
sequencé&/ector of lengthn, andx; is thei® element ofX.

© MNational Instruments Corporation 46-5 LabVIEW Function and VI Reference Manual

Chapter 46

Array Operation VIs

Quick Scale 1D

Determines the maximum absolute value of the input &¢ragd then scales using
this value.

¥ [il=sli] Maxd s

Erar
errar

g

The output array[i] = X[il/Max|X| is given by

Y =

»n I X

wheres is the maximum absolute valueXn

You can use this VI to normalize sequences within the range [-1,1]. This VI is particularly
useful if the sequence is a zero mean sequence.

Quick Scale 2D

Determines the maximum absolute value of the input &¢ragd then scales$ using
this value.

]

=i M)
rrac]]
errar

The output arrayij = Xij/Max{X} is given by

Y =

X
S H
wheres denotes the maximum absolute valuXin

You can use this VI to normalize sequences within the range [-1,1]. This VI is particularly
useful if the matrix is a zero mean matrix.

LabVIEW Function and VI Reference Manual 46-6 © MNational Instruments Corporation

Chapter 46 Array Operation Vs

Scale 1D

Determinescaleandoffset and then scales the input arbayising these values.

v Y= H-offzet] fscale
H %5—‘— scale

[1— affset
errar

The output array is given by

_ X — offset
scale

scale= 0.5(max—min), andoffset= min + scale wheremaxdenotes the maximum value in
X, andmin denotes the minimum value ¥

You can use this VI to normalize any numerical sequence with the assurance that the range of
the output sequence is [-1,1].

Scale 2D

Determinescaleandoffset and then scale$ using these values.

—— \{=(¥ -offzet) zcale
[=cale
— offzet
error

The two-dimensional output arrad/= (X — offset)/scalés given by

_ X —offset
scale

scale= 0.5(max—min), andoffset= min + 0.5scale wheremaxdenotes the maximum value
in X, andmin denotes the minimum value ¥

You can use this VI to normalize any numerical sequence with the assurance that the range of
the output sequence is [-1,1].

© MNational Instruments Corporation 46-7 LabVIEW Function and VI Reference Manual

Chapter 46 Array Operation VIs

Unit Vector

Finds thenorm of thelnput Vector and obtains its correspondibit Vector by
normalizing the originalnput Vector with its norm.

Unit Wector

norEm
errar

ﬂ

=

Input Yector — =

H

Let X represent the inpuinput Vector ; norm is given by

2 2 2
IX| = 3 +x+ . +x,,
where [K|| isnorm, and the VI calculatednit Vector, U, using

X

U= —.
IXI

LabVIEW Function and VI Reference Manual 46-8 © MNational Instruments Corporation

Additional Numerical
Method Vis

This chapter describes the VIs that use numerical methods to perform
root-finding, numerical integration, and peak detection.

The following illustration shows th&dditional Numerical Methods
palette, which you access by selectingictions»Analysis»
Additional Numerical Methods.

—IElAnalysis

Additional Humencal Methods|

¥ Ve »
s [

Tiltersk

I Additional Mumerical Method:

zann= | ftade ||, || S
-5 | [Hirmmee peak
roats ||Int=grak] | detect

Additional Numerical Method VI Descriptions

The following Additional Numerical Method Vls are available.

Complex Polynomial Roots
Finds the complex roots of a complex polynomial.

] Zanh= Folynorial Roots
Folynamial Mix-ED
Foots errar

© MNational Instruments Corporation 47-1 LabVIEW Function and VI Reference Manual

Chapter 47 Additional Numerical Method

Vis

This VI uses a modified, complex Newton method to determine ¢tbenplex roots (some of
which may be real, with a zero imaginary part), of the general complex polynomial:

Numeric Integration

ag+ X + aX 2+ ..

+an X,

Performs a numeric integration on the input array of data using one of four, popular numeric

integration methods.

Input Array _IHE'mdt result
At Hilmeric
integration method —r—lrt=grat] errar
1 & Note If the number of points provided for a certain chosen method does not contain

an integral number of partial sums, then the method is applied for all possible
points. For the remaining points, the next possible lower order method is used.
For example, if the Bode method is selected, the following table shows what this
VI evaluates for different numbers of points:

Number of Points Partial Evaluations Performed
224 56 Bode
225 56 Bode, 1 Trapezoidal
226 56 Bode, 1 Simpsons’
227 56 Bode, 1 Simpsons’ 3/8
228 57 Bode

So, if 227 points were provided and the Bode Method was chosen, the VI would arrive at the
result by performing 56 Bode Method partial evaluations and one Simpsons’ 3/8 Method

evaluation.

Each of the methods depend on the sampling intesttphid compute the integral using
successive applications of a basic formula in order to perform partial evaluations, which
depend on some number of adjacent points. The number of points used in each partial
evaluation represents the order of the method. The result is the summation of these successive

partial evaluations.

LabVIEW Function and VI Reference Manual

47-2

© National Instruments Corporation

Chapter 47 Additional Numerical Method Vs

t1
result = Iftdt =zpartial sums
t0 !

wherej is a range dependent on the number of points and the method of integration.

The basic formulas for the computation of the partial sum of each rule in ascending method
order are:

Trapezoidal: X[i] + x[i+1])*dt, k=1
Simpsons’; X[2i] + 4x[2i+1] + x[2i+2])*dt/3, k = 2
Simpsons’ 3/8: (F3i] + Ix[3i+1] + K[3i+2] + HK[3i+3]) * dt/8, k=3

Bode: (14[4i] + 64x[4i+1] + 24[4i+2] + 64[4i+3] + 1&[4i+4])*dt/45,k = 4
fori =0,k 2, 3k, 4k,..., Integral Part of —1)K]

whereN is the number of data pointsis an integer dependent on the method,aisd¢he
input array.

Peak Detector
Finds the location, amplitude, and second derivative of peaks or valleys in the input array.

* found
s e Locations
threshold — peak L 4rnplitudes

width — — dekect L—2nd Derivatives
peaksdvalleys —l_ _l— error

initialize [T] -

end af data [T e

The data set can be passed to the VI as a single array or as consecutive blocks of data.

This VI is based on an algorithm that fits a quadratic polynomial to sequential groups of data
points. The number of data points used in the fit is specifiedidij .

For each peak or valley, the quadratic fit is tested againgtritaehold level: peaks with
heights lower thathreshold or valleys with troughs higher théinreshold are ignored.
peaks/valleysare detected only after approximateigth/2 data points have been processed
beyondpeaks/valleyslocations. This delay has implications only for real time processing.

The VI must be naotified when the first and last blocks are passed into the VI, so that the VI
can initialize and then release data internal to the peak detection algorithm.

© MNational Instruments Corporation 47-3 LabVIEW Function and VI Reference Manual

Chapter 47 Additional Numerical Method Vs

Threshold Peak Detector

Analyzes the input sequeniefor valid peaks and keepsunt of the number of peaks
encountered and a recordiflices, which locates the points that excéleeshold in a valid
peak. A peak is valid where the elementX afxceedhreshold and then return to a value
less than or equal threshold, and the number of elements that exabeeshold is at least

equal towidth.
A oL Indices
tht-e=shald M count
width W Cound error
LabVIEW Function and VI Reference Manual 47-4

© National Instruments Corporation

Part V

Communication Vis and Functions

Part V,Communication VIs and Functiondescribes how LabVIEW
handles networking and interapplication communications and introduces
the Communication VlIs and functions. This part contains the

following chapters:

Chapter 48TCP VIs describes Internet Protocol (IP), Transmission
Control Protocol (TCP), and internet addresses, and describes the
LabVIEW TCP Vls. Refer to Chapter ZLCP and UDP Vlsof the
LabVIEW User Manudlor an overview of TCP/IP and examples of
TCP client/server applications.

Chapter 49UDP VIs describes a set of VIs that you can use with User
Datagram Protocol (UDP), a protocol in the TCP/IP suite for
communicating across a single network or an interconnected set of
networks.

Chapter 50DDE VIs describes the LabVIEW Vls for Dynamic Data
Exchange (DDE) for Windows 3.1, Windows 95, and Windows NT.
These Vls execute DDE functions for sharing data with other
applications that accept DDE connections.

Chapter 51ActiveX Automation Functiondescribes the functions for
support of ActiveX automation. These functions allow other ActiveX
enabled applications, such as Microsoft Excel, to request properties
and methods from LabVIEW and individual Vis.

Chapter 52AppleEvent Visdescribes the LabVIEW Vs for
AppleEvents, one form of interapplication communication (IAC),
through which Macintosh applications can communicate with each
other.

Chapter 53Program to Program Communication Videscribes

the LabVIEW VIs for program-to-program communication (PPC),
a low-level form of Apple interapplication communication (IAC)
by which Macintosh applications send and receive blocks of data.

TCP Vis

This chapter describes Internet Protocol (IP), Transmission Control
Protocol (TCP), and internet addresses, and describes the LabVIEW TCP
VIs. Refer to Chapter 2T,CP and UDR of theLabVIEW User Manual
for an overview of TCP/IP and examples of TCP client/server applications.

The following illustration shows thECP palette, which you access by
selectingFunctions»Communication»TCP

»—1HlCommunicatior

[Gon 1 cp
I
OeC

_H-LTG_E T-:P e ToF| [EE TR T-:P
— 9- H
:Cﬁ iz Xz

g EL@

mw =

For examples of how to use the TCP VIs, see the examples in
examples\comm\tcpex.llb

© MNational Instruments Corporation 48-1 LabVIEW Function and VI Reference Manual

Chapter 48 TCP Vis

TCP VI Description

The following TCP VI is available.

TCP Listen

Creates a listener and waits for an accepted TCP connection at the specified port.

TCF] connection I
part “l_'_@ +aremote address
tireout ms Cwait farever =11 ——] " [— remate port

eFror in (no error) ol g S ——

When a listen on a given port begins, you cannot use another TCP Listen VI to listen on the
same port. For example, suppose a VI has two TCP Listen VIs on its block diagram. If you
start a listen on port 2222 with the first TCP Listen VI, any attempts to listen on port 2222
with the second TCP Listen VI fail.

TCP/IP Functions

In addition to existing functions, some TCP/IP VIs are now functions. The following Vls are
now functions in LabVIEW 5.0:

e |P To String

e String To IP

e TCP Open Connection
e TCP Create Listener

e TCP Wait on Listener

e TCP Write

e TCP Read

e TCP Close Connection

The TCP Listen Vlis still a VI in LabVIEW 5.0 because its functionality is duplicated by the
TCP Create Listener and the TCP Wait on Listener functions.

The TCP Read, TCP Write, and TCP Wait On Listener functions incorporate new
functionality. TCP Write’slata in parameter now accepts arrays of bytes. TCP Read has
a new inputmode, which affects how it operates. The four modes are Standard, Buffered,
CRLF, and Immediate. TCP Wait On Listener has a new ingsmjve remote addresshat
tells whether to resolve the remote address or leave it in dot notation.

LabVIEW Function and VI Reference Manual 48-2 © MNational Instruments Corporation

Chapter 48 TCP Vis

Standard has the same behavior it had in earlier versions of LabVIEW. Buffered is an
all-or-nothing read. If you have not received the bytes requested at the end of a timeout,

no bytes are returned. The unreturned bytes are saved for later read attempts. CRLF is read
until a carriage return and linefeed is found in the input stream. You still must specify a
maximum read size. If the CRLF is not found within the size expressed, nothing is returned.
If the timeout limit is reached and a CRLF is not found, nothing is returned. Immediate
specifies to return immediately from a read when any bytes are received.

The following TCP/IP functions are available.

IP To String

Converts an IP network address to a string.

net address

dot notation? (F] - w ENE

String To IP

Converts a string to an IP network address.

== ETR_IP] net addreszs

TCP Close Connection
Closes the connection associated withnection ID.

connection ID TR connection D out
] Ea=
abort [F] xXm
&frar in fna emar] ===l == error out

TCP Create Listener

Creates a listener for a TCP connection.

liztener D

port
erar in [rho emrarl C 2Iror ot

© MNational Instruments Corporation 48-3 LabVIEW Function and VI Reference Manual

Chapter 48 TCP Vis

TCP Open Connection
Attempts to open a TCP connection with the specified address and port.

address connechion [0

remoke port

timeout ms (E0000) error out
ermar in (o errar]
[ozal port
TCP Read
Receives up tbytes to readbytes from the specified TCP connection, returning the results
in data out.
made [standard]
connection 1D éJGP conrection |0 out
bytes to read —'_I_ ~ data out
tirneaut rs [25000] mﬂ“‘ e 2riar oLt
errar in [ho erar]
TCP Wait on Listener

Waits for an accepted TCP connection at the specified port.

listener 1D in G TCF listerer 10 out
i “L'@ b
rezolve remote address [T] =l i = remote address
timeout mz [wait forever: -1] mr" ““Lm remote port
error aut

ermar in (o eror)
connection (D

TCP Write

Writes the stringlata in to the specified TCP connection.

connection D TG connection (D out
data in 'il_ L bytes writken
tirmeaut mz [25000] mﬁ“‘ =20 grror ot

eror in [no ermor|

LabVIEW Function and VI Reference Manual 48-4 © MNational Instruments Corporation

UDP Vis

This chapter describes a set of Vls that you can use with User Datagram
Protocol (UDP), a protocol in the TCP/IP suite for communicating across a
single network or an interconnected set of networks.

The following illustration shows thdDP palette, which you access by
selectingFunctions»Communication»UDP

.—DZCI [iummu;ling:atiur

7 —{HIUDP

;EIHEIEIHE

UDP VI Descriptions

The following UDP VIs are available.

UDP Close

Closes the UDP connection specifieddmynection ID.

connection I0 conne ction 1D ot

error in (No error] oo oo e ror out

UDP Open

Attempts to open a UDP connection on the gipert. connection IDis an opague token
used in all subsequent operations relating to the connection.

port uoF connection [0

o

error in (no error) error aut

© MNational Instruments Corporation 49-1 LabVIEW Function and VI Reference Manual

Chapter 49 UDP Vis

UDP Read

Returns a datagram in the stridgta outthat has been received on the UDP connection
specified byconnection ID.

-:u:-nnect(iu:-n ID:I UDF] dcu:u{'unecttinn ICr ot
rnax size (5481 — t-_ trdata ou

:]

tireout ms (25000 —] J——

errar in (no error) T port
address

UDP Write
Writes the stringlata in to the remote UDP connection specifieddaigdressandport.
port
address
connection I0 UDF] connection I out
datain v-ﬂ“'"""""
error in Cna error) errar aut

LabVIEW Function and VI Reference Manual 49-2 © MNational Instruments Corporation

DDE Vis

This chapter describes the LabVIEW Vls for Dynamic Data Exchange
(DDE) for Windows 3.1, Windows 95, and Windows NT. These Vs

execute DDE functions for sharing data with other applications that accept
DDE connections.

The following illustration shows thBDE palette, which you access by
selectingFunctions»Communication»DDE

—HCommunicatior

%g %g Exec

+—HDDE

DE DE Eﬂé

= =
l—l l—l 3
OPEM|| CLOSE SERUER

=] DDE =] DDE 3] DDE

REGST POKE EXELC

[al DDE [al DDE [al DDE

START|| CHECK] S5TOP

TheDDE palette includes thBDE Server subpalette.

For examples of how to use the DDE VIs, see the examples in
examples\comm\DDEexamp.llb

© MNational Instruments Corporation 50-1 LabVIEW Function and VI Reference Manual

Chapter 50 DDE Vis

DDE Client VI Descriptions

The following DDE Client VIs are available.

DDE Advise Check

Checks an advise value previously established by DDE Advise Start.

wait for change #(FALSE)

tireouti-1)

i

advisze refnum
unused vd""""""

......

.::J‘"

error in (no error)

adwvise refrum
current data
e zhanged ?
error out

DDE Advise Start

Initiates an advise link.

converzation refnum

ODE
f R =l
ermor in [no error] s=F===15TART

item

advize refhum

errar out

DDE Advise Stop

Cancels an advise link, previously established by DDE Advise Start.

DDE Close Conversation

Closes a DDE conversation.

advize refnum E] DOE cobverzation refrm
_ e
efror in (o enar] STOP errar auk
converzation refnum L
. . geerenennnnnd =l
rmode(T . cloze immediately) - e

&Irar in [nio errar] ===

CLOSE efrar out

DDE Execute

Tells the DDE server to executemmand

conversation refum nnE
command ~3"mre

l—r‘

error in {no error) EXEE

tireout (1)

canversation refrum

error out

LabVIEW Function and VI Reference Manual

50-2

© National Instruments Corporation

Chapter 50 ~ DDE Vis

DDE Open Conversation

Establishes a connection between LabVIEW and another application. You must call this VI
before you use any other DDE VIs (except Server VIs).

SEIYICE [15 poEf conhversation refrium
topic A l—p‘|
error in [no error] =====L_0FEm errar out

DDE Poke
Tells the DDE server to put the valdata atitem.
tireout (1) —_|_|
conversation refnum EI [13 caonwersation refrum
item wrmmnnr l_"
data 1] POKE error out
error in (no error) me=f
DDE Request
Initiates a DDE message exchange to obtain the current vateenof
tirneout £-1]
conyersation refnum DE conwversation refnum
item ~romemniE B data
error in (no error) | REGST) error out

DDE Server VI Descriptions

You access the DDE Server functions by selecting
Functions»Communication»DDE»DDE Server.

~—HDDE Server

DDE T .,EIDE [l[lE [l[lE DDE %
RN RN RN 125

SERUER| | ITEM SET EHEEK ITEM |[SERVER|

DDE Srv Check Item

Sets the value of a previously defined DDE Item.

tirneout (1) —|

item refnum Do itern refrum
wait for poke(F ALSE) - ‘ S R TS
error in {no error) ses=os CHECK nﬁpnked?

error out

© MNational Instruments Corporation 50-3 LabVIEW Function and VI Reference Manual

Chapter 50 DDE Vis

DDE Srv Register ltem

Establishes a DDE item for the service specifieddayice refnum

Liwe itern refrumm
—
ITEM error out

service refnum +
item wrnmnnn
value (77) w02

error in {no error)

DDE Srv Register Service
Establishes a DDE service to which clients can connect.

service 1 LuE service refnum
topic =
P ,
error in (no error) SERUER error out

DDE Srv Set ltem
Sets the value of a previously defined DDE Item.
item refnum + DOE itern refnum
value (=) --ﬂ"""""'"'_'
error in {no error) | SET | error out

DDE Srv Unregister ltem
Removes the specified item from its service.
Note DDE clients can no longer access the item after this VI completes.
item refnum DODE service refnum
error in (no error) ITEM error out

DDE Srv Unregister Service

Removes the specified service. DDE clients can no longer connect to this service and all
current conversations are closed.

service refnum

error in (no error) SERUER error out

LabVIEW Function and VI Reference Manual 50-4 © MNational Instruments Corporation

ActiveX Automation Functions

This chapter describes the functions for support of ActiveX automation.
These functions allow other ActiveX-enabled applications, such as
Microsoft Excel, to request properties and methods from LabVIEW and
individual Vls.

You access the ActiveX Automation functions by selediingctions»
Communications»ActiveX/OLE.

i Functions Ed |

4 3
@' 123 F
1 BRH 3
abc @
4 4 14
B e
2 ar s Communication [EY
s =l |
iyt B+ ActiveX\OLE
22 2 %glﬁl
Instr Likp ﬂ L ¥ }
) =
_ln“"’ ECTIER]|

TheActiveX/OLE palette includes the following functions:
e Automation Open

* Automation Close

* Invoke Node

* Property Node

© MNational Instruments Corporation 51-1 LabVIEW Function and VI Reference Manual

Chapter 51

ActiveX Automation Functions

It also includes the ActiveX Variant to G Data function. For more
information on this function, sdg@ata Conversion Functiolater in this

chapter.

National Instruments supports the old functions using compatibility

functions, but all new applications should be built using the new functions.
The following table shows how the old functions map to the new functions.

Table 51-1. New and Old ActiveX Automation Functions

New ActiveX Functions

Old ActiveX Functions

Automation Open

Create Refnum

Automation Close

Release Refnum

Invoke Node

Execute Method

Property Node

Get Property

Set Property

ActiveX Automation Function Descriptions

The following functions are available.

Open Automation Refnum

Opens an automation refnum which refers to a specific ActiveX Automation object. You
select the class of the object by popping up on the function and sefeetang ActiveX

Class Once you open a refnum it can be passed to other ActiveX functions. You should select
only createable classes as inputs to this function.

Automation Refnum = g Automation Befrum
+

1)

errar out

&Irar in [fio eror]

Close Automation Refnum

Closes an automation refnum. Make sure you close every open automation refnum when you
no longer need it open.

Automation Befnum

i
ermar in[no errar] C% ermar oLt

LabVIEW Function and VI Reference Manual 51-2 © MNational Instruments Corporation

Chapter 51 ActiveX Automation Functions

Invoke Node
Invokes a method or action on an ActiveX object. To select an ActiveX class object, pop up
and choos&elect»ActiveX Clasr wire an automation refnum to the input. To select a
method related to that object, pop up on the second section of the node (“method” in the
diagram) and seledethods. Once you select the method, the associated parameters appear
below it. You can read or write to parameter values. Parameters with a white background are
required inputs and the parameters with a gray background are optional inputs.

Arrto Befroe In B class dup Ao Befrurm
error in (no error)=l Bl ert-atr out
ttethod v
—+ paratt 1 —»
—1 * paratn I |—

If the input parameters are of variant type, then you can wire in G data types and they will
automatically be converted to variant data types and indicated by a coercion dot. If an output
is of a variant type, use the ActiveX Variant to G function to convert to G type, if needed.

Property Node
Sets (writes) or gets (reads) ActiveX object property information. To select an ActiveX
class object, pop up and cho&elect»ActiveX Clas®r wire an automation refnum to the
input. To select a property related to that object, pop up on the second line of the node and
selectProperties. To set property information, pop up and se@ange to Write, and
to get property information pop up and selebiange to Read Some properties are read or
write only, soChange to Write or Change to Readespectively appears dimmed in the
pop-up menu.

The Property Node works the same way as Attribute Nodes. If you want to add items to the
node, pop up and sele&td Element or click and drag the node to expand the number of
items in the node. The properties are changed in the order from top to bottom. Remember if
the small direction arrow on a property is on the left, you are setting the property value. If the
small direction arrow on the property is on the right, you are getting the property value.

referance &] dup reference
errar in (no error) il errar aut
name 1 y—attribute 1

attribute 2— name 2

If the property to be written is of ActiveX Variant type, then you can wire in G data types and
they will automatically be converted to variant data types and indicated by a coercion dot.
If the property is of ActiveX Variant type, use the ActiveX Variant to G function to convert to
G type, if needed.

© MNational Instruments Corporation 51-3 LabVIEW Function and VI Reference Manual

Chapter 51 ActiveX Automation Functions

Data Conversion Function

Some applications provide ActiveX data in the form of a self-describing data type called an
ActiveXor OLE Variant To review the data or process it in G, you must convert it to a
corresponding V data type. To convert ActiveX Variant data to G data, use the ActiveX
Variant to G Data function described below.

ActiveX Variant to G Data
Converts ActiveX Variant data to data that can be displayed in LabVIEW.

type
ActiveX Yariant 2 i G Data
£ITar i : &rrar oLt

LabVIEW Function and VI Reference Manual 51-4 © MNational Instruments Corporation

AppleEvent Vis

Note This chapter applies only to users running LabVIEW on the Macintosh System 7
platform.

This chapter describes the LabVIEW VIs for AppleEvents, one

form of interapplication communication (IAC), through which

Macintosh applications can communicate with each other. You also can
use LabVIEW with a low-level form of IAC called program-to-program
communication (PPC).

AppleEvents are a high-level method of communication in which
applications use messages to request other applications to perform actions
or return information. An application can send these messages to itself,
other applications on the same machine, or other applications located
anywhere on a network. Apple has defined a laogabularyfor messages

to help standardize this form of interapplication communication. You

can combinavordsin this vocabulary to form complex messages. This
vocabulary is described in detail in tAppleEvent Registrg document
available from Apple Computer, Inc. Most applications written for System

7, including LabVIEW, respond to some subset of AppleEvents.

PPC is a low-level form of IAC by which applications send and receive
blocks of data. PPC provides higher performance than AppleEvents,
because the overhead required to transmit information is lower. However,
because PPC does not define what kinds of information you can transfer,
many applications do not support it. PPC is the best way to send large
amounts of information between applications that support PPC. See
Chapter 53Program to Program Communication Vr more

information about PPC.

© MNational Instruments Corporation 52-1 LabVIEW Function and VI Reference Manual

Chapter 52 AppleEvent Vis

The following illustration shows th&ppleEvent VI palette, which you
access by selectirigunctions:Communication:AppleEvent

Eapen| | 2pen || Open || Do Quit
bl O [10biect] [Seriod 'Q' &
! : d

=T

For applications to communicate with IAC, the computer must use System 7.0 or

Note
later with Program Linking enabled.

For examples of how to use the AppleEvent VIs, see the examples located
in examples:comm:AE Examples.llb

General AppleEvent VI Behavior

When sending an AppleEvent, you must specifytéingetapplication for
the event. To receive the AppleEvent, the target application must be open.
You can use the AESend Finder Open VI to open an application.

The User Identity Dialog Box

Before you send an AppleEvent to another computer, you must use the
Users & Groups control panel utility on the destination computer to set
up a user name and password for yourself. The first time you send an
AppleEvent to an application or Finder on the destination computer, a
dialog box prompts you to enter your name and password. The system
compares this information to the configuration of the Users & Groups
control panel utility on the destination computer.

LabVIEW Function and VI Reference Manual 52-2 © MNational Instruments Corporation

Target ID

Chapter 52 AppleEvent Vis

&

Connect to the file server "Macintosh HOD" as:

i Guest
@ Registered User

Name: || |

Password: I:I (Two-way Scrambled)
[Cancel] [Set Passu.lurd]

w7.0

The current design of the AppleEvent Manager does not include a
programmatic method for bypassing this dialog box, so you should take this
into account when designing VIs that use IAC. For example, you cannot
command an unattended remote computer to send an AppleEvent to a third
computer; someone must enter user information into the User Identity
dialog box that appears on the remote computer. The PPC VIs allow for
unauthenticate@dessions if guest access is enabled on the computer with
which you wish to communicate, so you might find the PPC VIs more
useful for certain kinds of LabVIEW-to-LabVIEW communication.

Most Vls that send AppleEvents need a description of the target application
that receives the AppleEvent. Ttagget ID is a complex cluster of
information, defined by Apple Computer Inc., describing the target
application and its location. The following VIs generatet#iiget ID,

S0 you do not need to create this cluster on the diagram.

« PPC Browser creates tharget ID by displaying a dialog box by
which you interactively select AppleEvent-aware applications on the
network.

» Get Target ID creates tliarget ID programmatically based on the
application name and network location.

These VIs are discussed in more detail inTéugeting VI Descriptions
section of this chapter.

© MNational Instruments Corporation 52-3 LabVIEW Function and VI Reference Manual

Chapter 52 AppleEvent Vis

You need to look at thiarget ID cluster only if you want to pass target
information from one VI to another. To creattagget ID cluster for the
front panel of a VI that passes target information to another VI or to an
AppleEvent, you can copy tharget ID cluster from the front panel of one
of the AppleEvent Vls.

Send Options

Many of the VIs that send an AppleEvent hageiad optionsinput, which
specifies whether the target application can interact with the user and the
length of the AppleEvent timeout.

zend -:-Etic-n5|

@ @Eer’ver ray come to f-:-r'e-gr'n:nunl:l|
@ @mnn't try to r'ec-:-nnect|

|tranSactinn ICr ED ||
Elﬁﬂnw Interaction |time-:-ut ﬁﬂkElHlEDD "

Targeting VI Descriptions

The following Targeting VIs are available.

Get Target ID

Returns a target ID for a specified application based on its name and location. You can either
specify the application name and location or the VI searches the entire network for the

application.
App fport name e £t target I
Search entire network -7 - s L total targets
Zone ﬁ et IO %aﬂ targets
Server erFar

LabVIEW Function and VI Reference Manual 52-4 © MNational Instruments Corporation

Chapter 52 AppleEvent Vis

The following table summarizes the operatiosearch entire network Zone, andServer.

To search the
following locations:

Use the following parameters:

The current computer

Zone andServer must be unwired. Search entire network must
be FALSE.

A specific computer on
the network

Zone andServer must specify the target computer’s zone and
server. (If you do not wirgone, the VI searches the current
zone.)Search entire networkmust be FALSE.

A specific zone

Zone must specify the zone to be searct&etver must be
unwired.Search entire networkmust be FALSE.

The entire network

Search entire networkmust be TRUE. The VI ignoré&one
andServer.

PPC Browser

Invokes the PPC Browser dialog box for selecting an application on a network or on the same

computer.

location MEP type
prornpt

application Tist label
default specified
default target ID

oo s lected target D

Errar

© MNational Instruments Corporation

52-5 LabVIEW Function and VI Reference Manual

Chapter 52 AppleEvent Vis

You can use this standard Macintosh dialog box to select a zone from the network, an object
in that zone (in System 7, this is typically the name of a person’s computer), and an
application. The VI then returns tkerget ID cluster.

Prompt
Macintoshes Application List Label

bowlorama 1¢| || File Sharing Extension it
Finder

=
AppleTalk Zones
1st & 2nd Floors -7
3rd Floor
dth Floor

Sth floor
Fhase |1

&

&l

AppleEvent VI Descriptions

The following AppleEvent VIs are available.

AESend Do Script
Sends the Do Script AppleEvent to a specified target application.

Soript [~ 3 i | P ————- ztring
target | cooooeed Do
send options Soiod errar

AESend Finder Open

Sends the AppleEvent to open specified applications or documents to the System 7 Finder on
the specified machine.

Full path of folder c-:-ntafiﬁlnﬁamgg I:E" error string
cone containing Finder
Server cnntaining Finder O error
send options

LabVIEW Function and VI Reference Manual 52-6 © MNational Instruments Corporation

Chapter 52 AppleEvent Vis

= Note Apple may change the set of AppleEvents to which the Finder responds so that
they more closely conform to the standard set of AppleEvents. As a result, the
AppleEvent that AESend Finder Open sends to the Finder may not be supported
in future versions of the system software.

AESend Open
Sends the Open AppleEvent to a specified target application.

object specifier [3] error string
target |0 ooocooood DF!E'I'I
zend options b ject errar

AESend Open Document

Sends the Open Document AppleEvent to the specified &pgétation, telling the
application to open the specified document.

full pathname of docurnent

o T
Cpeh

errar string

.. target |
zone contajning d-:-cl.ﬂ'ne-n
zetwer containing docurnent

=end options

errar

AESend Print Document

Sends the Print Document AppleEvent to the specified target application, telling the
application to print the specified document.

full pathnarme of docurnent] error string

i

. arget |
zone containing du:-cl.ﬂ'nen
server containing docurnent

zend options

errar

AESend Quit Application
Sends the Quit Application AppleEvent to a specified target application.

target D il:lq? error string
i
=zend options [errar

© MNational Instruments Corporation 52-7 LabVIEW Function and VI Reference Manual

Chapter 52 AppleEvent Vis

LabVIEW-Specific AppleEvent Vs

LabVIEW-specific AppleEvent VIs send messages that only LabVIEW applications
(standard and run-time systems) recognize. To access the LabVIEW Specific Apple Events
Vls, selectFunctions:Communication:LabVIEW Specific Apple Events

e 55

You should use these VIs only when communicating with LabVIEW applications. You can
send these messages either to the current LabVIEW application or to a LabVIEW application
on a network. See Table AAppleEvent Error Codesf Appendix A Error Codes for error

information.
AESend Abort VI
Sends the Abort VI AppleEvent to the specified target LabVIEW application.
Y| name CE=] errar string
target |0 eooomooed
zend options error

AESend Close VI
Sends the Close VI AppleEvent to the specified target LabVIEW application.

V1 narne
target D
=zave options
=end options

errar string

error

AESend Open, Run, Close VI

Uses the Open Document, Run VI, VI Active?, and Close VI AppleEvent VIs to make a
specified LabVIEW application open, run, and close a VI.

Full pathnarme of W1 ED E error string
target I0 .,,.,22*”, BFFor

For this VI, you must specify threomplete pathname of the VI you want to run. See
Chapter 12Path and Refnum Controls and Indicaton$ yourG Programming Reference
Manualfor a description of path controls and indicators available in the Controls palette.

LabVIEW Function and VI Reference Manual 52-8 © MNational Instruments Corporation

Chapter 52 AppleEvent Vis

AESend Run VI
Sends the Run VI AppleEvent to the target LabVIEW application.

M narne k)
target I -========] m

send options

error string

errar

AESend VI Active?

Sends the VI Active? AppleEvent to the specified target LabVIEW applicationnning?
is a Boolean indicating whether the VI is currently executing.

VI narne lEE Y1 running ?
target & |||»? error string
zend options - errar

Advanced Topics

This section describes some of the advanced programming you can do with
AppleEvent VIs.

Constructing and Sending Other AppleEvents

In addition to VIs that send common AppleEvents, you can use lower-level
VIs to send any AppleEvent. Using these VIs requires more knowledge of
AppleEvents than using the VIs described earlier in this chapter. If you are
interested in using these VIs, you should be familiar with the discussion of
AppleEvents irinside Macintosh, Volume \dnd theAppleEvent Registry

When sending an AppleEvent, you must include several pieces of
information. The event class and event ID identify the AppleEvent you
are sending. The event class is a four-letter code which identifies the
AppleEvent group. For example, an event clasoaf identifies an
AppleEvent as belonging to the set of core AppleEvents. The event ID is
another four-letter code that identifies the specific AppleEvent that you
wish to send. For exampledoc is the four-letter code for the Open
Documents AppleEvent, one of the core AppleEvents. To send an
AppleEvent using the AESend VI, concatenate the event class and event ID
together as an eight-character string. For example, to send the Open
Documents AppleEvent, pass the AESend VI the eight-character code
coreodoc .

If you are sending the AppleEvent to another application, you have to
specifytarget ID andsend options as described earlier in this chapter.

© MNational Instruments Corporation 52-9 LabVIEW Function and VI Reference Manual

Chapter 52

AppleEvent Vs

You also can specify an array of parameters if the target application needs
additional information to execute the specified AppleEvent. Because the
data structure for AppleEvent parameters is inconvenient for use in
LabVIEW diagrams, the AESend VI accepts these parameters as ASCII
strings. These strings must conform to the grammar described in the next
section. You can use this grammar to describe any AppleEvent parameter.
The AESend VI interprets this string to create the appropriate data structure
for an AppleEvent, and then sends the event to the specified target.

Creating AppleEvent Parameters

In many cases, an AppleEvent parameter is a single value; however, it can
be quite complex, with a hierarchical structure containing components that
in turn can contain other components. In LabVIEW, a parameter is
constructed as a string, which has a simple grammar with which you can
describe all kinds of data that an AppleEvent parameter can be, including
complex structures.

An AppleEvent parameter string begins with a keyword, a four-letter code
describing the parameter's meaning. For example, if the parameter is a
direct parameter (one of the most common types of parameters) you must
specify that the keyword iskayDirectObject by using the four-letter
code---- (four dashes). Other examples of keywords inchade , short

for save options, which is used when sending the Close VI AppleEvent

to LabVIEW. Documentation detailing an application's supported
AppleEvents should indicate the keywords used for each parameter. See the
Sending AppleEvents to LabVIEW from Other Applicatsmasion of this
chapter for a list of the AppleEvents that you can use with LabVIEW.

Following the keyword, you must specify the parameter data as a string.
You can use AppleEvents with many different data types, including strings
and numbers. When you specify the data string, the AESend VI converts it
to a desired data type based upon the way the data is formatted and optional
directives that can be embedded in the string. Each piece of data has a
four-letter type code associated with it, indicating its data type. The

target application uses this code to interpret the data. For example, if
comma-separated items are enclosed in brackets, aAiBtDéscriptorss
created, and the list has a data typksof ; each of the comma-separated
items could in turn be other items, including lists.

You can use a number of Vs in tAppleEvents VI palette to create some

of the more common parameter strings, including aliases, which are used
when referencing files in parameters, and descriptor lists, which are used to
specify a list of items as a parameter. You can concatenate or cascade these
strings together to create a more complex parameter.

LabVIEW Function and VI Reference Manual 52-10 © MNational Instruments Corporation

Chapter 52 AppleEvent Vis

Table 52-1 describes the format of AppleEvent descriptor strings and
indicates Vls that can create the descriptor, where appropriate.

Table 52-1. AppleEvent Descriptor String Formats

VI that can
Parameter is construct
To send data as: Format the string as: of code type: | Examples: string:
an integer A series of decimal digits| long or short | 1234 n/a
optionally preceded by a -5678
minus sign.
enumerated data A four-letter code. enum whos n/a
If it is too long, it is ‘@all
truncated; if it is too long
short, it is padded with >=
spaces. If you put single 8eit
quotes ‘() around it,
it can contain any
characters; otherwise,
it cannot contain:
@ :-,([{}])and
cannot begin with a digit
a string Enclose the desired TEXT “put x n/a
sequence of characters into
within open and close card
curly quotes (“ entered field 57
with <option-[>and ” Tl_r|1lere“
entered with
<option-shift-[>). Notice
that the string is not
null-terminated.
an AE record Enclose a reco {x:100, AECreate
comma-separated list of y:—100} Record
elements in curly braces {‘origin
where each element E
consists of a keyword {x:100,
y:—100},
(a type code) followed by extent:
a colon, followed by a {x:500,-
value, which can be any y:500),
of the types listed in cont:[1,
this table. 5,25]}

© MNational Instruments Corporation 52-11 LabVIEW Function and VI Reference Manual

Chapter 52

AppleEvent Vs

Table 52-1. AppleEvent Descriptor String Formats (Continued)

VI that can
Parameter is construct
To send data as: Format the string as: of code type: | Examples: string:
an AE descriptor list| Enclose a list [123, AECreate
comma-separated list of -58, Descriptor
descriptors in square “test’] List
brackets.
hex data Enclose an even numbe| ?? (mustbe | «0157 (Hex datais a
of hex digits between coerced — see| 64fe AB component of
French quotes (« entere{ next item) Cl» the string
with <option-\> and » produced by
entered with Make Alias)
<option-shift-\>).
some other data typ¢ Embed data created in | The specified | sing(123 n/a
one of the types listed in| type code 4) Make Alias
this table in parentheses alis(«he creates a hex
and put the desired type x dump dump of afile
code before it. If the datg of an description.
is a numeric, LabVIEW alias»)
coerces the data to the - n/a
-) . type(lin n/a
specified type if possible| e)
and returns the rang{sta
errAECoercionFail r: 5,
error code if it cannot. If stop: 6}
the data is of a different
type, LabVIEW replaces
the old type code with the
specified type code.
null data Coerce an empty string t{¢ null () n/a
no type.

LabVIEW Function and VI Reference Manual

52-12

© National Instruments Corporation

Chapter 52 AppleEvent Vis

Low-Level AppleEvent Vls

You can use Low-Level AppleEvent Vls to construct AppleEvent parameters and send the
AppleEvent. The high-level Vls for sending AppleEvents, described earlier in this chapter,
are based on the AESend VI, and are good examples of creating AppleEvents and their
parameters.

To access theow Level Apple Eventspalette, pop up on theow Level Apple Eventsicon.

= Make
Send || 4liaz

| [eT3|[& =2
freere oo |
Record)| 5ot || 2hec.

e | [ea|[eTa
Cresre || cresfe | | create
Range| |Logicall | Comp.
Desc. || [5G, ez,

AESend
Sends an AppleEvent specified in parameters to the specified target application.
requested reply parameters
Ewent Claz= and I@ ;E eply parameters
parameters Send error string
target |0 Brrar
send options
Make Alias

Creates a unique description of a file from its pathname and location on the network. You can
use this description with the AESend VI when sending an AppleEvent that refers to a file.

File's full pathnamne
Cone

Make Alias (alis) AESend descriptor

Server name Alia=
aliaz kind

[0: rainimal alias)

errar

An alias is a data structure used by the Macintosh toolbox to describe file system objects
(files, directories and volumes). Do not confuse this with a Finder alias file. A minimal alias
contains a full path name to the file and possibly the zone and server that the file resides on.
A full alias contains more information, such as creation date, file type, and creator. (The
complete description of the structure of an alias is confidential to Apple Computer.) Aliases
are the most common way to specify a file system object as a parameter to an AppleEvent.

© MNational Instruments Corporation 52-13 LabVIEW Function and VI Reference Manual

Chapter 52 AppleEvent Vis

Creating AppleEvent Parameters Using Object Specifiers

Apple has created a high-level interface for creating AppleEvents called the Object Support
Library. This interface is actually layered on top of the AppleEvent parameter data structures
described earlier in this chapter. This interface helps create common types of parameters,

including range specifications. LabVIEW object support VIs are located drothéevel
Apple Eventspop up palette.

AECreate Comp Descriptor

Creates a string describing an AppleEvent comparison record, which specifies how to
compare AppleEvent objects with another AppleEvent object or a descriptor record.

COMparison operator wmannneed
aperand 1 reate comparizon descriptar
opetand 2 Cest,

For example, you can use the output comparison descriptor string as an argument to the
AESend VI, or as an argument to AECreate Object Specifier to build a more complex

descriptor string. See tl@bject Support VI Exampkection of this chapter for an example
of its use.

AECreate Logical Descriptor
Creates a string describing an AppleEvent logical descriptor, which you use with the

AESend VI.
Tagical aperatar nnannand T
'3. P EI;’E?&EBEJ logical descriptor
Togical terms BEse

[AEDesc or AEDescList)

AppleEvent logical records describe logical, or Boolean expressions of multiple terms, such
as theANDof two AppleEvent comparison records. For example, you can use the output
logical descriptor string as an argument to the AESend VI, or as an argument to AECreate
Object Specifier VI to build a more complex descriptor string. Se®Hect Support VI
Examplesection in this chapter for an example of its use.

AECreate Object Specifier

Creates a string describing an AppleEvent object, which you use with the AESend VI.

n:]?s_s IC & =]

containgl snmmnnend Cpaate . .o

key farm 1D Sbpact Object specifier
key data ammannea) Spec.

LabVIEW Function and VI Reference Manual 52-14

© National Instruments Corporation

Chapter 52 AppleEvent Vis

An object specifier is an AppleEvent record of tgpg and describes a specific object. It has

four elements: the class of the object, the containing object, a code indicating the form of the
description, and the description of the object.

AECreate Range Descriptor

Creates a string describing an AppleEvent range descriptor record, which you use with the

AESend VI.
Fange start senneed 3
g E;Efég Range descriptor
tange stop wenannand b oo

Range descriptor records are used in object specifiers whose key form is formRamge (
They describe a range of objects with two object specifiers: the start and the end of the range.

AECreate Descriptor List

Creates a string describing a list of AppleEvent descriptors, which you can then use with the

AESend VI. You commonly use Descriptor lists when you create the operands for a logical
descriptor.

i)
drray of AE Descriptors reae #E Dezcriptor List
Lizk

AECreate Record

Creates a string describing an AppleEvent descriptor record, which can then be used with the

AESend VI. You can use a record descriptor to bundle descriptors of different types. Each
descriptor has its own keyword, or name, and value.

reate AE Recard
keywords and values s Recard
© National Instruments Corporation 52-15

LabVIEW Function and VI Reference Manual

Chapter 52 AppleEvent Vis

Object Support VI Example

The following example creates an AppleEvent parameter using the object support Vls. This
example creates an AppleEvent parameter to be sent to a word processor, instructing the word
processor to return the first line of a specified document with the firstAyoild and the

second words .

cand 1 &ND Tines of Doc Narme that meet first line of partial
cand 2 cond 1 AMD cond 2 => partial

Farameters

abc

LabVIEW Function and VI Reference Manual 52-16 © MNational Instruments Corporation

Chapter 52 AppleEvent Vis

The following string that the previous diagram creates is quite complicated; tabs are added to
make the string easier to read. For further information about the Object Support Library,
consult theAppleEvent Registry

obj
want: type('line"),
from: obj {
want: type('line"),
from: Doc Name,
form: test,
seld: logi {
term:[
cmpd{
relo:=,
obj1:"April",
obj2:0bj {
want: type(‘word"),
from: exmn(),
form: indx,
seld: 1
}
3
cmpd{
relo:=,
obj1:"is",
obj2:0bj {
want: type(‘word"),
from: exmn(),
form: indx,
seld: 2
}
}
I
logc: AND
}
h
form: indx,
seld: 1

© MNational Instruments Corporation 52-17 LabVIEW Function and VI Reference Manual

Chapter 52 AppleEvent Vis

Sending AppleEvents to LabVIEW
from Other Applications

LabVIEW responds to required AppleEvents, which Apple expects all
System 7 applications to support, and to LabVIEW specific AppleEvents,
designed specifically for LabVIEW. Both categories are described in the
following sections.

Required AppleEvents

LabVIEW responds to the required AppleEvents, which are Open
Application, Open Documents, Print Documents, and Quit Application.
These events are describedrigide Macintosh, Volume VI

LabVIEW Specific AppleEvents

LabVIEW also responds to the LabVIEW-specific AppleEvents

Run VI, Abort VI, VI Active?, and Close VI. With these events and the
Open Documents AppleEvent, you can use other applications to
programmatically tell LabVIEW to open a VI, run it, and close it when it is
finished. A thorough understanding of AppleEvents, as describiasdide
Macintosh, Volume Yiand the AppleEvent Registry is a prerequisite for
sending these AppleEvents to LabVIEW from other applications. You can
send these events between two or more LabVIEW applications by using the
utility VIs described in th&ending AppleEvensection in Chapter 24,
AppleEventsof theLabVIEW User Manual

The LabVIEW-specific AppleEvents are described in later sections, in a
format similar to that used in the AppleEvent Registry.

Replies to AppleEvents

If LabVIEW is unable to perform an AppleEvent, the reply contains an
error code. If the error is not a standard AppleEvent error, the reply

also contains a string describing the error. AppendiEor Codes
summarizes the LabVIEW-specific errors that can be returned in a reply to
an AppleEvent.

LabVIEW Function and VI Reference Manual 52-18 © MNational Instruments Corporation

Event: Run VI
Description

Tells LabVIEW to run the specified VI(s). Before executing this event, the
LabVIEW application must be running, and the VI must be open (you can

Chapter 52

AppleEvent Vs

open the VI using the Open Documents AppleEvent).

Event Class

LBVW (Custom events use the Applications creator type for the

event class)

Event ID
GoVI ----

Event Parameters

Description Keyword Default Type
VI or List of Vs | keyDirectObject (----) | typeChar (char)
(required) or list of
typeChar (list)
Reply Parameters
Description Keyword Default Type
none
Possible Errors
Error Value Description
KLVE_InvalidState 1000 | The Vlis in a state that does not
allow it to run.
KLVE_FPNotOpen 1001 | The VI front panel is not open.
KLVE_CtrlErr 1002 | The VI has controls on its front
panel that are in an error state.
kLVE_VIBad 1003 | The VI is broken.
KLVE_NotInMem 1004 | The VIis notin memory.

© National Instruments Corporation 52-19

LabVIEW Function and VI Reference Manual

Chapter 52 AppleEvent Vis

Event: Abhort VI

Description

Tells LabVIEW to abort the specified VI(s). Before executing this event,
the LabVIEW application must be running, and the VI must be open (you
can open the VI using the Open Documents AppleEvent). This message can
only be sent to VIs that are executed from the top level (subVIs are aborted

only if the calling VI is aborted).

Event Class

LBVW (Custom events use the Applications creator type for the
event class)

Event ID
RsVI

Event Parameters

Description

Keyword Default Type

VI or List of Vs

keyDirectObject

(-) | typeChar (char)
(required)or list of
typeChar (list)

Reply Parameters

Required?
Description Keyword Default Type
none
Possible Errors
Error Value Description
KLVE_lInvalidState 1000 | The Vlis in a state that does not

allow it to run.

kLVE_FPNotOpen

1001

The VI front panel is not open.

kLVE_NotInMem

1004

The VI is not in memory.

LabVIEW Function and VI Reference Manual

52-20

© National Instruments Corporation

Chapter 52 AppleEvent Vis

Event: VI Active?
Description

Requests information on whether a specific VI is currently running.

Before executing this event, the LabVIEW application must be running,
and the VI must be open (you can open the VI using the Open Documents
AppleEvent). The reply indicates whether the VI is currently running.

Event Class

LBVW (Custom events use the Applications creator type for the
event class.)

Event ID
VIAC

Event Parameters

Description Keyword Default Type
VI Name keyDirectObject (----) | typeChar (char)
(required)

Reply Parameters

Description Keyword Default Type
Active? (required) | keyDirectObject (----) | typeBoolean
(bool)
Possible Errors
Error Value Description
KAEVtErrFPNotOpen 1001 | The VI front panel is not open.
KLVE_NotInMem 1004 | The VI is notin memory.

© MNational Instruments Corporation 52-21 LabVIEW Function and VI Reference Manual

Chapter 52 AppleEvent Vis

Event: Close VI
Description

Tells LabVIEW to close the specified VI(s). Before executing this event,
the LabVIEW application must be running, and the VI must be open
(you can open the VI using the Open Documents AppleEvent).

Event Class

LBVW (Custom events use the Applications creator type for the
event class)

Event ID
CIVI

Event Parameters

Description Keyword Default Type
VI or List of VIs | keyDirectObject typeChar (char)
(-) (required) or list of
typeChar (list)
Save Options keyAESaveOptions typeEnum (enum)
(not required) (savo) possible values: yes
and no

Reply Parameters

Description Keyword Default Type

none

Possible Errors

Error Value Description
kAEVtErfFPNotOpen 1001 The VI front panel is not open.
KLVE_NotInMem 1004 The VI is not in memory.
cancelError 43 The user cancelled the close

operation.

LabVIEW Function and VI Reference Manual 52-22 © MNational Instruments Corporation

Program to Program
Communication Vs

This chapter describes the LabVIEW VIs for program-to-program
communication (PPC), a low-level form of Apple interapplication
communication (IAC) by which Macintosh applications send and receive

blocks of data.

The following illustration shows thePC VI palette, which you access by

selectingFunctions»Communication»PPC

Get D

ShY

Rizieph™

Cpen || Start | |Inform
ERCICRE
Fead || Write
End || Cloze || Close

For examples of how to use the PPC VIs, see the examples located in

examples:comm:PPC Examples.llb

© MNational Instruments Corporation 53-1

LabVIEW Function and VI Reference Manual

Chapter 53 Program to Program Communication VIs

PPC VI Descriptions

The following PPC Vls are available.

PPC Accept Session

Accepts or rejects a PPC session request based on the Baateat?

oL

Ricept?

session refnum
accapt? [T) e
reject info — |

ze=sion refnum output

errar

You should accept or reject the request using the PPC Accept Session VI immediately,
because the other computer waits (hangs) until the VI accepts or rejects its attempt to initiate
a session or an error occurs.

PPC Browser

For information on the PPC Browser VI, see ChapteAppJeEvent Visof this manual.

Close All PPC Ports
Closes all the PPC ports that the PPC Open Port VI opened.

gt

Claze

part refium errar

Closing a port terminates all outstanding calls associated with the port with a portClosedErr
(error -916).

You can use the Close All PPC Ports to handle abnormal conditions that leave ports open. An
example of an abnormal condition is when a VI is aborted before it can terminate normally
and close the PPC port. You can use the Close All PPC Ports VI during VI development, when
such mistakes are more likely to be made, or as a precaution at the beginning of any program
that opens ports.

PPC Close Port
Closes the specified PPC port.

FERG

Cloze

part refnurm Errat

Closing a port terminates all outstanding calls associated with the port with a portClosedErr
(error -916).

LabVIEW Function and VI Reference Manual 53-2 © MNational Instruments Corporation

Chapter 53 Program to Program Communication VIs

PPC End Session

Ends the specified PPC session.

session refnum ﬂ@ ekrror
End

Ending a session causes all outstanding calls associated with the session (PPC Read and
PPC Write calls) to finish with a sessClosedErr (error -917).

Get Target ID
For information on the Get Target ID VI, see Chapter®ghleEvent Visof this manual.

PPC Inform Session
Waits for a PPC session request.

part refnurm ﬁ@ session refnurm
autornatically accept (T) - Inmrramﬂzinitiatnr—'g target |0
timeout ticks (0 no timeout) — _l_ request infa
Brrar

PPC Open Port

Opens a port for PPC communication and returns a unique port reference number in
port refnum . You can use a single port for multiple sessions.

part refriurm

portMamme ma@

alias location name ~ernenn ,
O
netwoark vwisible Ef-a]SE'j] HPER

errar

© MNational Instruments Corporation 53-3 LabVIEW Function and VI Reference Manual

Chapter 53 Program to Program Communication VIs

When opening a port using PPC Open Port, you must spegditidame cluster.

[elector|f [o

was registered
on netwaork

——
alias location narne

network
wigible

(falze)

Refer to the LabVIEW online help for more information on this VI.

PPC Read
Reads a block of information from a specified session. If a timeout occurs or the VI aborts
before completing execution, the port thatt refnum represents closes.

zezzion refnurm data bytes
n bytes to read ﬁﬁm?ﬁ;ﬁé‘“fﬂ
timeout ticks (0 no tirmeout)

poll wait (10 ms) —

PPC Read executes asynchronously by starting to read the specified data and then polling
until the read is finished.

PPC Start Session
Attempts to start a session with the application specifigddgget ID through the specified
port. If a timeout occurs or the VI aborts before completing execution, the port represented by

port refnum closes.

timeout ticks (0: no timeout) ————
art refnurn se=szion refnum
P tar ﬁ@ reject info
user da?a (] Start 1
Allovw Dialog Ctrue) - errar
prompt

LabVIEW Function and VI Reference Manual 53-4 © MNational Instruments Corporation

Chapter 53 Program to Program Communication VIs

PPC Write

Writes a block of information to the specified session. If a timeout occurs or the VI aborts
before completing execution, the port representeployrefnum is closed. PPC Write

executes asynchronously by starting to write the specified data and then polling until the write
is finished.

timesout ticks (0 no timeout) ————

zezsion refium ;
@ @ length written
data buytes =TI " ?

data info nmam e error

U
poll wait (10 ms)

© MNational Instruments Corporation 53-5 LabVIEW Function and VI Reference Manual

Error Codes

This document contains tables listing all the numeric error codes for LabVIEW.

Connect error handler VIs to other VIs to return a description of an error, if one occurs. Error
handler Vls also can display a dialog box with an error message description and with buttons that
can stop or continue execution. See Eneor Handling topic in the LabVIEWOnIine Reference

for more information about error handlers.

Note All error codes and descriptions are also included in the configuration utility help
panels in Windows and Macintosh platforms.

Numeric Error Codes

The tables are arranged roughly in ascending order, from negative to positive values. Tables with
negative number values are arranged from the smallest absolute value to the largest absolute
value. Notice that error codes 5000 to 9999 are reserved for your own use.

Table A-1. Numeric Error Code Ranges

Error Code Range Table
* —1073807360 to -1073807231 VISA Error Codes
-20001 to —20065 Analysis VI Error Codes
-10001 to -10943 Data Acquisition VI Error Codes
-1700 to -1719 AppleEvent Error Codes
* -1200 to —13xx Instrument Driver Error Codes
-900 to -932 PPC Error Codes
* 0 to 85 LabVIEW Function Error Codes
* 0 to 32 GPIB Error Codes
1 to 5 LabVIEW Specific PPC Error Codes
* 53 to 66 TCP/IP and UDP Error Codes
* 61 to 65 Serial Port Error Codes

© MNational Instruments Corporation A-1 LabVIEW Function and VI Reference Manual

Appendix A Error Codes

Table A-1. Numeric Error Code Ranges (Continued)

Error Code Range Table

1000 to 1004 LabVIEW Specific AppleEvent Error Codes

14001 to 14020 DDE Error Codes

* These tables contain some error codes with overlapping numerical values but different meanings, depending on the source

of the error.

Table A-2. VISA Error Codes

LabVIEW Function and VI Reference Manual

A2

© National Instruments Corporation

Error Code Error Name Description
-1073807360 VI_ERROR_SYSTEM_ERROR Unknown system error (miscellaneous error).
-1073807346 VI_ERROR_INV_OBJECT The given session or object reference is invalid.
VI_ERROR_INV_SESSION

-1073807345 VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained or specifigd
operation cannot be performed because the resourge
is locked.

-1073807344 VI_ERROR_INV_EXPR Invalid expression specified for search.

-1073807343 VI_ERROR_RSRC_NFOUND Insufficient location information, or the device or
resource is not present in the system.

—1073807342 VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.

-1073807341 VI_ERROR_INV_ACC_MODE Invalid access mode.

-1073807339 VI_ERROR_TMO Timeout expired before operation completed.

-1073807338 VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated data
structures corresponding to this session or object
reference.

-1073807332 VI_ERROR_INV_JOB_ID Specified job identifier is invalid.

-1073807331 VI_ERROR_NSUP_ATTR The specified attribute is not defined or supported b
the referenced resource.

-1073807330 VI_ERROR_NSUP_ATTR_STATE The specified state of the attribute is not valid, or is
not supported as defined by the resource.

-1073807329 VI_ERROR_ATTR_READONLY The specified attribute is read-only.

-1073807322 VI_ERROR_INV_EVENT Specified event type is not supported by the resourde.

-1073807321 VI_ERROR_INV_MECH Invalid mechanism specified.

-1073807320 VI_ERROR_HNDLR_NINSTALLED A handler was not installed.

-1073807319 VI_ERROR_INV_HNDLR_REF The given handler reference is invalid.

-1073807318 VI_ERROR_INV_CONTEXT Specified event context is invalid.

Appendix A Error Codes
Table A-2. VISA Error Codes (Continued)
Error Code Error Name Description
-1073807308 VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.
—-1073807307 VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.
—1073807306 VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error during transfer.
—1073807305 VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during transfer.
—1073807304 VI_ERROR_BERR Bus error occurred during transfer.
-1073807302 VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state),
—1073807300 VI_ERROR_ALLOC Insufficient system resources to perform necessary
memory allocation.
—-1073807299 VI_ERROR_INV_MASK Invalid buffer mask specified.
—-1073807298 VI_ERROR_IO Could not perform read/write operation because
of 1/O error.
—-1073807297 VI_ERROR_INV_FMT A format specifier in the format string is invalid.
—1073807295 VI_ERROR_NSUP_FMT A format specifier in the format string is not supported.
—1073807294 VI_ERROR_LINE_IN_USE The specified trigger line is currently in use.
—-1073807286 VI_ERROR_SRQ_NOCCURRED Service request has not been received for the session.
-1073807282 VI_ERROR_INV_SPACE Invalid address space specified.
—-1073807279 VI_ERROR_INV_OFFSET Invalid offset specified.
-1073807276 VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware|.
—-1073807273 VI_ERROR_WINDOW_NMAPPED The specified session is not currently mapped.
—1073807265 VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and
NDAC are deasserted).
—-1073807264 VI_ERROR_NCIC The interface associated with this session is not
currently the controller in charge.
-1073807257 VI_ERROR_NSUP_OPER The given session or object reference does not support
this operation.
—1073807242 VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.
—1073807239 VI_ERROR_INV_PROT The protocol specified is invalid.
—-1073807237 VI_ERROR_INV_SIZE Invalid size of window specified.
-1073807232 VI_ERROR_WINDOW_MAPPED The specified session already contains a mapped
window.
—-1073807231 VI_ERROR_NIMPL_OPER The given operation is not implemented.

© MNational Instruments Corporation

A-3

LabVIEW Function and VI Reference Manual

Appendix A Error Codes
Table A-3. Analysis Error Codes
Error Code Error Name Description
0 NoErr No error; the call was successful.

—-20001 OutOfMemErr There is not enough memory left to perform the
specified routine.

—20002 EqSamplesErr The input sequences must be the same size.

—20003 SamplesGTZeroErr The number of samples must be greater than zero.

—20004 SamplesGEZeroErr The number of samples must be greater than or equ
to zero.

—20005 SamplesGEOneErr The number of samples must be greater than or equ
to one.

—20006 SamplesGETwoErr The number of samples must be greater than or equ
to two.

—20007 SamplesGEThreeErr The number of samples must be greater than or equ
to three.

—20008 ArraySizeErr The input arrays do not contain the correct number pf
data values for this VI.

—20009 PowerOfTwoErr The size of the input array must be a power of two:
size= 0<m< 23.

—20010 MaxXformSizeErr The maximum transform size has been exceeded.

—20011 DutyCycleErr The duty cycle must meet the condition:
0< duty cycle< 100.

—20012 CyclesErr The number of cycles must be greater than zero and
than or equal to the number of samples.

-20013 WidthLTSamplesErr The width must meet the condition:
0 < width < samples.

-20014 DelayWidthErr The delay must meet the condition:
0 < (delay + width) < samples.

—20015 DtGEZeroErr dt must be greater than or equal to zero.

—20016 DtGTZeroErr dt must be greater than zero.

-20017 IndexLTSamplesErr The index must meet the condition:
O0<index < samples.

-20018 IndexLengthErr The index must meet the condition:
0 < (index + length) < samples.

—20019 UpperGELowerErr The upper value must be greater than or equal to
the lower value.

LabVIEW Function and VI Reference Manual A-4 © MNational Instruments Corporation

al

al

al

less

Appendix A Error Codes
Table A-3. Analysis Error Codes (Continued)
Error Code Error Name Description
—-20020 NyquistErr The cutoff frequencyf,, must meet the condition:
S .
0s<fo<3
-20021 OrderGTZeroErr The order must be greater than zero.
-20022 DecFactErr The decimating factor must meet the condition:
0 < decimatings samples.
-20023 BandSpecErr The band specifications must meet the condition:
f
S.
0<fion s fhighs >
—20024 RippleGTZeroErr The ripple amplitude must be greater than zero.
—-20025 AttenGTZeroErr The attenuation must be greater than zero.
—-20026 WidthGTZeroErr The width must be greater than zero.
-20027 FinalGTZeroErr The final value must be greater than zero.
—-20028 AttenGTRippleErr The attenuation must be greater than the ripple
amplitude.
—-20029 StepSizeErr The step-size, Y, must meet the conditiog:|0< 0.1.
—20030 LeakErr The leakage coefficient must meet the condition:
O0<leaks p.
—20031 EqRplDesignErr The filter cannot be designed with the specified input
values.
—-20032 RankErr The rank of the filter must meet the condition:
1< (2xrank+ 1) < size.
—20033 EvenSizeErr The number of coefficients must be odd for this filten
—20034 OddSizeErr The number of coefficients must be even for this filtar.
—-20035 StdDevErr The standard deviation must be greater than zero for
normalization.
—-20036 MixedSignErr The elements of th¥ Values array must be nonzero
and either all positive or all negative.
—20037 SizeGTOrderErr The number of data points in tNeValues array must
be greater than two.
—-20038 IntervalsErr The number of intervals must be greater than zero.
—20039 MatrixMulErr The number of columns in the first matrix is not equal
to the number of rows in the second matrix or vector.
—-20040 SquareMatrixErr The input matrix must be a square matrix.

© National Instruments Corporation A-5

LabVIEW Function and VI Reference Manual

the

tor.

h

pns

me

er

Appendix A Error Codes
Table A-3. Analysis Error Codes (Continued)
Error Code Error Name Description

-20041 SingularMatrixErr The system of equations cannot be solved because
input matrix is singular.

—20042 LevelsErr The number of levels is out of range.

-20043 FactorErr The level of factors is out of range for some data.

—20044 ObservationsErr Zero observations were made at some level of a fac

—20045 DataErr The total number of data points must be equal to thg
product of the levels for each factor and the observati
per cell.

—20046 OverflowErr There is an overflow in the calculated F-value.

—20047 BalanceErr The data is unbalanced. All cells must contain the sg
number of observations.

—20048 ModelErr The Random Effect model was requested when the
Fixed Effect model was required.

—20049 DistinctErr Thex values must be distinct.

—20050 PoleErr The interpolating function has a pole at the
requested value.

—20051 ColumnErr All values in the first column in the X matrix must be

—20052 FreedomErr The degrees of freedom must be one or more.

—20053 ProbabilityErr The probability must be between zero and one.

—20054 InvProbErr The probability must be greater than or equal to zer
and less than one.

—20055 CategoryErr The number of categories or samples must be great
than one.

—20056 TableErr The contingency table must not contain a negative
number.

—20061 InvSelectionErr One of the input selections is invalid.

—20062 MaxIterErr The maximum iterations have been exceeded.

—20063 PolyErr The polynomial coefficients are invalid.

-20064 InitStateErr This VI has not been initialized correctly.

—20065 ZeroVectorErr The vector cannot be zero.

LabVIEW Function and VI Reference Manual A-6 © MNational Instruments Corporation

Appendix A Error Codes
Table A-4. Data Acquisition VI Error Codes
Error Code Error Name Description

-10001 syntaxError An error was detected in the input string; the
arrangement or ordering of the characters in the string
is not consistent with the expected ordering.

-10002 semanticsError An error was detected in the input string; the syntax
of the string is correct, but certain values specified
in the string are inconsistent with other values specifled
in the string.

—10003 invalidValueError The value of a numeric parameter is invalid.

—10004 valueConflictError The value of a numeric parameter is inconsistent with
another parameter, and the combination is thereforg
invalid.

—10005 badDeviceError The device parameter is invalid.

—-10006 badLineError The line parameter is invalid.

-10007 badChanError A channel is out of range for the board type or input
configuration, the combination of channels is not
allowed, or you must reverse the scan order so that
channel 0 is last.

—-10008 badGroupError The group is invalid.

—10009 badCounterError The counter is invalid.

-10010 badCountError The count is too small or too large for the specified
counter; or the given I/O transfer count is not
appropriate for the current buffer or channel
configuration.

-10011 badintervalError The analog input scan rate is too fast for the numbef of
channels and the channel clock rate; or the given clpock
rate is not supported by the associated counter channel
or 1/O channel.

-10012 badRangeError The analog input or analog output voltage range is
invalid for the specified channel.

-10013 badErrorCodeError The driver returned an unrecognized or unlisted
error code.

-10014 groupToolLargeError The group size is too large for the board.

-10015 badTimeLimitError The time limit is invalid.

-10016 badReadCountError The read count is invalid.

-10017 badReadModeError The read mode is invalid.

-10018 badReadOffsetError The offset is unreachable.

© National Instruments Corporation A-7

LabVIEW Function and VI Reference Manual

Appendix A Error Codes
Table A-4. Data Acquisition VI Error Codes (Continued)
Error Code Error Name Description

-10019 badClkFrequencyError The frequency is invalid.

—-10020 badTimebaseError The timebase is invalid.

-10021 badLimitsError The limits are beyond the range of the board.

-10022 badWriteCountError Your data array contains an incomplete update, or ypu
are trying to write past the end of the internal buffer,|or
your output operation is continuous and the length qgf
your array is not a multiple of one half of the internal
buffer size.

-10023 badWriteModeError The write mode is out of range or is disallowed.

-10024 badWriteOffsetError Adding the write offset to the write mark places the
write mark outside the internal buffer.

-10025 limitsOutOfRangeError The requested input limits exceed the board’s capability
or configuration. Alternate limits were selected.

-10026 badBufferSpecificationError The requested number of buffers or the buffer size is|not
allowed; for example, Lab-PC buffer limit is 64K
samples, or the board does not support multiple buffers.

-10027 badDAQEventError For DAQEvents 0 and 1, general value A must be
greater than 0 and less than the internal buffer size.|If
DMA is used for DAQEvent 1, general value A must
divide the internal buffer size evenly. If the TIO-10 i
used for DAQEvent 4, general value A must be 1 or 2.

-10028 badFilterCutoffError The cutoff frequency specified is not valid for this
device.

-10029 obsoleteFunctionError The function you are calling is no longer supported in
this version of the driver.

—-10030 badBaudRateError The specified baud rate for communicating with the
serial port is not valid on this platform.

-10031 badChassisIDError The specified SCXI chassis does not correspond to ja
configured SCXI chassis.

-10032 badModuleSlotError The SCXI module slot that was specified is invalid o
corresponds to an empty slot.

-10033 invalidwinHandleError The window handle passed to the function is invalid

-10034 noSuchMessageError No configured message matches the one you tried to
delete.

—10080 badGainError The gain is invalid.

-10081 badPretrigCountError The pretrigger sample count is invalid.

LabVIEW Function and VI Reference Manual A-8 © MNational Instruments Corporation

Appendix A Error Codes

Table A-4. Data Acquisition VI Error Codes (Continued)

n

Error Code Error Name Description

-10082 badPosttrigCountError The posttrigger sample count is invalid.

-10083 badTrigModeError The trigger mode is invalid.

-10084 badTrigCountError The trigger count is invalid.

-10085 badTrigRangeError The trigger range or trigger hysteresis window is
invalid.

—10086 badExtRefError The external reference value is invalid.

-10087 badTrigTypeError The trigger type parameter is invalid.

—10088 badTrigLevelError The trigger level is invalid.

-10089 badTotalCountError The total count is inconsistent with the buffer size and
pretrigger scan count or with the board type.

—-10090 badRPGError The individual range, polarity, and gain settings are
valid but the combination specified is not allowed.

-10091 badlterationsError You have attempted to use an invalid setting for the
iterations parameter. The iterations value must be O|or
greater. Your device might be limited to only two value
Oand 1.

-10092 lowScanintervalError Some devices require a time gap between the last
sample in a scan and the start of the next scan. The scan
interval you have specified does not provide a large
enough gap for the board. See 8@AN_Start
function in the language interface API for an
explanation.

-10093 fifoModeError FIFO mode waveform generation cannot be used
because at least one condition is not satisfied.

-10100 badPortWidthError The requested digital port width is not a multiple of
the hardware port width or is not attainable by the
DAQ hardware.

-10120 gpctrBadApplicationError Invalid application used.

-10121 gpctrBadCtrNumberError Invalid counterNumber used.

-10122 gpctrBadParamValueError Invalid paramValue used.

-10123 gpctrBadParamIDError Invalid paramID used.

-10124 gpctrBadEntitylDError Invalid entitylD used.

-10125 gpctrBadActionError Invalid action used.

—10200 EEPROMreadError Unable to read data from EEPROM.

-10201 EEPROMwriteError Unable to write data to EEPROM.

© National Instruments Corporation A-9

LabVIEW Function and VI Reference Manual

Appendix A

Error Codes

Table A-4. Data Acquisition VI Error Codes (Continued)

Error Code

Error Name

Description

-10240

noDriverError

The driver interface could not locate or open the dri

-10241

oldDriverError

One of the driver files or the configuration utility is o
of date.

—

-10242

functionNotFoundError

The specified function is not located in the driver.

-10244

devicelnitError

The driver encountered a hardware-initialization errg
while attempting to configure the specified device.

—-10245

oslInitError

The driver encountered an operating system error wi|
attempting to perform an operation, or the operating
system does not support an operation performed by
the driver.

hile

-10246

communicationsError

The driver is unable to communicate with the specified

external device.

-10248

dupAddressError

The base addresses for two or more devices are the
same; consequently, the driver is unable to access |
specified device.

he

-10249

intConfigError

The interrupt configuration is incorrect given the
capabilities of the computer or device.

-10250

duplIntError

The interrupt levels for two or more devices are the
same.

-10251

dmacConfigError

The DMA configuration is incorrect given the
capabilities of the computer/DMA controller or devic

-10252

dupDMAET ror

The DMA channels for two or more devices are
the same.

-10253

jumperlessBoardError

Unable to find one or more jumperless boards you h
configured using the NI-DAQ Configuration Utility.

ave

-10254

DAQCardConfError

Cannot configure the DAQCard because of one of th
following reasons:

1. The correct version of the card and socket servi
software is not installed.

2. The card in the PCMCIA socket is not a DAQCaj

3. The base address and/or interrupt level requests
not available according to the card and socket se
resource manager.

4. The Card Services failed to load due to insufficig
available memory under 1 MB in Windows 3.1. 7|
different settings or use AutoAssign in the NI-DA
Configuration Utility. Memory under 1 MB must &
available to configure DAQCard in Winx3.

es

d.

2d are
vices

LabVIEW Function and VI Reference Manual

A-10

© National Instruments Corporation

Appendix A Error Codes
Table A-4. Data Acquisition VI Error Codes (Continued)
Error Code Error Name Description

-10255 remoteChassisDriverlnitError There was an error in initializing the driver for
remote SCXI.

-10256 comPortOpenError There was an error in opening the specified COM port.

-10257 baseAddressError Bad base address specified in the configuration utility.

-10258 dmaChannel1Error Bad DMA channel 1 specified in the configuration
utility or by the operating system.

-10259 dmaChannel2Error Bad DMA channel 2 specified in the configuration
utility or by the operating system.

-10260 dmaChannel3Error Bad DMA channel 3 specified in the configuration
utility or by the operating system.

-10261 userModeToKernelModeCallError The user mode code failed when calling the
kernel mode.

-10340 noConnectError No RTSI signal/line is connected, or the specified sighal
and the specified line are not connected.

-10341 badConnectError The RTSI signal/line cannot be connected as specified.

-10342 multConnectError The specified RTSI signal is already being driven byjan
RTSI line, or the specified RTSI line is already being
driven by an RTSI signal.

-10343 SCXIConfigError The specified SCXI configuration parameters are
invalid, or the function cannot be executed given the|
current SCXI configuration.

-10344 chassisSynchedError The Remote SCXI unit is not synchronized with the
host. Reset the chassis again to resynchronize it with
the host.

-10345 chassisMemAllocError The required amount of memory cannot be allocated on
the Remote SCXI unit for the specified operation.

-10346 badPacketError The packet received by the Remote SCXI unitis invalid.
Check your serial port cable connections.

-10347 chassisCommunicationError There was an error in sending a packet to the remote
chassis. Check your serial port cable connections.

—10348 waitingForReprogError The remote SCXI unit is in reprogramming mode and is
waiting for reprogramming commands from the host|
(NI-DAQ Configuration Utility).

—10349 SCXIModuleTypeConflictError The module ID read from the SCXI module conflicts|

with the configured module type.

© National Instruments Corporation A-11

LabVIEW Function and VI Reference Manual

=

Appendix A Error Codes
Table A-4. Data Acquisition VI Error Codes (Continued)
Error Code Error Name Description

-10370 badScanListError The scan list is invalid; for example, you are mixing
AMUX-64T channels and onboard channels, scannipg
SCXI channels out of order, or have specified a different
starting channel for the same SCXI module. Also,
the driver attempts to achieve complicated gain
distributions over SCXI channels on the same module
by manipulating the scan list and returns this error if
it fails.

-10400 userOwnedRsrcError The specified resource is owned by the user and cannot
be accessed or modified by the driver.

-10401 unknownDeviceError The specified device is not a National Instruments
product, or the driver does not support the device
(for example, the driver was released before the device
was supported).

-10402 deviceNotFoundError No device is located in the specified slot or at the
specified address.

-10404 noLineAvailError No line is available.

-10405 noChanAvailError No channel is available.

-10406 noGroupAvailError No group is available.

-10407 lineBusyError The specified line is in use.

-10408 chanBusyError The specified channel is in use.

—10409 groupBusyError The specified group is in use.

-10410 relatedLCGBusyError A related line, channel, or group is in use; if the drive
configures the specified line, channel, or group, the
configuration, data, or handshaking lines for the related
line, channel, or group will be disturbed.

-10411 counterBusyError The specified counter is in use.

-10412 noGroupAssignError No group is assigned, or the specified line or channg
cannot be assigned to a group.

-10413 groupAssignError A group is already assigned, or the specified line or
channel is already assigned to a group.

-10414 reservedPinError The selected signal requires a pin that is reserved and
configured only by NI-DAQ. You cannot configure this
pin yourself.

-10415 externalMuxSupportError This function does not support this device when an
external multiplexer (such as an AMUX-64T or SCX])
is connected to it.

LabVIEW Function and VI Reference Manual A-12 © MNational Instruments Corporation

Appendix A

Table A-4. Data Acquisition VI Error Codes (Continued)

Error Codes

Error Code

Error Name

Description

-10440

sysOwnedRsrcError

The specified resource is owned by the driver and
cannot be accessed or modified by the user.

-10441

memConfigError

No memory is configured to support the current
data-transfer mode, or the configured memory does
not support the current data-transfer mode. (If block
transfers are in use, the memory must be capable o
performing block transfers.)

-10442

memDisabledError

The specified memory is disabled or is unavailable
given the current addressing mode.

-10443

memAlignmentError

The transfer buffer is not aligned properly for the
current data-transfer mode. For example, the buffer i
an odd address, is not aligned to a 32-bit boundary, ig
aligned to a 512-bit boundary, and so on. Alternative
the driver is unable to align the buffer because the bu
is too small.

5 at
not

ly,
ffer

—10445

memLockError

The transfer buffer cannot be locked into physical
memory. On PC AT machines, portions of the
DMA data acquisition buffer may be in an invalid
DMA region, for example, above 16 MB.

-10446

memPageError

The transfer buffer contains a page break; system
resources may require reprogramming when the pa
break is encountered.

he

-10447

memPageLockError

The operating environment is unable to grant a
page lock.

—10448

stackMemError

The driver is unable to continue parsing a string inpy
due to stack limitations.

—10449

cacheMemError

A cache-related error occurred, or caching is not
supported in the current mode.

—10450

physicalMemError

A hardware error occurred in physical memory, or n
memory is located at the specified address.

-10451

virtualMemError

The driver is unable to make the transfer buffer
contiguous in virtual memory and therefore cannot Ig
the buffer into physical memory; thus, you cannot us
the buffer for DMA transfers.

ck

-10452

nolntAvailError

No interrupt level is available for use.

-10453

intinUseError

The specified interrupt level is already in use by anot
device.

her

-10454

noDMACError

No DMA controller is available in the system.

—10455

noDMAAvailError

No DMA channel is available for use.

© MNational Instruments Corporation

A-13

LabVIEW Function and VI Reference Manual

Appendix A

Error Codes

Table A-4. Data Acquisition VI Error Codes (Continued)

Error Code

Error Name

Description

-10456

DMAInUseError

The specified DMA channel is already in use by anot
device.

ner

-10457

badDMAGroupError

DMA cannot be configured for the specified group
because it is too small, too large, or misaligned. Con

sult

the user manual for the device in question to deternmjine

group ramifications with respect to DMA.

—10458

diskFullError

A disk overflow occurred while attempting to write tg
afile.

-10459

DLLInterfaceError

The DLL could not be called because of an interface
error.

—-10460

interfacelnteractionError

You have mixed VIs from the DAQ library and the
_DAQ compatibility library (LabVIEW 2.2 VIs). You
can switch between the two libraries only by running
the DAQ VI Device Reset before calling _DAQ
compatibility VIs or by running the compatibility VI
Board Reset before calling DAQ VIs.

—-10480

muxMemFullError

The scan listis too large to fit into the mux-gain memd
of the board.

-10481

bufferNotinterleavedError

You must provide a single buffer of interleaved data, 3
the channels must be in ascending order. You cannot
DMA to transfer data from two buffers; however, you
may be able to use interrupts.

-10540

SCXIModuleNotSupportedError

At least one of the SCXI modules specified is not
supported for the operation.

-10541

TRIG1ResourceConflict

CTRB1 will drive COUTB1. However, CTRB1
also will drive TRIGL1. This conflict might cause
unpredictable results when the chassis is scanned.

-10600

noSetupError

No setup operation has been performed for the speci
resources. Or, some resources require a specific
ordering of calls for proper setup.

fied

-10601

multSetupError

The specified resources have already been configurn
by a setup operation.

ed

-10602

noWriteError

No output data has been written into the transfer buf}

-10603

groupWriteError

The output data associated with a group must be fo
single channel or for consecutive channels.

-10604

activeWriteError

Once data generation has started, only the transfer
buffers originally written to can be updated. If DMA i
active and a single transfer buffer contains interleav
channel-data, new data must be provided for all out
channels currently using the DMA channel.

ed
put

LabVIEW Function and VI Reference Manual

A-14

© National Instruments Corporation

Appendix A

Table A-4. Data Acquisition VI Error Codes (Continued)

Error Codes

Error Code Error Name Description

—10605 endWriteError No data was written to the transfer buffer because the
final data block has already been loaded.

-10606 notArmedError The specified resource is not armed.

-10607 armedError The specified resource is already armed.

-10608 noTransferlnProgError No transfer is in progress for the specified resource,

-10609 transferinProgError A transfer is already in progress for the specified
resource, or the operation is not allowed because the
device is in the process of performing transfers, possibly
with different resources.

-10610 transferPauseError A single output channel in a group cannot be pauseq if
the output data for the group is interleaved.

-10611 badDirOnSomeLinesError Some of the lines in the specified channel are not
configured for the transfer direction specified. For a
write transfer, some lines were configured for input. For
a read transfer, some lines were configured for output.

-10612 badLineDirError The specified line does not support the specified trangfer
direction.

-10613 badChanDirError The specified channel does not support the specified
transfer direction.

-10614 badGroupDirError The specified group does not support the specified
transfer direction.

-10615 masterCIKError The clock configuration for the clock master is invalid.

-10616 slaveClkError The clock configuration for the clock slave is invalid.

-10617 noClkSrcError No source signal has been assigned to the clock
resource.

-10618 badCIkSrcError The specified source signal cannot be assigned to the
clock resource.

-10619 multCIkSrcError A source signal has already been assigned to the clpck
resource.

-10620 noTrigError No trigger signal has been assigned to the trigger
resource.

-10621 badTrigError The specified trigger signal cannot be assigned to the
trigger resource.

-10622 preTrigError The pretrigger mode is not supported or is not available
in the current configuration, or no pretrigger source has
been assigned.

© MNational Instruments Corporation

A-15

LabVIEW Function and VI Reference Manual

Appendix A Error Codes
Table A-4. Data Acquisition VI Error Codes (Continued)
Error Code Error Name Description

-10623 postTrigError No posttrigger source has been assigned.

-10624 delayTrigError The delayed trigger mode is not supported or is not
available in the current configuration, or no delay sou
has been assigned.

-10625 masterTrigError The trigger configuration for the trigger master is
invalid.

-10626 slaveTrigError The trigger configuration for the trigger slave is invalid.

-10627 noTrigDrvError No signal has been assigned to the trigger resource}

-10628 multTrigDrvError A signal has already been assigned to the trigger
resource.

-10629 invalidOpModeError The specified operating mode is invalid, or the
resources have not been configured for the specifie
operating mode.

-10630 invalidReadError The parameters specified to read data were invalid in|
context of the acquisition. For example, an attempt
made to read 0 bytes from the transfer buffer, or an
attempt was made to read past the end of the transfer
buffer.

-10631 nolnfiniteModeError Continuous input or output transfers are not allowed i
the current operating mode.

-10632 somelnputsignoredError Certain inputs were ignored because they are not
relevant in the current operating mode.

-10633 invalidRegenModeError The specified analog output regeneration mode is npt
allowed for this board.

-10634 noContTransferlnProgressError No continuous (double-buffered) transfer is in progre
for the specified resource.

-10635 invalidSCXIOpModeError Either the SCXI operating mode specified in a
configuration call is invalid, or a module is in the wro
operating mode to execute the function call.

-10636 noContWithSynchError You cannot start a continuous (double-buffered)
operation with a synchronous function call.

-10637 bufferAlreadyConfigError Attempted to configure a buffer after the buffer had
already been configured. You can configure a buffer|
only once.

-10680 badChanGainError All channels of this board must have the same gain.

-10681 badChanRangeError All channels of this board must have the same rangg.

-10682 badChanPolarityError All channels of this board must have the same polal

LabVIEW Function and VI Reference Manual

A-16

© National Instruments Corporation

the
as

ity.

© MNational Instruments Corporation

LabVIEW Function and VI Reference Manual

Appendix A Error Codes
Table A-4. Data Acquisition VI Error Codes (Continued)
Error Code Error Name Description

-10683 badChanCouplingError All channels of this board must have the same coupljng.

-10684 badChaninputModeError All channels of this board must have the same input
mode.

-10685 clkExceedsBrdsMaxConvRateError The clock rate selected exceeds the recommended
maximum rate for this board.

-10686 scanListinvalidError A configuration change has invalidated the scan list|

-10687 bufferinvalidError A configuration change has invalidated the acquisitipn
buffer, or an acquisition buffer has not been configuned.

-10688 noTrigEnabledError The total number of scans and pretrigger scans implies
that a trigger start is intended, but no trigger is enabjed.

-10689 digitalTrigBError Digital trigger B is illegal for the total scans and
pretrigger scans specified.

-10690 digitalTrigAandBError This board does not allow digital triggers A and B to be
enabled at the same time.

-10691 extConvRestrictionError This board does not allow an external sample clock with
an external scan clock, start trigger, or stop trigger.

-10692 chanClockDisabledError Cannot start the acquisition because the channel clock
is disabled.

-10693 extScanClockError Cannot use an external scan clock when performing
a single scan of a single channel.

-10694 unsafeSamplingFreqError The sampling frequency exceeds the safe maximum rate
for the hardware, gains, and filters used.

-10695 DMANotAllowedError You have set up an operation that requires the use of
interrupts. DMA is not allowed. For example, some
DAQ events, such as messaging and LabVIEW
occurrences, require interrupts.

-10696 multiRateModeError Multi-rate scanning can not be used with AMUX-64,
SCXI, or pretriggered acquisitions.

-10697 rateNotSupportedError NI-DAQ was unable to convert your timebase/interval
pair to match the actual hardware capabilities of the
specified board.

-10698 timebaseConflictError You cannot use this combination of scan and sample
clock timebases for the specified board.

-10699 polarityConflictError You cannot use this combination of scan and sample
clock source polarities for this operation and board.

-10700 signalConflictError You cannot use this combination of scan and convert
clock signal sources for this operation and board.

Appendix A Error Codes
Table A-4. Data Acquisition VI Error Codes (Continued)
Error Code Error Name Description

-10701 noLaterUpdateError The call had no effect because the specified channellhad
not been set for later internal updates.

-10702 prePostTriggerError Pretriggering and posttriggering cannot be used
simultaneously on the Lab and 1200 series devices.

-10710 noHandshakeModeError The specified port has not been configured for
handshaking.

-10720 noEventCtrError The specified counter is not configured for
event-counting operation.

-10740 SCXITrackHoldError A signal has already been assigned to the SCXI
track-and-hold trigger line, or a control call was
inappropriate because the specified module is not
configured for one-channel operation.

-10780 sc2040InputModeError When you have an SC-2040 attached to your device} all
analog input channels must be configured for
differential input mode.

-10781 outputTypeMustBeVoltageError The polarity of the output channel cannot be bipolar
when outputting currents.

-10782 sc2040HoldModeError The specified operation cannot be performed with the
SC-2040 configured in hold mode.

-10783 calConstPolarityConflictError Calibration constants in the load area have a different
polarity from the current configuration. Therefore, yqu
should load constants from factory.

-10800 timeOutError The operation could not complete within the time limjt.

-10801 calibrationError An error occurred during the calibration process.

-10802 dataNotAvailError The requested amount of data has not yet been acquired.

-10803 transferStoppedError The transfer has been stopped to prevent regeneration of
output data.

-10804 earlyStopError The transfer stopped prior to reaching the end of the
transfer buffer.

—10805 overRunError The clock source for the input task is faster than the|
maximum clock rate the device supports. If you are
allowing the driver to calculate the analog input chanpel
clock rate, the driver bases the clock rate on the board
type; so you should check that your board type is corfect
in the configuration utility.

-10806 noTrigFoundError No trigger value was found in the input transfer buffer.

LabVIEW Function and VI Reference Manual

A-18

© National Instruments Corporation

Appendix A Error Codes

Table A-4. Data Acquisition VI Error Codes (Continued)

Error Code

Error Name

Description

-10807

earlyTrigError

The trigger occurred before sufficient pretrigger datg
was acquired.

-10808

LPTCommunicationError

An error occurred in the parallel port communicatior
with the DAQ device.

—10809

gateSignalError

Attempted to start a pulse width measurement with the
pulse in the phase to be measured (for example, hig
phase for high-level gating).

>

—10840

internalDriverError

An unexpected error occurred inside the driver whef
performing the given operation.

-10841

firmwareError

The firmware does not support the specified operatipn,
or the firmware operation could not complete due to|a
data-integrity problem.

—10842

hardwareError

The hardware is not responding to the specified
operation, or the response from the hardware is not
consistent with the functionality of the hardware.

—10843

underFlowError

Because of system limitations, the driver could not wrjte
data to the device fast enough to keep up with the deyice
throughput.

-10844

underWriteError

New data was not written to the output transfer buffe
before the driver attempted to transfer the data to th
device.

Cas

-10845

overFlowError

Because of system limitations, the driver could not read
data from the device fast enough to keep up with the
device throughput; the onboard device memory reported
an overflow error.

—10846

overWriteError

The driver wrote new data into the input transfer buffer
before the previously acquired data was read.

-10847

dmacChainingError

New buffer information was not available at the time
of the DMA chaining interrupt; DMA transfers will
terminate at the end of the currently active transfer
buffer.

-10848

noDMACountAvailError

The driver could not obtain a valid reading from the
transfer-count register in the DMA controller.

—10849

openFileError

The configuration file could not be opened.

—10850

closeFileError

Unable to close a file.

-10851

fileSeekError

Unable to seek within a file.

-10852

readFileError

Unable to read from a file.

© National Instruments Corporation A-19

LabVIEW Function and VI Reference Manual

Appendix A Error Codes
Table A-4. Data Acquisition VI Error Codes (Continued)
Error Code Error Name Description

-10853 writeFileError Unable to write to a file.

-10854 miscFileError An error occurred accessing a file.

-10855 osUnsupportedError NI-DAQ does not support the current operation on this
particular version of the operating system.

-10856 osError An unexpected error occurred from the operating
system while performing the given operation.

-10857 internalKernelError An unexpected error occurred inside the kernel while
performing this operation.

-10880 updateRateChangeError A change to the update rate is not possible at this tilne
because of one of the following reasons:

1. When waveform generation is in progress, you cannot
change the interval timebase.

2. When you make several changes in a row, you must
give each change enough time to take effect befpre
requesting further changes.

-10881 partialTransferCompleteError You cannot do another transfer after a successful paftial
transfer.

-10882 dagPollDatalLossError The data collected on the remote SCXI unit was
overwritten before it could be transferred to the bufferin
the host. Try using a slower data acquisition rate if
possible.

-10883 wfmPollDatalLossError New data could not be transferred to the waveform
buffer of the remote SCXI unit to keep up with the
waveform update rate. Try using a slower waveform
update rate if possible.

-10884 pretrigReorderError Could not rearrange data after a pretrigger acquisition
completed.

-10920 gpctrDatalLossError One or more data points may have been lost during
bufferedGPCTRoperations due to the speed
limitations of your system.

-10940 chassisResponseTimeoutError No response was received from the remote SCXI unit
within the specified time limit.

-10941 reprogrammingFailedError Reprogramming the remote SCXI unit was

unsuccessful. Please try again.

LabVIEW Function and VI Reference Manual

A-20

© National Instruments Corporation

Appendix A Error Codes
Table A-4. Data Acquisition VI Error Codes (Continued)
Error Code Error Name Description

-10942 invalidResetSignatureError An invalid reset signature was sent from the host to the
remote SCXI unit.

-10943 chassisLockupError The interrupt service routine on the remote SCXI unifis
taking longer than necessary. You do not need to reget
your remote SCXI unit; however, you need to clear and
restart your data acquisition.

Table A-5. AppleEvent Error Codes
Error Code Error Name Description
-1700 errAECoercionFail Data could not be coerced to the requested
descriptor type.
-1701 errAEDescNotFound Descriptor record was not found.
-1702 errAECorruptData Data in an Apple event could not be read.
-1703 errAEWrongDataType Wrong descriptor type.
-1704 errAENotAEDesc Not a valid descriptor record.
-1705 errAEBadListitem Operation involving a list item failed.
-1706 errAENewerVersion Need a newer version of AppleEvent Manager.
-1707 errAENotAppleEvent The event is not an Apple event.
-1708 errAEReplyNotValid AEResetTimer was passed an invalid reply parametgr.
-1709 errAEERReplyNotValid AEResetTimer was passed an invalid reply parametgr.
-1710 errAEUnknownSendMode Invalid sending mode was passed.
-1711 errAEWaitcanceled User canceled out of wait loop for reply or receipt.
-1712 errAETimeout Apple event timed out.
-1713 errAENoUserInteraction No user interaction allowed.
-1714 errAENotASpecialFunction Wrong keyword for a special function.
-1715 errAEParamMissed Handler did not get all required parameters.
-1716 errAEUnknownAddressType Unknown Apple event address type.
-1717 errAEHandlerNotFound No handler in the dispatch tables fits the parameters to
AEGetEventHandler or AEGetCoercionHandler.
-1718 errAEReplyNotArrived The contents of the reply you are accessing have nqt
arrived yet.
-1719 errAElllegalindex Index is out of range in a put operation.

© National Instruments Corporation

A-21

LabVIEW Function and VI Reference Manual

Appendix A Error Codes
Table A-6. Instrument Driver Error Codes

Status Status Description Set By

0 No error; the call was successful —
-1200 Invalid syntax string VISA Transition Library
-1201 Error finding instruments VISA Transition Library
-1202 Unable to initialize interface or VISA Transition Library

instrument

-1205 Invalid Instrument Handle VISA Transition Library
-1210 Parameter out of range Instrument Driver VI
-1215 Error closing instrument VISA Transition Library
-1218 Error getting attribute VISA Transition Library
-1219 Error setting attribute VISA Transition Library
-1223 Instrument identification query failed Instrument Driver Initialize VI
-1224 Error clearing instrument VISA Transition Library
-1225 Error triggering instrument VISA Transition Library
-1226 Error polling instrument VISA Transition Library
-1230 Error writing to instrument VISA Transition Library
-1231 Error reading from instrument VISA Transition Library
-1236 Error interpreting instrument response | Instrument Driver VI
-1240 Instrument timed out VISA Transition Library
-1250 Error mapping VXI address VISA Transition Library
-1251 Error unmapping VXI address VISA Transition Library
-1252 Error accessing VX| address VISA Transition Library
-1260 Function not supported by controller VISA Transition Library
-1300 Instrument-specific error —
—13xx Developer-specified error codes —

LabVIEW Function and VI Reference Manual

A-22

© National Instruments Corporation

Appendix A Error Codes
Table A-7. PPC Error Codes

Code Name Description

-900 notinitErr PPC Toolbox has not been initialized.

-902 nameTypeErr Invalid or inappropriate locationKindSelector in
locationName.

-903 noPortErr Invalid port name. Unable to open port or bad
portRefNum.

-904 noGlobalsErr The system is unable to allocate memory. This is a
critical error, and you should restart.

-905 localOnlyErr Network activity is currently disabled.

-906 destPortErr Port does not exist at destination.

-907 sessTableErr PPC Toolbox is unable to create a session.

-908 noSessionErr Invalid session reference number.

-909 badReqErr Bad parameter or invalid state for this operation.

-910 portNameEXxistsErr Another port is already open with this name
(perhaps in another application).

-911 noUserNameErr User name unknown on destination machine.

-912 userRejectErr Destination rejected the session request.

-913 noMachineNameErr User has not named his Macintosh in the Network Setup
Control Panel.

-914 noToolboxNameErr A system resource is missing.

-915 noResponseErr Unable to contact destination application.

-916 portClosedErr The port was closed.

-917 sessClosedErr The session has closed.

-919 badPortNameErr PPCPortRec is invalid.

-922 noDefaultUserErr User has not specified owner name in Sharing Setup
Control Panel.

-923 notLoggedInErr The default userRefNum does not yet exist.

-924 noUserRefErr Unable to create a new userRefNum.

-925 networkErr An error has occurred in the network.

-926 nolnformErr PPCStart failed because destination did not have ar
inform pending.

-927 authFailErr User’s password is wrong.

© National Instruments Corporation A-23

LabVIEW Function and VI Reference Manual

Appendix A Error Codes

Table A-7. PPC Error Codes (Continued)

Code Name Description

-928 noUserRecErr Invalid user reference number.

-930 badServiceMesthodErr Service method is other than ppcServiceRealTime.
-931 badLocNameErr Location name is invalid.

-932 guestNotAllowedErr Destination port requires authentication.

Table A-8. GPIB Error Codes

Error Code Error Name Description

0 EDVR Error connecting to driver.
1 ECIC Command requires GPIB Controller to be CIC.
2 ENOL Write detected no Listeners.
3 EADR GPIB Controller not addressed correctly.
4 EARG Invalid argument or arguments.
5 ESAC Command requires GPIB Controller to be SC.
6 EABO 1/0O operation aborted.
7 ENEB Nonexistent board.
8 EDMA DMA hardware error detected.
9 EBTO DMA hardware pP bus timeout.

11 ECAP No capability.

12 EFSO File system operation error.

13 EOWN Shareable board exclusively owned.

14 EBUS GPIB bus error.

15 ESTB Serial poll byte queue overflow.

16 ESRQ SRQ stuck on.

17 ECMD Unrecognized command.

19 EBNP Board not present.

20 ETAB Table error.

30 NADDR No GPIB address input.

31 NSTRG No string input (write).

32 NCNT No count input (read).

LabVIEW Function and VI Reference Manual A-24 © MNational Instruments Corporation

Appendix A Error Codes
Table A-9. LabVIEW Function Error Codes
Error Code Error Name Description
0 — No error.
1 — Manager argument error.
2 — Argument error.
3 — Out of zone.
4 — End of file.
5 — File already open.
6 — Generic file /O error.
7 — File not found.
8 — File permission error.
9 — Disk full.
10 — Duplicate path.
11 — Too many files open.
12 — System feature not enabled.
13 — Resource file not found.
14 — Cannot add resource.
15 — Resource not found.
16 — Image not found.
17 — Image memory error.
18 — Pen does not exist.
19 — Config type invalid.
20 — Config token not found.
21 — Config parse error.
22 — Config memory error.
23 — Bad external code format.
24 — Bad external code offset.
25 — External code not present.
26 — Null window.
27 — Destroy window error.

© MNational Instruments Corporation

A-25

LabVIEW Function and VI Reference Manual

Appendix A Error Codes

Table A-9. LabVIEW Function Error Codes (Continued)

Error Code Error Name Description
28 —
29 —
30 — Bad print record.
31 — Print driver error.
32 — Windows error during printing.
33 — Memory error during printing.
34 — Print dialog error.
35 — Generic print error.
36 — Invalid device refnum.
37 — Device not found.
38 — Device parameter error.
39 — Device unit error.
40 — Cannot open device.
41 — Device call aborted.
42 —
43 — Cancelled by user.
44 — Object ID too low.
45 — Object ID too high.
46 — Object not in heap.
47 — Unknown heap.
48 — Unknown object (invalid DefProc).
49 — Unknown object (DefProc not in table).
50 — Message out of range.
51 — Invalid (null) method.
52 — Unknown message.
53 — Manager call not supported.
54 —
55 — Connection in progress.
56 — Connection timed out.

LabVIEW Function and VI Reference Manual

A-26

© National Instruments Corporation

Appendix A Error Codes

Table A-9. LabVIEW Function Error Codes (Continued)

Error Code Error Name Description
57 — Connection is already in progress.
58 — Network attribute not supported.
59 — Network error.
60 — Address in use.
61 — System out of memory.
62 — Connection aborted.
63 — Connection refused.
64 — Not connected.
65 — Already connected.
66 — Connection closed.
67 — Initialization error (interapplication manager).
68 — Bad occurrence.
69 — Wait on unbound occurrence handler.
70 — Occurrence queue overflow.
71 — Datalog type conflict.
72 — Unused.
73 — Unrecognized type (interapplication manager).
74 — Memory corrupt.
75 — Failed to make temporary DLL.
76 — Old CIN version.
77 — Unknown error code.
81 — Format specifier type mismatch.
82 — Unknown format specifier.
83 — Too few format specifiers.
84 — Too many format specifiers.
85 — Scan failed.

© MNational Instruments Corporation A-27 LabVIEW Function and VI Reference Manual

Appendix A Error Codes
Table A-10. LabVIEW-Specific PPC Error Codes
Error Code Error Name Description

1 errNoPPCToolBox The PPC ToolBox either does not exist (requires
System 7.0 or later), or could not be initialized.

2 errNoGlobals The CIN in the PPC VI could not get its globals.

3 errTimedOut The PPC operation exceeded its timeout limit.

4 errAuthRequired The target specified in the PPC Start Session VI
required authentication, but the authentication dialo
was not allowed.

5 errbadState The PPC Start Session VI found itself in an
unexpected state.

Table A-11. TCP and UDP Error Codes
Error Code Error Name Description

53 mgNotSupported LabVIEW Manager call not supported.

54 ncBadAddressErr The net address was ill-formed.

55 ncinProgressErr Operation is in progress.

56 ncTimeOutErr Operation exceeded the user-specified time limit.

57 ncBusyErr The connection was busy.

58 ncNotSupportedErr Function not supported.

59 ncNetErr The network is down, unreachable, or has been res

60 ncAddrinUseErr The specified address is currently in use.

61 ncSysOutOfMemErr System could not allocate necessary memory.

62 ncSysConnAbortedErr System caused connection to be aborted.

63 ncConnRefusedErr Connection is not established.

65 ncAlreadyConnectedErr Connection is already established.

66 ncConnClosedErr Connection was closed by peer.

LabVIEW Function and VI Reference Manual

A-28

© National Instruments Corporation

)

—

Appendix A Error Codes
Tahle A-12. Serial Port Error Codes
Error Code Error Name Description
61 EPAR Serial port parity error.
62 EORN Serial port overrun error.
63 EOFL Serial port receive buffer overflow.
64 EFRM Serial port framing error.
65 SPTMO Serial port timeout, bytes not received at serial port.
Table A-13. LabVIEW-Specific Error Codes for AppleEvent Messages
Error Code Error Name Description
1000 KLVE_InvalidState The Vl is in a state that does not allow it to run.
1001 kLVE_FPNotOpen The VI front panel is not open.
1002 KLVE_CtrlErr The VI has controls on its front panel that are in an
error state.
1003 kLVE_VIBad The VI is broken.
1004 KLVE_NotInMem The VI is not in memory.
Table A-14. DDE Error Codes
Error Code Error Name Description
00000 — No error.
14001 DDE_INVALID_REFNUM Invalid refnum.
14002 DDE_INVALID_STRING Invalid string.
14003 DDEML_ADVACKTIMEOUT Request for a synchronous advise transaction has
timed out.
14004 DDEML_BUSY Response set tHe2DE_FBUSYbit.
14005 DDEML_DATAACKTIMEOUT Request for a synchronous data transaction has
timed out.
14006 DDEML_DDL_NOT_INITIALIZED DDEML called without first calling
Ddelnitialize , or was passed an invalid instance
identifier.
14007 DDEML_DLL_USAGE A monitor or client-only application has attempted a

DDE transaction.

© National Instruments Corporation A-29

LabVIEW Function and VI Reference Manual

Appendix A Error Codes

Table A-14. DDE Error Codes (Continued)

D

Error Code Error Name Description

14008 DDEML_EXECACKTIMEOUT Request for a synchronous execute transaction has
timed out.

14009 DDEML_INVALIDPARAMETER Parameter not validated by the DDML.

14010 DDEML_LOW_MEMORY Server application has outrun client, consuming large
amounts of memory.

14011 DDEML_MEMORY_ERROR A memory allocation failed.

14012 DDEML_NOTPROCESSED Request or poke is for an invalid istem.

14013 DDEML_NO_CONV_ESTABLISHED | Client conversation attempt failed.

14014 DDEML_POKEACTIMEOUT Transaction failed.

14015 DDEML_POSTMSG_FAILED Request for a synchronous poke transaction has
timed out.

14016 DDEML_REENTRANCY An application with a synchronous transaction in
progress attempted to initiate another transaction,
or a DDEML callback function called
DdeEnableCallback

14017 DDEML_SERVER_DIED Server-side transaction attempted on conversation
terminated by client, or service terminated before
completing a transaction.

14018 DDEML_SYS_ERROR Internal error in the DDMEML.

14019 DDEML_UNADVACKTIMEOUT Request to end advise has timed out.

14020 DDEML_UNFOUND_QUEUE_ID Invalid transaction identifier passed to DDEML
function.

14021 — Invalid command code.

14022 — Occurrence timeout; the transaction timed out before
completed.

LabVIEW Function and VI Reference Manual

A-30

© National Instruments Corporation

t

DAQ Hardware Capabilities

This appendix contains tables that summarize the analog and digital

I/O capabilities of National Instruments data acquisition (DAQ) devices.
The devices in this appendix are grouped into categories. The DAQ device
categories for these tables include the following:

MIO and Al Devices

Lab and 1200 Series and Portable Devices
54xx Series Devices

SCXI Modules

Dynamic Signal Acquisition Devices
Analog Output Only Devices

Digital Only Devices

Timing Only Devices

5102 Devices Hardware Capabilities

Note (Macintosh) When a NuBus device indicates it supports DMA transfers,
a DMA device (such as an NB-DMA2800) is also required.

MIO and Al Device Hardware Capabilities

Table B-1. Analog Input Configuration Programmability—MIO and Al Devices

Device

Gain Range Polarity SE/DIFF Coupling

All MIO-E Series Devices

By Channel By Channel By Channel By Channel DC

All Al-E Series Devices AC, DC (for
PCI-6110E,
PCI-6111E)

AT-MIO-16F-5 By Channel By Group By Group By Group DC

AT-MIO-64F-5 By Channel By Channel By Channel By Channel DC

AT-MIO-16X

AT-MIO-16/16D By Channel By Device By Device By Device DC

NB-MIO-16

NB-MIO-16X

© MNational Instruments Corporation

B-1 LabVIEW Function and VI Reference Manual

Appendix B DAQ Hardware Capabilities

By Devicemeans you select the value of a parameter with hardware
jumpers, and the selection affects any group of channels on the @yvice.
Groupmeans you program the selection through software, and the
selection affects all the channels used at the sameByr@éhannemeans

you program the selection with hardware jumpers or through software on a
per-channel basis. When a specific value for a parameter is shown, that
parameter value is fixed.

Table B-2. Analog Input Characteristics—MIQ and Al Devices (Part 1)

Number of Input FIFO
Device Channels Resolution Gains! | Range (V}! (words) Scanning
AT-MIO-16E-1 16SE, 8DI | 12 bits 05,1,2, | #5,0t0 10 512; Up to 512
AT-MIO-16E-2 5, 10, 20, E-1:8,192;
AT-MIO-16E-10 50, 100 E-2 and
AT-MIO-16DE-10 E4: 2,048
NEC-MIO-16E-4
PCI-MIO-16E-1
PCI-MIO-16E-4
NEC-AI-16E-4
PCI-6110E 4 DI 12 bits 0.2, 0.5, +10 512 Upto 4
PCI-6111E 2 DI 12 bits 1.2, 5, Upto2
10, 20,
50
AT-MIO-64E-3* 64SE, 12 bits 05,1,2, | +5,0t0 10 2,048 Up to 512
32Dl 5,10, 20,
50, 100
PCI-MIO-16XE-10 16SE, 8DI | 16 bits 1,2,5, +10,0to0 10 | 512 Up to 512
10, 20,
50,100
NEC-MIO-16XE-50 16SE, 8Dl | 16 bits 1, 2,10, +10,0to0 10 | 512 Up to 512
NEC-AI-16XE-50 100
AT-MIO-16XE-50
DAQPad-MIO-16XE-50
PCI-MIO-16XE-50
AT-MIO-16F-5 16SE, 8DI | 12 bits 05,1, 2, | 45, £10, 16F-5: 256; | Upto 512
AT-MIO-64F-5** 64SE, 5,10,20, | Oto 10 64F-5: 512
32Dl 50, 100
AT-MIO-16X 16SE, 8Dl | 16 bits 1,2,5, +10,0to0 10 | 512 Up to 512
10, 20,
50, 100

LabVIEW Function and VI Reference Manual B-2 © MNational Instruments Corporation

Appendix B DAQ Hardware Capabilities

Table B-2. Analog Input Characteristics—MIQ and Al Devices (Part 1) (Continued)

Number of Input FIFO
Device Channels Resolution Gains! Range (V)1 (words) Scanning2

AT-MIO-16(L) 16SE, 8DI | 12 bits (L) 1,10, | 5, +10, 16 (L,H); Up to 16

AT-MIO-16(H) 100,500; | Oto 10 512 (DL,

AT-MIO-16D(L) H):1,2, DH)

AT-MIO-16D(H) 4,8

NB-MIO-16 16SE, 8Dl | MIO-16: 12; (L)1,10, | %10, 15, 16; Up to 16;

NB-MIO-16X MIO-16X: 16 100,500; | Oto 10, MIO-16, MIO-16:
(H)1,2, | 0to5 Rev. G: 512 | groups of 2,
4,8 4,8, and 16

1 You can determine the limit settings of your device by multiplying the range and the voltage values together. For more
information on limit settings in LabVIEW, refer to ChapteBasic LabVIEW Data Acquisition ConceptstheLabVIEW
Data Acquisition Basics Mantlia

2 Scanning = channels, in any order.

* The valid channels for the AT-MIO-64E-3 in Differential Mode are 0—7, 16—23, 32—39, and 48-55.

** The valid channels for the AT-MIO-64F-5 in Differential Mode are 0—7 and 16—39.

Table B-3. Analog Input Characteristics—MIO and Al Devices (Part 2)

Device Triggersl Max Sampling Rate (S/s) Transfer Method
AT-MIO-16E-1 SW, Pre, Post, (and E-1:1 M, DMA, interrupts
AT-MIO-16E-2 Analog on E-1, E-2, E-2 and E-3: 500 k,

AT-MIO-64E-3 E-3, E-4, PCI-6110E, | E-4: 250 k,
AT-MIO-16E-10 and PCI-6111E) E-10 and DE-10: 100 k
AT-MIO-16DE-10 PCI-6110E and PCI-6111E]
PCI-MIO-16E-1 5M
PCI-MIO-16XE-10
NEC-AI-16E-4
NEC-MIO-16E-4
PCI-MIO-16E-4
PCI-6110E
PCI-6111E
All MIO-16XE-50 Devices SW, Pre, Post 20k DMA, (interrupts on
NEC-AI-16XE-50 DAQPad-MIO-16XE-50)
AT-MIO-16F-5 SW, Pre, Post 200 k DMA, interrupts
AT-MIO-64F-5
AT-MIO-16X SW, Pre, Post 100 k DMA, interrupts
AT-MIO-16/16D
© MNational Instruments Corporation B-3 LabVIEW Function and VI Reference Manual

Appendix B DAQ Hardware Capabilities

Table B-3. Analog Input Characteristics—MIQ and Al Devices (Part 2) (Continued)

Device Triggersl Max Sampling Rate (S/s) Transfer Method
NB-MIO-16 SW, Post 111 k (L-9 or H-9), DMA, interrupts
67 k (L-15 or H-15),
40 k (L-25 or H-25)
NB-MIO-16X SW, Post 55 k (L-18 or H-18), DMA, interrupts
24 k (L-42 or H-42)

1 sw=software Triggering (also called conditional retrieval), Pre=Pretrigger, Post=Posttrigger.

Note

For NB-MIO devices, software triggering actually is done in the interrupt service

routine (interrupts only) and is different than conditional retrieval.

Table B-4. Internal Channel Support—MIQ and Al Devices

Device

Internal Channels

AT-MIO-16XE10, AT-MIO-16XE-50,
NEC-MIO-16XE-50, DAQPad-MIO-16XE-50

INtAIGNnd , IntRef5V, INtAOGNndVsAIGnd, IntAOChO,
INtAOChOVsRef5V, IntAOCh1, IntAOCh1VsRef5V

DAQCard-Al-16E-4, NEC-AI-16E-4

INtAIGnd, IntRef5V, INtAOGndVsAIGnd

PCI-MIO-16XE-10, PCI-MIO-16XE-50, PXI-6030E,
PXI-6011E, PCI-6031, CPCI-6030E, CPCI-6011E,
VXI-MIO-64XE-10

INtAIGNnd, IntRef5V, INtAOGNndVsAIGnd, IntAOchO,
INtAOChOVsRef5V, IntAOCh1, INtAOCh1VsRef5YV,
INtAOChVsAOchO, IntDevTemp

PCI-MIO-16E-1, PCI-MIO-16E-4, PXI-6070E,
PXI-6040E, PCI-6071E, CPCI-6070E, CPCI-6040E,
VXI-MIO-64E-1

INtAIGNnd, IntRef5V, IntCmRef5V, IntAOGndVsAIGnd,
IntAOChO, IntAOChOVsRef5V, INtAOCh1,
INtAOCh1VsRef5V, INtAOCh1VsAOChHO, IntDevTemp

AT-Al-16XE-10, PCI-6032E, PCI-6033E,
DAQCard-Al-16XE-50, NEC-AI-16XE-50

INtAIGnd, IntRef5V, INtAOGndVsAIGnd

AT-MIO-16E-1, AT-MIO-16E-2, AT-MIO-16E-3,
AT-MIO-16DE-10, AT-MIO-16E-10, DAQPad-6020E,
NEC-MIO-16E-4

INtAIGNnd, IntRef5V, IntCmRef5V, IntAOGndVsAIGnd,
INtAOChO, IntAOCh0OVsRef5V, IntAOCh1,
INtAOCh1VsRef5V

LabVIEW Function and VI Reference Manual

B-4

© National Instruments Corporation

Appendix B DAQ Hardware Capabilities

Table B-5. Analog Output Characteristics—MIO and Al Devices

& —
[} ©
g S 9 £
= = o)
2 ()]) 1S o =
- o N 5 O =
g o 2 = o 2
8 0 o} a 8 2
) < < L = >3 o
Device (@] [a) L (@] D =
AT-MIO-16E-1 0,1 12-bit double 2048 | Oto 10, 10, | Update DMA, interrupts
AT-MIO-16E-2 buffered +Vref, clock 1 or
AT-MIO-64E-3 0to Vref external
NEC-MIO-15E-4 update.
VXI-MIO-64E-1
AT-MIO-16E-10 — 12-bit double 0 +10, Update DMA, interrupts
buffered 0to 10 clock 1 or
external
update.
AT-MIO-XE-50 — 12-bit double 0 +10 Update DMA, interrupts
NEC-MIO-16XE-50 buffered clock 1 or
external
update.
DAQPad-MIO-16XE-50 — 12-bit double 0 +10 Update Interrupts
buffered clock 1 or
external
update.
AT-MIO-16XE-10 — 16-bit double 0 +10, Update DMA, interrupts
VXI-MIO-64XE-10 buffered 0to 10 clock 1 or
external
update.
OCI-MIO-16E-1 — 12-bit double 2048 | %10, Update DMA, interrupts
CPCI-6070E buffered 0to 10 clock 1 or
PXI-6070E external
PCI-6071E update.
PCI-MIO-16E-4 — 12-bit double 512 +10, Update DMA, interrupts
CPCI-6040E buffered 0to 10 clock 1 or
PXI-6040E external
update.
PCI-MIO-16XE-50 — 12-bit double 0 +10 Update DMA, interrupts
CPCI-6011E buffered clock 1 or
PXI-6011E external
update.

© MNational Instruments Corporation B-5 LabVIEW Function and VI Reference Manual

Appendix B

DAQ Hardware Capabilities

Table B-5. Analog Output Characteristics—MIO and Al Devices (Continued)

Device

Channel Numbers

DAC Type

FIFO Size

Output Limits (V)

Update Clocks

Transfer Method

PCI-MIO-16XE-10
CPCI-6030E
PXI-6030E
PCI-6031E

16-bit double
buffered

5048

+10,
Oto 10

Update
clock 1 or
external
update.

DMA, interrupts

DAQPad-6020E

12-bit double
buffered

+10,
Oto 10

Update
clock 1 or
external
update.

DMA, interrupts

PCI-6110E
PCI-6111E

16-bit double
buffered

4096

Update
clock 1 or
external
update.

DMA, interrupts

AT-MIO-16F-5
AT-MIO-64F-5

0,1

12-bit double
buffered
(64F-5:

2K FIFO)

0 to 10, +10,
+Vref,
0 to Vref

Update

clock 1 is first
available of
ctr5,2,1or
external
update.
Default is 5.
Timebase
signal range is
5,000,000,
1,000,000,
100,000,
10,000, 1,000,
and 100.

DMA, interrupts

AlI-MIO-16X

0,1

16-bit double
buffered
(2K FIFO)

+10, O to 10,
+Vref,
0 to Vref

Update

clock 1is first
available on
ctr5,2,1, or
external
update.
Timebase
signal range is
5,000,000,
1,000,000,
100,000,
10,000, 1,000,
100.

DMA, interrupts

LabVIEW Function and VI Reference Manual

B-6

© National Instruments Corporation

Appendix B

Table B-5. Analog Output Characteristics—MIO and Al Devices (Continued)

DAQ Hardware Capabilities

Device

Channel Numbers

DAC Type

FIFO Size

Output Limits (V)

Update Clocks

Transfer Method

AT-MIO-16/16D

o
N

12-bit double
buffered

0to 10, 10,
+Vref,
0 to Vref

Update

clock 1is ctr2
or external
update.
Timebase
signal range is
1,000,000,
100,000,
10,000, 1,000,
and 100.

Interrupts

NB-MIO-16/16X

MIO-16:12-bit ; —

MIO-16X:
12-bit double
buffered

0to 10, £10,
+Vref,
0 to Vref

Update

clock 1,
external
update
(MIO-16X
only).
Timebase
signal range is
1,000,000,
100,000,
10,000, 1,000,
and 100.

MIO-16:DMA;
MIO-16X:
DMA, interrupts

Table B-6. Analog Output Characteristics—E-Series Devices

Ground Can Control AO Gating,
Reglitching Reference FIFO Request | Pause/Resume| Multiple Buffers
Device Capable Capable Modes Supported Supported
AT-MIO-16E-1 Yes No No No Yes
AT-MIO-16E-2
AT-MIO-64E-3
NEC-MIO-16E
VXI-MIO-64E-1
AT-MIO-16E-10 No No No Yes Yes
AT-MIO-16DE-10
AT-MIO-XE-50 No No No No Yes
NEC-MIO-16XE-50
DAQPad-MIO-16XE-50 No No No No Yes
© MNational Instruments Corporation B-7 LabVIEW Function and VI Reference Manual

Appendix B DAQ Hardware Capabilities

Table B-6. Analog Output Characteristics—E-Series Devices (Continued)

Ground Can Control AO Gating,
Reglitching Reference FIFO Request | Pause/Resume| Multiple Buffers
Device Capable Capable Modes Supported Supported
AT-MIO-16XE-10 No No No Yes Yes
VXI-MIO-64XE-10 No No No No Yes
PCI-MIO-16E-1 Yes Yes Yes Yes No
CPCI-6070E
PXI-6070E
PCI-6071E
PCI-MIO-16E-4 No Yes Yes Yes No
CPCI-6040E
PXI-6011E
PCI-MIO-16XE-10 No No Yes Yes No
CPCI-6030E
PXI-6030E
PCI-6031E
DAQPad-6020E No Yes No Yes No
PCI-6110E No No Yes Yes No
PCI-6111E
Table B-7. Digital I/0 Hardware Capabilities—MIO and Al Devices
Port Port Handshake DIO Transfer
Device Type | Numbers Modes Direction Clocks Method
All MIO-16 Devices 4-bit 0,1 No handshaking| Read or write| None Software
AT-MIO-16D1 ports polling
AT-MIO-64F-5
All MIO-16E Devices 8-bit 0 No handshaking| Bit-wise None Software
All NEC-E Series Devices ports direction polling
AT-MIO-64E-12 control

AT-MIO-16DE-10
AT-MIO-16XE-50
DAQPad-MIO-16XE-50
PCI-MIO-16XE-50
PXI-6040E (MIO-16E-4)
PXI-6070E (MIO-16E-1)
PXI-6071E (MIO-64E-1)
PCI-6031E (MIO-64XE-10)
PCI-6032E (Al-16XE-10)
PCI-6033E (Al-64XE-10)
PCI-6110EPCI-6111E

LabVIEW Function and VI Reference Manual B-8 © MNational Instruments Corporation

Appendix B DAQ Hardware Capabilities

Table B-7. Digital I/0 Hardware Capabilities—MIQ and Al Devices (Continued)

Port Port Handshake DIO Transfer
Device Type | Numbers Modes Direction Clocks Method
AT-MIO-16D1 8-bit 2,3 Handshaking on| Read or None Interrupts
AT-MIO-16DE-10! ports or off write, port 2
may be
bidirectional
8-bit 4 No Read or write| None Software
ports handshaking; polling
Unusable if port
2 or 3 uses
handshaking

1These devices appear more than once in this table because they have enhanced digital functionality.

Table B-8. Counter Characteristics—MIO and Al Devices

© o
] Qo i)
3 |82 g z 0
(7] = = [= —
2 |23 s a 2 |B| 5
% = = < [an] (%] ‘© % °
= < (7} “— [} > o 1)
O [T Q [S) ° <) =
= c 2 %) s o * =9 a
Q L QO @ [s = -
€ Ot 3 e) a| a< £
=] P £ 3 £ =3 =]
. o o o £ S © =] = o
Device O # O [z O @) o< O
E Series Devices | DAQ-STC 2 2 internal: 24 | rising-edge, 2 up or down,
20 MHz or falling-edge, can be SW- or
100 kHz; high-level, HW-controlled
external low-level
AT-MIO-16F-5 Am-9513 3 5 or 6 internal: 16 | rising-edge, 2 | TC Up
AT-MIO-64F-5 5 MHz (only on falling-edge, pulse
AT-MIO-16/16D CTR2 of 16F-5, high-level, orTC
NB-MIO-16/16X 64F-5, and low-level toggle
AT-MIO-16X),
1 MHz,
100 kHz,
10 kHz, 1 kHz,
100 Hz;
external

1sw = software; HW = Hardware.

© MNational Instruments Corporation B-9 LabVIEW Function and VI Reference Manual

Appendix B

DAQ Hardware Capabilities

Table B-9. Counter Usage for Analog Input and Output—MIO and Al Devices

Counter Chip | Al Channel Al Sample
Device Name Used Clock Counter Al Scan Clock | AO Update Clock
E Series Devices DAQ-STC The DAQ-STC chip uses dedicated clocks for these purposes.
AT-MIO-16F-5 Am9513 Ctr3 Ctr 4 (& 5)* Ctr 2 (or 1% Ctr5,2o0r1l
AT-MIO-64F-5
AT-MIO-16X
AT-MIO-16/16D Am9513 Ctr3 Ctr 4 (& 5)* Ctr 2 (or 1% Ctr 2 (and
NB-MIO-16X via DMA for
NB-MIO-16X)
NB-MIO-16 Am9513 Ctr3 Ctr 4 (& 5)t None (or 1§ (via DMA)

1 f the total number of samples is less than 65535, only the first counter is used. If the number of samples exceeds 65536,

the first counter is used together with the second counter as a 32-bit sample counter.

2¢ctr 2 (or no counter for NB-MIO-16) is used for normal scanning operations, and Ctr 1 is used for AMUX-64T and
SCXI hardware scanning.

Lab and 1200 Series and Portable Devices
Hardware Capabilities

Table B-10. Analog Input Configuration Programmability—Lab and 1200 Series and Portable Devices

Device Gain Range Polarity SE/DIFF Coupling
Lab-LC By Group By Device By Device SE DC
Lab-NB
Lab-PC+ By Group By Group By Device By Device DC
SCXI-1200 By Group By Group By Group By Group DC
DAQPad-1200
DAQCard-1200
PCI-1200
DAQCard-500 1 Only 1 range available Bipolar SE DC
DAQCard-PC-516 1 Only 1 range available Bipolar By group DC
DAQCard-700 1 By Group Bipolar By group DC
PC-LPM-16 1 By Device Bipolar SE DC

(& Note By Deviceameans you select the value of a parameter with hardware jumpers, and

LabVIEW Function and VI Reference Manual

the selection affects any group of channels on the devBeGroupmeans you

program the selection through software, and the selection affects all the channels
used at the same timBy Channeimeans you program the selection with hardware

B-10

© National Instruments Corporation

Appendix B DAQ Hardware Capabilities

jumpers or through software on a per channel basis. When a specific value for a
parameter is shown, that parameter value is fixed.

Table B-11. Analog Input Characteristics—Lab and 1200 Series and Portable Devices (Part 1)

Number of Resolution Input FIFO

Device Channels (bits) Gains! Range (V) (samples)
Lab-LC 8SE 12 1, 2,5, 10, 20, 50, 10¢ +5,0to 10 16
Lab-NB
Lab-PC+ 8SE, 4Dl 12 1, 2,5,10 20, 50, 104 +5,0to 10 2,048;
SCXI-1200 Lab-PC: 512
DAQPad-1200
DAQCard-1200
PCI-1200
DAQCard-500 8SE 12 1 +5 16
DAQCard PC516 8SE,4DI 16 1 +5 512
DAQCard-700 16SE, 8DI 12 1 +10, 5, £2.5 512
PC-LPM-16 16SE 12 1 +5,+2.5,0to 10, | 16

Oto5

1 You can determine the limit settings of your device by multiplying the range and the voltage values together. For more

information on limit settings in LabVIEW, refer to ChapteBasic LabVIEW Data Acquisition Concepits theLabVIEW
Data Acquisition Basics Manual

Table B-12. Analog Input Characteristics—Lab and 1200 Series and Portable Devices (Part 2)

Max
Sampling
Device Scanning Triggers Rate (S/s) [Transfer Method

Lab-LC Any single channel; Software trigger, pretrigger, an¢ 62.5 k Interrupts
Lab-NB for multiple channels, posttrigger with digital trigger

N through 0, wher®<7
Lab-PC+ Any single channel; Software trigger, pretrigger, an¢ 100 k; Interrupts;
SCXI-1200 for multiple channels, posttrigger with digital trigger | Lab-PC+: Lab-PC+:
DAQPad-1200 N through 0, wher&l<7. 83 k Interrupts,
DAQCard-1200 DMA
PCI-1200
DAQCard-500 Any single channel; Software trigger only 50 k Interrupts
DAQCard 516 for multiple channels,
PC-516 N through 0, wher&l<7

© MNational Instruments Corporation B-11 LabVIEW Function and VI Reference Manual

Appendix B

DAQ Hardware Capabilities

Table B-12. Analog Input Characteristics—Lab and 1200 Series and Portable Devices (Part 2) (Continued)

for multiple channels,
N through 0, wher&l#15

Max
Sampling
Device Scanning Triggers Rate (S/s) [Transfer Method
DAQCard-700 Any single channel; Software trigger only 100 k Interrupts
for multiple channels,
N through 0, wher&l#15
PC-LPM-16 Any single channel; Software trigger only 50 k Interrupts

Table B-13. Analog Output Characteristics—Lab and 1200 Series and Portable Devices

Output
Channel DAC Limits Waveform Transfer
Device Numbers Type V) Update Clocks Grouping Methods
Lab-NB 0,1 12-bit 0to 10,#5 | Update clock 1 is 0,1,0r0 Interrupts
Lab-LC double- ctrA2 or external and 1
buffered update; timebase is
1 MHz or ctrBO
Lab-PC+ 0,1 12-bit 0to 10,#5 | Update clock 1 is 0,1,0r0 Interrupts
SCXI-1200 double- ctrA2 or external and 1
DAQPad-1200 buffered update; timebase
DAQCard-1200 signal range is
PCI-1200 1,000,000, 100,000,
10,000, 1,000, and 10
Note The DAQCard-516 and PC 516 devices do not have analog output.
Table B-14. Counter Usage for Analog Input and Output—Lab Series and Portable Devices
Counter Al Channel Al Sample Al Scan AO Update
Device Name Chip Used Clock Counter Clock Clock
Lab-NB, Lab-LC 82C53 Ctr AO (& BO)l Ctr Al None Ctr A2
Lab-PC+, DAQPad-1200, 82C53 Ctr A0 (& BO)L | Ctr A1 Ctr B1 Ctr A2
SCXI-1200, DAQCard-1200,
PCI-1200
DAQCard-500, DAQCard-700, 8254 Ctr0 (software) None None
LabVIEW Function and VI Reference Manual B-12 © MNational Instruments Corporation

Appendix B DAQ Hardware Capabilities

Table B-14. Counter Usage for Analog Input and Output—Lab Series and Portable Devices (Continued)

Counter Al Channel Al Sample Al Scan AO Update
Device Name Chip Used Clock Counter Clock Clock
DAQCard 516 82C54 Ctr0 SW None None
PC-516
PC-LPM-16 82C53 Ctr0 (software) None None

1 The second counter is used as an extended timebase for timed analog input or output when sample interval exceeds 65.535 ms

Table B-15. Digital /0 Hardware Capabilities—Lab and 1200 Series and Portable Devices

Port Port Handshake DIO Transfer
Device Type Numbers Modes Direction Clocks Method
Lab-NB 8-bit 0,1 Handshaking Read or write, None Interrupts
Lab-LC port on or off port 0 may be
Lab-PC+ bidirectional
SCXI-1200
DAQCard-1200
DAQPad-1200
PCI-1200
8-bit 2 No handshaking; | Read or write None Software
port unusable if polling
port O or 1 uses
handshaking
PC-LPM-16 8-bit 0,1 No handshaking | O: read or write None Software
ports polling
DAQCard-500 4-bit 0,1 No handshaking | 0: write, 1: read None Software
DAQCard-516 ports polling
DAQCard-700 8-bit 0,1 No handshaking | O: write, 1: read None Software
ports polling

© MNational Instruments Corporation

B-13

LabVIEW Function and VI Reference Manual

Appendix B DAQ Hardware Capabilities

54xx Devices

Table B-16. Analog Output and Digital Output Characteristics—54XX Series Devices

Characteristics

AT-5411, PCI-5411

Channel Numbers 0
Maximum Update Rate 40 MHz.
Update Interval 1 to 65535.

DAC Type

12-bit, double buffered

Output Limits (V)
(Internal reference only)

+5 into 50Q load
+10 into unterminated (high input impedance) load.

Update Clocks

Update clock 1.

Triggers

Onrising TTL edge, at trigger input connector or RTSI pin.
Can be also generated internally by software.

RTSI Trigger Bus

Yes

Digital Outputs

16-bits with clock signal

Waveform Grouping

0

Waveform Memory Depth
-ARB Mode
-Direct Digital Synthesis (DDS) Mode

2,000,000 16-bit samples (standard)
16,384 16-bit samples maximum

Maximum Waveform Stages 290
Buffer Numbers 1 to 1,000.
Buffer Iterations 1 to 65,535

Buffer Sample Count

256 samples minimum

-ARB Mode Memory depth maximum
Note: Buffer size should be a multiple of 8 samples.

- DDS Mode Must be equal to 16,384 samples. If you load less number pf
samples then you will see the contents of unfilled sections pf
memory also appearing in the waveform generation.

Marker Output TTL level, One available for every stage
DDS Accumulator Size 32-bit

Maximum Output Frequency 16 MHz

Output Frequency Resolution (DDS Mode only) 9.31 mHz

Output Attenuation (after the DAC)

0 through 74.000 dB (Decibels) in 0.001 dB steps

SYNC Output Duty Cycle (% High)

TTL level, 20% to 80%.

LabVIEW Function and VI Reference Manual

B-14 © MNational Instruments Corporation

Appendix B DAQ Hardware Capabilities

Table B-16. Analog Output and Digital Output Characteristics—54XX Series Devices (Continued)

Characteristics AT-5411, PCI-5411
PLL Reference Clock 1 MHz, 10 MHz or 20 MHz
Output Enable Software switchable to ON or OFF
Output Impedance 50Q or 7XQ (video), software selectable
Low-Pass Filter 16 MHz, software switchable to ON or OFF
Digital Half-Band Interpolating Filter 80 MSPS, software switchable to ON or OFF
Trigger Operation Modes Single, Continuous, Stepped and Burst
Note Refer to your hardware user reference manual for default settings of your device.

Table B-17. Counter/Timer Characteristics—Lab and 1200 Series and Portable Devices

=t
)
IS
E: k) -
° e} [}
Q [o] = 5}
3 c g 3 g kS c
e o S > 2 4 S 0 S
= O3 < @ ? E 2 3
%] [) >
(@) B O O S S b3 o g
= P o) pus <) * =0 a
: g | 3¢ g 13 = g 58 =
Device g E S o = 3 = 23 g
o 55 E = © =] 5 8 °
o zZa = z o o o< O
Lab-NB 8253 | 3 (2 with Internal: | 16 | High-level 3 Refer to Down
Lab-LC SOURCE 1 MHz; or ICTRControl
Lab-PC+ inputat /0 | (PC- rising-edge VIdescription
SCXI-1200 Connector) | LPM-16: depending on modes in
DAQCard-1200 only on on output Chapter 28,
DAQPad-1200 CTRBO) mode Advanced
PC-LPM-16 external Counter Vs
PCI-1200
DAQCard-500 8254 | 3 (2 with Internal: 16 | High-level 3 (2 for Refer to Down
DAQCard 516 SOURCE 1 MHz or DAQCard-500) | ICTRControl
DAQCard-700 inputat 1/0 | only on rising-edge VIdescription
PC-516 Connector) | CTRBO; depending on modes in
external on output Chapter 28,
mode Advanced
Counter Vs

© National Instruments Corporation B-15 LabVIEW Function and VI Reference Manual

Appendix B

DAQ Hardware Capabilities

SCXI Module Hardware Capabilities

Table B-18. Analog Input Characteristics—SCXI Modules (Part 1)

Input
Number of Voltage Excitation
Module Channels | Range (V) Gains! Filter Channels! Mode Support
SCXI-1100 32 DI +10 1,2,5,10, 20, | Lowpass filter — Multiplexed
50, 100, 200, (or no filter)
500, 1,000, with 10 kHz or
2,000 4 Hz cutoff
(SW/M)l frequency
(Ismy
SCXI-1102 32 DI +10 1, 100 1 Hz lowpass — Multiplexed
(SW/C)1 on each
channel
SCXI-1120 8 DI 15 1,2,5,10, 20, | Lowpass filter | SCXI-1121 Multiplexed or
SCXI-1121 (SCXI-1120) 50, 100, 200, with 10 kHz or | only: parallel
4 DI 500, 1,000, 4 Hz cutoff 4 voltage or
(SCXI-1121) 2,000 frequency current
(JS/C)1L (JS/C)'l excitation
Jsict
(channels)
SCXI-1120D 8 DI +5 0.5,1, 25,5, 4,500, SCXI-1121 Multiplexed or
(SCXI-1120) 10, 25, 50, 100, | 24,500 Hz only: 4 parallel
4 DI 250, 500, 1,000 voltage or
(SCXI-1121) current
excitation
Jsict
(channels)
SCXI-1122 16 Dl or +10 0.01, 0.02, Lowpass filter | 8 voltage or Multiplexed
8 Dl and 0.05,0.1, 0.2, | with 4kHz or current
8 excitation 0.5,1,2,5,10,| 4Hz cutoff excitation
SW/M1 20, 50, 100, frequency channels in
channels 200, 500, 4-wire
1,000, 2,000 scanning
(swimyt mode
LabVIEW Function and VI Reference Manual B-16 © MNational Instruments Corporation

Appendix B DAQ Hardware Capabilities

Table B-18. Analog Input Characteristics—SCXI Modules (Part 1) (Continued)

Input
Number of Voltage Excitation
Module Channels | Range (V) Gainst Filter Channels! Mode Support
SCXI-1140 8 DI, sample +10 1,10, 100, 200,| None — Multiplexed or
and hold 500 parallel
(Ds/ct
SCXI-1141 8 DI +5 1,2,5,10, 20, | Elliptic — Multiplexed or
50, 100 lowpass filter parallel
(swict with 10Hz to
25KHz cutoff
frequency
(swim)t
(disabled on a
per channel
basis)

Ipsic = dip switch-selectable per channel, JS/C = jumper-selectable per channel, JS/M = jumper-selectable per module,
SWI/C = software-selectable per channel, SW/M = software-selectable per module

2The SCXI-1141 has an automatic filter setting. LabVIEW sets the filter frequency based on the scan rates used with the module.

Table B-19. Analog Output Characteristics—SCXI Modules

Number of
Module Channels Output Voltage Range (V or mA) Mode Support
SCXI-1124 6 voltage or 0tol, 0to 5, 0to 1@1, 5, +10 (software-selectable) Multiplexed
current or 0to 20 mA

Table B-20. Relay Characteristics—SCXI Modules

Number of Latched or
Module Channelst Non-latched Start-up Relay Positiont Mode Support
SCXI-1160 16 Latched Leave relays in the position at power-dowr| Multiplexed
SCXI-1161 8 Non-latched Switch to the Normally Closed (NC) Multiplexed
position—when the hardware reset is set
on the module.

1You can set or reset each SCXI relay individually without affecting other relays, or you can change all of the relays
at once.

© MNational Instruments Corporation B-17 LabVIEW Function and VI Reference Manual

Appendix B

DAQ Hardware Capabilities

Table B-21. Digital Input and Output Characteristics—SCXI Modules

Module

Type of Module

Number of Channeld

Input Voltage Range

Mode Support

SCXI-1162

Input

32 (optically-isolated)

Oto5V

Parallel support—when
connected to a DIO-24,
DIO-96, or DIO-32F
device. Multiplexed
support with any DAQ
device supporting SCXI.

SCXI-1162HV

Input

32 (optically-isolated)

AC or DC signals up to
+240V

Parallel support—when
connected to a DIO-24,
DIO-96, or DIO-32F
device. Multiplexed
support with any DAQ
device supporting SCXI.

SCXI-1163

Output

32 (optically-isolated)

Oto5V

Parallel support—when
connected to a DIO-24,
DIO-96, or DIO-32F
device. Multiplexed
support with any DAQ
device supporting SCXI.

SCXI-1163R*

Output

32 (optically-isolated)

+240V

Parallel support—when
connected to a DIO-24,
DIO-96, or DIO-32F
device. Multiplexed
support with any DAQ
device supporting SCXI.

1Functionally equivalent to the SCXI-1163, but incorporates solid-state relays in place of digital outputs.

Table B-22. Terminal Block Selection Guide—SCXI| Modules

SCXI Module Terminal Blocks Cold-Junction Compensation Sensor (CJC)
SCXI-1100 SCXI-1303 Thermistor
SCXI-1102 SCXI-1300 IC Sensor
SCXI-1120 SCXI-1320 IC Sensor
SCXI-1121 SCXI-1322¢ IC Sensor
SCXI-1327 Thermistor
SCXI-1328 Thermistor
SCXI-1122 SCXI-1322 Thermistor
SCXI-1124 SCXI-1325 —
SCXI-1140 SCXI-1301 —
SCXI-1304 —
SCXI-1141 SCXI-1304 —
LabVIEW Function and VI Reference Manual B-18 © MNational Instruments Corporation

Appendix B

DAQ Hardware Capabilities

Table B-22. Terminal Block Selection Guide—SCXI Modules (Continued)

SCXI Module Terminal Blocks Cold-Junction Compensation Sensor (CJC)
SCXI-1160 SCXI-1324 —
SCXI-1161 None-screw terminals located in —
module.
SCXI-1162 SCXI-1326 —
SCXI-1162HV
SCXI-1163
SCXI-1163R
SCXI-1180 SCXI-1302 —
SCXI-1181 SCXI-1300 IC Sensor
SCXI-1301 —
SCXI-1200 SCXI-1302 —
CB-50 —
1SCXI-1121 only
Table B-23. Analog Input Configuration Programmability
Device Gain Coupling
5102 devices By Channel By Channel
Table B-24. Analog Input Configuration Programmability
Number of Input FIFO
Device Channels Resolution Gains Range (V) (words) Scanning
5102 devices 2 8 bits 1,5, 20, 100 +5 663546 1or
2 channels in
any order
without
repetitions
Note By Devicemeans you select the value of a parameter with hardware jumpers, and

the selection affects any group of channels on the devgyeGroupmeans you

program the selection through software, and the selection affects all the channels
used at the same timBy Channeimeans you program the selection with hardware
jumpers or through software on a per channel basis. When a specific value for a
parameter is shown, that parameter value is fixed.

© MNational Instruments Corporation

B-19

LabVIEW Function and VI Reference Manual

Appendix B

DAQ Hardware Capabilities

Analog Output Only Devices Hardware Capabilities

Table B-25. Analog Output Characteristics—Analog Output Only Devices

Channel Output Update Waveform Transfer
Device Numbers DAC Type Limits Clocks Grouping Method
AT-AO-6 0 through 5, | 12-bit +10V, Update For update Update
AT-AO-10 6 through 9* | double- +Vrefl, clock 1 is clock 1 clock 1
NB-AO-6 buffered Oto10V, ctrO or channels are | channels:
with 1 K 0 to Vrefl, external any one DMA,
FIFO for 4to 20 mA update. channeN or | interrupts;
update clock Update set of update
1 channels clock 1 channel clock 2
channels are | pairs: O-N; channels:
0,1,2,3,4, | forupdate interrupts
5, 6%, 7*, 8%, | clock 2
9%, 0to 1, channels are
0to 3, 2—N, same
0to5,0to rules as
7*, 0 to 9*. above:N#6,
Update N#10*
clock 2 is
ctrl. Update
clock 2
channels are
2,3,4,5, 6%
7+, 8% 9% 2
03,2105, 2
to 7*, 2 to 9%,
timebase
signal range
is 1,000,000,
100,000,
10,000,
1,000, 100
PC-AO-2DC 0,1 — 0to 10V, — — —
(Plug and Play) 5V,
0—-20mA
sink
software-
selectable
DAQCard-AO-2DC | 0,1 — 0to 10V, — — —
5V,
0-20mA
sink
software-
selectable
*AT-AO-10 only
LabVIEW Function and VI Reference Manual B-20 © MNational Instruments Corporation

Appendix B DAQ Hardware Capabilities

Dynamic Signal Acquisition Devices
Hardware Capabilities

Table B-26. Analog Input Configuration Programmability—Dynamic Signal Acquisition Devices

Device Gain Range (V) Polarity SE/DIFF Coupling
EISA-A2000 1 +5 Bipolar SE By Channel
NB-A2000
NB-A2100 1 +2.828 Bipolar SE By Group
AT-DSP2200
NB-A2150 1 +2.828 Bipolar SE By Channel pair 0 and 1,
AT-A2150 2and 3
Note By Devicemeans you select the value of a parameter with hardware jumpers, and
the selection affects any group of channels on the devBeGroupmeans you
program the selection through software, and the selection affects all the channels
used at the same timBy Channemeans you program the selection with hardware
jumpers or through software on a per channel basis. When a specific value for a
parameter is shown, that parameter value is fixed.
Table B-27. Analog Output Characteristics—Dynamic Signal Acquisition Devices
Channel Transfer
Device Numbers DAC Type Output Limits Update Clocks Method
PCl-4451 0,1 18-bit +10V, +1V, 100 | Update clock 1 DMA
PCI-4552

© MNational Instruments Corporation

B-21 LabVIEW Function and VI Reference Manual

Appendix B DAQ Hardware Capabilities
Tahle B-28. Analog Input Characteristics—Dynamic Signal Acquisition Devices
o
()
c
3
5 £
5|1 §8| = 2 0 o E@ .
22| & | L% g £ 65 | 22
E | 8 g 35 3 g 32 5%
Device z o o £ = @ So E =
EISA-A2000 | 4 SE 12 +5 EISA:51; | Software trigger, | 0,1,2,3,0 | 1M DMA,
NB-A2000 bits NB:1,024 | pretrigger, and and 1,2and interrupts
posttrigger with 3,0t03.
digital or analog
triggering and
posttrigger delay
NB-A2100 2 SE 16 +2.828 32 Software trigger, | A2150: 2100:48 k, | DMA,
NB-A2150 bits pretrigger, and 0,1,2,3,0| 2150:24 k, | interrupts
posttrigger with and1,2and| 2150C:
digital or analog | 3, 0to 3; 48 k,
triggering A2100: 2150S:
0,1,0and1| 51.2k
AT-A2150 4 SE 16 +2.828 — Software trigger, | 0,1,2,3,0 | 2150:24 k | DMA,
bits pretrigger, and and 1,2and| 2150:51.2k | interrupts
posttrigger with 3,0and 3
digital or analog
triggering
Table B-29. Digital Hardware Capabilities—Digital 1/0 Devices
Port Port Handshake Transfer
Device Type |Numbers Modes Direction DIO Clocks Method
AT-DIO-32F 8-bit ports | 0, 1, 8-bit port Read or write Two DMA for each
NB-DIO-32F 2,3 Handshaking on clocks group; dual
or off; extensive available | channel DMA
handshaking 16-bitwith | for groups
modes variable containing port 0
timebase
2-bit ports | 4 No handshaking | Read or write None Software polling
PC-DIO-24 8-bitport | 0,1 Handshaking Read or write, None Interrupts
NB-DIO-24 on or off port 0 may be
DAQCard-DIO-24 bidirectional
LabVIEW Function and VI Reference Manual B-22 © MNational Instruments Corporation

Appendix B DAQ Hardware Capabilities

Table B-29. Digital Hardware Capabilities—Digital I/0 Devices (Continued)

Port Port Handshake Transfer
Device Type |Numbers Modes Direction DIO Clocks Method
8-bit port | 2 No handshaking; | Read or write None Software polling
unusable if
port O or 1 uses
handshaking
PC-DIO-96 8-bit port | 0,1,3, | Handshaking on | Read or write, None Interrupts
PCI-DIO-96 4,6,7, | oroff ports O, 3, 6,
NB-DIO-96 91 and 9 may be
DAQPad-6507 bidirectional
8-bitport | 2,5,8, | No handshaking; | Read or write None Software polling
11 unusable if
port A and B of
the 8255 chip use
handshaking
PC-OPDIO-16 Optically- | 0,1 — Port 0 is output None Programmed 1/O
(Plug and Play) isolated (write); port 1 is
8-bit port input (read)

Timing Only Devices Hardware Capabilities

Table B-30. Digital Hardware Capabilities—Timing Only Devices

Port Type Port Handshake DIO Transfer
Device Numbers Modes Direction Clocks Method
PC-TIO-10 8-bit 0,1 No handshaking | Bit-wise direction None | Software
NB-TIO-10 ports control polling

© MNational Instruments Corporation B-23 LabVIEW Function and VI Reference Manual

Appendix B DAQ Hardware Capabilities
Table B-31. Counter/Timer Characteristics—Timing Only Devices
? @ =
o o Q ©
23 < = o
T Q
& % 2 2 3: < n .5
2 - S < m n T)] =1
= P73 » —] S ° 9
O [T o} s} o b4 2o 2
= c & 1] Ny o) P =9 a
Q [T 5]] = = =
€ o O e o 2 3 28 IS
S @ = 3 € S i) =3 273 35
. o n O o £ =1] > = [e)
Device 0D # O = z O O o< O
PC-TIO-10 Am-9513 | 10 (8 have Internal: 5 MHz 16 | high-level, 10 | TC Up or
NB-TIO-10 SOURCE (only on CTR5 and low-level, pulse, Down
inputs at the | CTR10), 1 MHz, rising-edge, TC
110 100 kHz, 10 kHz, falling-edge toggle
connector) 1 kHz, 100 Hz;
external
Table B-32. Analog Input Configuration Programmability
Device Gain Coupling
5102 devices By Channel By Channels
Table B-33. Analog Input Characteristics
Number Input FIFO
Device of Channels Resolution Gains Range (V) (Words) Scanning
5102 2 8 bits 1,5, 20, 100 +5 663,000 1or2channels,
devices in any order
without
repetitions
Table B-34. Analog Input Characteristics, Part 2
Device Triggers Maximum Sampling Rate (S/s)

5102 devices

SW, Pre, Post, Analog

20,000,000 real time

LabVIEW Function and VI Reference Manual

B-24

© National Instruments Corporation

GPIB Multiline Interface
Messages

This appendix lists multiline interface messages, which are commands that
IEEE 488 defines. Multiline interface messages manage the GPIB—they
perform tasks such as initializing the bus, addressing and unaddressing
devices, and setting device modes for local or remote programming. These
multiline interface messages are sent and received with ATN TRUE. The
following list includes the mnemonics and messages that correspond to the
interface functions.

For more information on these messages, refer to the ANSI/IEEE
Standard 488.1-198TEEE Standard Digital Interface for
Programmable Instrumentation.

Multiline Interface Messages

Hex Oct Dec ASCII Msg
00 000 0 NUL —
01 001 1 SOH GTL
02 002 2 STX —
03 003 3 ETX —
04 004 4 EOT SDC
05 005 5 ENQ PPC
06 006 6 ACK —
07 007 7 BEL —
08 010 8 BS GET
09 011 9 HT TCT
0A 012 10 LF —

© MNational Instruments Corporation C-1 LabVIEW Function and VI Reference Manual

Appendix C GPIB Multiline Interface Messages

Hex Oct Dec ASCII Msg
0B 013 11 VT —
oC 014 12 FF —
0D 015 13 CR —
OE 016 14 SO —
OF 017 15 SI —
10 020 16 DLE —
11 021 17 DC1 LLO
12 022 18 DC2 —
13 023 19 DC3 —
14 024 20 DC4 DCL
15 025 21 NAK PPU
16 026 22 SYN —
17 027 23 ETB —
18 030 24 CAN SPE
19 031 25 EM SPD
1A 032 26 SuB —
1B 033 27 ESC —
1C 034 28 FS —
1D 035 29 GS —
1E 036 30 RS —
1F 037 31 us —
20 040 32 SP MLAOQO
21 041 33 ! MLA1
22 042 34 “ MLA2
23 043 35 # MLA3
24 044 36 $ MLA4

LabVIEW Function and VI Reference Manual c-2 © MNational Instruments Corporation

Appendix C GPIB Multiline Interface Messages

Hex Oct Dec ASCII Msg
25 045 37 % MLAS
26 046 38 & MLAG
27 047 39 ' MLA7
28 050 40 (MLAS8
29 051 41) MLA9
2A 052 42 * MLA10
2B 053 43 + MLA11
2C 054 44 , MLA12
2D 055 45 - MLA13
2E 056 46 . MLA14
2F 057 47 / MLA15
30 060 48 0 MLA16
31 061 49 1 MLA17
32 062 50 2 MLA18
33 063 51 3 MLA19
34 064 52 4 MLA20
35 065 53 5 MLA21
36 066 54 6 MLA22
37 067 55 7 MLA23
38 070 56 8 MLA24
39 071 57 9 MLA25
3A 072 58 : MLA26
3B 073 59 ; MLA27
3C 074 60 < MLA28
3D 075 61 = MLA29
3E 076 62 > MLA30

© MNational Instruments Corporation c-3 LabVIEW Function and VI Reference Manual

Appendix C GPIB Multiline Interface Messages

Hex Oct Dec ASCII Msg
3F o077 63 ? UNL
40 100 64 @ MTAO
41 101 65 A MTA1
42 102 66 B MTAZ2
43 103 67 C MTA3
44 104 68 D MTA4
45 105 69 E MTAS
46 106 70 F MTAG
47 107 71 G MTA7
48 110 72 H MTAS8
49 111 73 I MTA9
4A 112 74 J MTA10
4B 113 75 K MTA1l
4C 114 76 L MTA12
4D 115 77 M MTA13
4E 116 78 N MTA14
4F 117 79 O MTA15
50 120 80 P MTA16
51 121 81 Q MTAL7
52 122 82 R MTA18
53 123 83 S MTA19
54 124 84 T MTA20
55 125 85 U MTA21
56 126 86 \% MTA22
57 127 87 W MTA23
58 130 88 X MTA24

LabVIEW Function and VI Reference Manual c-4 © MNational Instruments Corporation

Appendix C GPIB Multiline Interface Messages

Hex Oct Dec ASCII Msg

59 131 89 Y MTA25
5A 132 90 4 MTA26

5B 133 91 [MTA27
5C 134 92 \ MTA28
5D 135 93] MTA29
5E 136 94 n MTA30

5F 137 95 3 UNT

60 140 96) MSAO,PPE
61 141 97 a MSA1,PPE
62 142 98 b MSA2,PPE
63 143 99 c MSA3,PPE
64 144 100 d MSA4,PPE
65 145 101 e MSA5,PPE
66 146 102 f MSAG6,PPE
67 147 103 g MSA7,PPE
68 150 104 h MSA8,PPE
69 151 105 i MSA9,PPE
6A 152 106 j MSA10,PPE
6B 153 107 k MSA11,PPE
6C 154 108 I MSA12,PPE
6D 155 109 m MSA13,PPE
6E 156 110 n MSA14,PPE
6F 157 111 o] MSA15,PPE
70 160 112 p MSA16,PPD
71 161 113 q MSA17,PPD
72 162 114 r MSA18,PPD

© MNational Instruments Corporation C-5 LabVIEW Function and VI Reference Manual

Appendix C GPIB Multiline Interface Messages

Hex Oct Dec ASCII Msg
73 163 115 S MSA19,PPD
74 164 116 t MSAZ20,PPD
75 165 117 u MSA21,PPD
76 166 118 v MSA22,PPD
77 167 119 W MSA23,PPD
78 170 120 X MSA24,PPD
79 171 121 y MSA25,PPD
TA 172 122 z MSA26,PPD
7B 173 123 { MSA27,PPD
7C 174 124 | MSA28,PPD
7D 175 125 } MSA29,PPD
7E 176 126 ~ MSA30,PPD
7F 177 127 DEL —
Message Definitions
Mnemonics Definition

DCL Device Clear

GET Group Execute Trigger

GTL Go To Local

LLO Local Lockout

MLA My Listen Address

MSA My Secondary Address

MTA My Talk Address

PPC Parallel Poll Configure

PPD Parallel Poll Disable

PPE Parallel Poll Enable

LabVIEW Function and VI Reference Manual C-6 © MNational Instruments Corporation

Appendix C GPIB Multiline Interface Messages

Mnemonics Definition
PPU Parallel Poll Unconfigure
SDC Selected Device Clear
SPD Serial Poll Disable
SPE Serial Poll Enable
TCT Take Control
UNL Unlisten
UNT Untalk

© MNational Instruments Corporation C-7 LabVIEW Function and VI Reference Manual

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form and
the configuration form, if your manual contains one, about your system configuration to answer your
guestions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to quickly
provide the information you need. Our electronic services include a bulletin board service, an FTP site,
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first try the
electronic support systems. If the information available on these systems does not answer your
guestions, we offer fax and telephone support through our technical support centers, which are staffed
by applications engineers.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files
and documents to answer most common customer questions. From these sites, you can also downloac
the latest instrument drivers, updates, and example programs. For recorded instructions on how to use
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. You can
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To access our FTP site, log on to our Internet Hipstatinst.com , asanonymous and use
your e-mail address, such jassmith@anywhere.com , as your password. The support files and
documents are located in thapport directories.

© MNational Instruments Corporation D-1 LabVIEW Function and VI Reference Manual

Fax-on-Demand Support

Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
512418 1111.

E-Mail Support (Currently USA Only)

You can submit technical support questions to the applications engineering team through e-malil at the
Internet address listed below. Remember to include your name, address, and phone number so we can
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support

National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact

the source from which you purchased your software to obtain support.

Country Telephone Fax

Australia 03 9879 5166 03 9879 6277
Austria 0662 4579900 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 4576 26 02
Finland 09 725 72511 09 725 725 55
France 01 48 14 24 24 0148142414
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 035472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5520 2635 5520 3282
Netherlands 0348 433466 0348 430673
Norway 32848400 328486 00
Singapore 2265886 2265887

Spain 91 640 0085 91 640 0533
Sweden 0873049 70 087304370
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644

United Kingdom
United States

01635 523545
512 795 8248

LabVIEW Function and VI Reference Manual D-2

01635 523154
512 794 5678

© National Instruments Corporation

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and use
the completed copy of this form as a reference for your current configuration. Completing this form
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name

Company

Address

Fax(__) Phone (__)

Computer brand Model Processor
Operating system (include version number)

Clock speed MHz RAM ___ MB Display adapter

Mouse ___yes _ no Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision
Configuration

National Instruments software product Version
Configuration

The problem is:

List any error messages:

The following steps reproduce the problem:

LabVIEW Hardware and Software Configuration Form

Record the settings and revisions of your hardware and software on the line to the right of each item.
Complete a new copy of this form each time you revise your software or hardware configuration, and
use this form as a reference for your current configuration. Completing this form accurately before
contacting National Instruments for technical support helps our applications engineers answer your
guestions more efficiently.

National Instruments Products

DAQ hardware
Interrupt level of hardware

DMA channels of hardware

Base I/O address of hardware

Programming choice
HiQ, NI-DAQ, LabVIEW, or LabWindows version
Other boards in system

Base I/0O address of other boards

DMA channels of other boards

Interrupt level of other boards

Other Products

Computer make and model

Microprocessor

Clock frequency or speed

Type of video board installed

Operating system version

Operating system mode

Programming language

Programming language version

Other boards in system

Base I/O address of other boards

DMA channels of other boards

Interrupt level of other boards

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: LabVIEW™ Function and VI Reference Manual
Edition Date: January 1998
Part Number: 321526B-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.
Name

Title
Company

Address

E-Mail Address

Phone (__) Fax (___)

Mail to: Technical Publications Faxto: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678

Austin, Texas 78730-5039

Index

Numbers/Symbols

1200 Calibrate, 29-2

1D ANOVA, 44-2

1D Linear Evaluation, 46-2

1D Polar To Rectangular, 46-2
1D Polynomial Evaluation, 46-2
1D Rectangular To Polar, 46-3
2D ANOVA, 44-3

2D Linear Evaluation, 46-3

2D Polynomial Evaluation, 46-4
3D ANOVA, 44-4

A

AXxB, 45-2

A X Vector, 45-2

A2000 Calibrate, 29-3

A2000 Configure, 29-4

A2100 Calibrate, 29-4

A2100 Config, 29-5

A2150 Calibrate (Macintosh), 29-6
A2150 Config, 29-5

AC & DC Estimator, 40-2

Access Rights, 11-14

Acquire Semaphore, 13-17

ActiveX Variant to G Data, 51-4
Additional User Definable Constants, 4-21
Adjacent Counters, 27-2

AECreate Comp Descriptor, 52-14
AECreate Descriptor List, 52-15
AECreate Logical Descriptor, 52-14
AECreate Object Specifier, 52-14
AECreate Range Descriptor, 52-15
AECreate Record, 52-15

AESend, 52-13

AESend Abort VI, 52-8

AESend Close VI, 52-8

AESend Do Script, 52-6

AESend Finder Open, 52-6
AESend Open, 52-7

AESend Open Document, 52-7
AESend Open, Run, Close VI, 52-8
AESend Print Document, 52-7
AESend Quit Application, 52-7

© MNational Instruments Corporation

I-1

AESend Run VI, 52-9
AESend VI Active?, 52-9

Al Acquire Waveform, 15-1
Al Acquire Waveforms, 15-2
Al Buffer Config, 18-1

Al Buffer Read, 18-2

Al Clear, 16-2

Al Clock Config, 18-3

Al Config, 16-2

Al Continuous Scan, 17-2
Al Control, 18-5

Al Group Config, 18-6

Al Hardware Config, 18-8
Al Parameter, 18-12

Al Read, 16-3

Al Read One Scan, 17-3

Al Sample Channel, 15-2
Al Sample Channels, 15-3
Al Single Scan (Intermediate), 16-3
Al SingleScan (Advanced), 18-13
Al Start, 16-4

Al Trigger Config, 18-14

Al Waveform Scan, 17-4
AlISPoll, 35-4

Amplitude and Phase Spectrum, 40-2

And, 5-2

And Array Elements, 5-3

AO Buffer Config, 22-1

AO Buffer Write, 22-2

AO Clear, 20-2

AO Clock Config, 22-3

AO Config, 20-2

AO Continuous Gen, 21-2
AO Control, 22-3

AO Generate Waveform, 19-1
AO Generate Waveforms, 19-2
AO Group Config, 22-3

AO Hardware Config, 22-4
AO Parameter, 22-4

AO Single Update, 22-4

AO Start, 20-3

AO Trigger and Gate Config (Windows), 22-4

AO Update Channel, 19-2
AO Update Channels, 19-2

LabVIEW Function and VI Reference Manual

Index

AO Wait, 20-3

AO Waveform Gen, 21-4

AO Write, 20-3

AO Write One Update, 21-5
AO-6/10 Calibrate (Windows), 29-6
Arbitrary Wave, 38-2

Array Max & Min, 7-3

Array Of Strings To Path, 6-19, 11-15
Array Size, 7-4

Array Subset, 7-4

Array To Cluster, 7-4, 8-4

Array To Spreadsheet String, 6-6
Auto Power Spectrum, 40-2
AutoCorrelation, 39-2

Beep, 13-2

Bessel Coefficients, 41-2
Bessel Filter, 41-2

Blackman Window, 42-2
Blackman-Harris Window, 42-2
Boolean Array To Number, 4-10, 5-3
Boolean Constant, 5-5

Boolean To (0,1), 4-10, 5-3
Build Array, 7-4

Build Cluster Array, 8-4

Build Path, 11-6

Bundle, 8-4

Bundle By Name, 8-5
Butterworth Coefficients, 41-3
Butterworth Filter, 41-3

Byte Array To String, 4-10, 6-19
Bytes at Serial Port, 36-1

C

cac — Become active Controller, 34-9
Call By Reference Node, 12-2
Call Chain, 12-3

Call Library Function, 13-3
Cancel Notification, 13-9
Carriage Return, 6-20

Cascade: Direct Coefficients, 41-3
Case Structure, 3-2

Cast Unit Bases, 4-11

Channel To Index, 29-7
Chebyshev Coefficients, 41-4

LabVIEW Function and VI Reference Manual -2

Chebyshev Filter, 41-4

Chi Square Distribution, 44-5

Chirp Pattern, 38-3

Cholesky Factorization, 45-3

Close All PPC Ports, 53-2

Close Application or VI Reference, 12-3
Close Automation Refnum, 51-2
Close Config Data, 11-22

Close File, 11-6

Cluster To Array, 7-5, 8-5

cmd — Send IEEE488 commands, 34-9
Code Interface Node, 13-2

Complex A x B, 45-3

Complex A x Vector, 45-4

Complex Cholesky Factorization, 45-4
Complex Conjugate, 4-20

Complex Determinant, 45-4

Complex Dot Product, 45-5

Complex Eigenvalues & Vectors, 45-6
Complex FFT, 39-3

Complex Inverse Matrix, 45-6
Complex LU Factorization, 45-7
Complex Matrix Condition Number, 45-7
Complex Matrix Norm, 45-7

Complex Matrix Rank, 45-8

Complex Matrix Trace, 45-8

Complex Outer Product, 45-8
Complex Polynomial Roots, 47-1
Complex Pseudolnverse Matrix, 45-9
Complex QR Factorization, 45-9
Complex SVD Factorization, 45-10
Complex To Polar, 4-20

Complex To Re/lm, 4-20

Compound Arithmetic, 5-3
Concatenate Strings, 6-6
Contingency Table, 44-5

Continuous Pulse Generator Config, 27-3
Control Help Window, 12-7

Control Online Help, 12-7

Convert RTD Reading, 30-2

Convert Strain Gauge Reading, 30-3
Convert Thermistor Reading, 30-6
Convert Thermocouple Buffer, 30-8
Convert Thermocouple Reading, 30-8
Convert Unit, 4-11

Convolution, 39-4, 41-4

Copy, 11-15

Cosecant, 4-14

© National Instruments Corporation

Cosine, 4-14

Cosine Tapered Window, 42-3

Cotangent, 4-14

Count Events or Time, 26-2

Counter Read, 27-3

Counter Start, 27-3

Counter Stop, 27-3

Create Notifier, 13-9

Create Queue, 13-12

Create Rendezvous, 13-15

Create Semaphore, 13-17

Create Special Complex Matrix, 45-10

Create Special Matrix, 45-10

Creating AppleEvent Parameters Using
Object Specifiers, 52-14

Cross Power, 39-5

Cross Power Spectrum, 40-3

CrossCorrelation, 39-6

CTR Buffer Config, 28-2

CTR Buffer Read, 28-2

CTR Control, 28-10

CTR Group Config, 28-3

CTR Mode Config, 28-3

CTR Pulse Config, 28-9

Current VI's Path Constant, 11-26

D

DAQ Occurrence Config (Windows), 29-9
Date/Time To Seconds, 10-6
DDE Advise Check, 50-2

DDE Advise Start, 50-2

DDE Advise Stop, 50-2

DDE Close Conversation, 50-2
DDE Execute, 50-2

DDE Open Conversation, 50-3
DDE Poke, 50-3

DDE Request, 50-3

DDE Srv Check Item, 50-3

DDE Srv Register Iltem, 50-4
DDE Srv Register Service, 50-4
DDE Srv Set Item, 50-4

DDE Srv Unregister Item, 50-4
DDE Srv Unregister Service, 50-4
Decimal Digit?, 9-6

Decimate, 39-8

Decimate 1D Array, 7-5
Deconvolution, 39-9

© National Instruments Corporation -3

Index

Default Directory Constant, 11-27
Delayed Pulse Generator Config, 27-4
Delete, 11-15

Delete Menu Items, 12-8

Derivative x(t), 39-10

Destroy Notifier, 13-10

Destroy Queue, 13-13

Destroy Rendezvous, 13-15

Destroy Semaphore, 13-18
Determinant, 45-10

DevClear, 35-2

DevClearList, 35-4

Device Reset, 29-10

Digital Buffer Config, 25-3

Digital Buffer Control, 25-3

Digital Buffer Read, 25-3

Digital Buffer Write, 25-3

Digital Clock Config, 25-4

Digital Group Config, 25-4

Digital Mode Config, 25-5

Digital Single Read, 25-6

Digital Single Write, 25-6

Digital Trigger Config, 25-7

DIO Clear, 24-2

DIO Config, 24-3

DIO Parameter, 25-5

DIO Port Config, 25-2

DIO Port Read, 25-2

DIO Port Write, 25-2

DIO Read, 24-3

DIO Single Read/Write, 24-3

DIO Start, 24-4

DIO Wait, 24-4

DIO Write, 24-4

dma — Set DMA mode or programmed I/O mode, 34-10
Dot Product, 45-11

Down Counter or Divider Config, 27-4
DSA Calibrate, 29-10

DSP2200 Calibrate (Windows), 29-11
DSP2200 Configure (Windows), 29-11

E

Easy VISA Find Resources, 33-4

Easy VISA Read, 33-4

Easy VISA Serial Write and Read, 33-4
Easy VISA Write, 33-5

Easy VISA Write and Read, 33-5

LabVIEW Function and VI Reference Manual

Index

EigenValues & Vectors, 45-11
Elliptic Coefficients, 41-5
Elliptic Filter, 41-5

Empty Path, 11-27

Empty String, 6-20

Empty String/Path?, 9-6
Enable Menu Tracking, 12-9
EnableLocal, 35-4
EnableRemote, 35-5

End of Line, 6-20

EOF, 11-15

Equal To 0?, 9-6

Equal?, 9-6

Equiripple BandPass, 41-5
Equiripple BandStop, 41-6
Equiripple HighPass, 41-6
Equiripple LowPass, 41-7
erf(x), 44-6

erfc(x), 44-6

E-Series Calibrate, 29-12
Event or Time Counter Config, 27-5
Exact Blackman Window, 42-3
Exclusive Or, 5-4

Exponential, 4-18

Exponential (Arg) -1, 4-18
Exponential Fit, 43-2
Exponential Fit Coefficients, 43-2
Exponential Window, 42-4

F

F Distribution, 44-6

Fast Hilbert Transform, 39-10
FHT, 39-12

File Dialog, 11-16

File/Directory Info, 11-16

Find First Error, 10-10

FindLstn, 35-6

FindRQS, 35-5

FIR Narrowband Coefficients, 41-7
FIR Narrowband Filter, 41-9

FIR Windowed Coefficients, 41-9
FIR Windowed Filter, 41-9

Fixed Constants, 4-22

Flat Top Window, 42-4

Flatten To String, 13-4

Flush File, 11-16

Flush Queue, 13-13

LabVIEW Function and VI Reference Manual -4

Flush Serial Buffer, 33-18

For Loop, 3-2

Force Window, 42-4

Format & Append, 6-15

Format & Strip, 6-16

Format Date/Time String Function, 10-6
Format Into String, 6-6

Formula Node, 3-3

From Decimal, 6-16

From Exponential/Fract/Eng, 6-16
From Hexadecimal, 6-16

From Octal, 6-17

G

Gaussian White Noise, 38-3
General Cosine Window, 42-5
General Error Handler, 10-11
General Histogram, 44-6
General LS Linear Fit, 43-3
General Polynomial Fit, 43-3
Generate Delayed Pulse, 26-2
Generate Occurrence, 13-19
Generate Pulse Train, 26-3

Get Channel Information, 29-19
Get DAQ Channel Names, 29-18
Get DAQ Device Information, 29-13
Get Date/Time In Seconds, 10-8
Get Date/Time String, 10-8

Get Help Window Status, 12-7
Get Menu Item Info, 12-9

Get Menu Selection, 12-9

Get Menu Shortcut Info, 12-10
Get Notifier Status, 13-10

Get Queue Status, 13-13

Get Rendezvous Status, 13-15
Get Scale Information, 29-19
Get SCXI Information, 29-14
Get Semaphore Status, 13-18
Get Target ID, 52-4, 53-3
Global Variable, 3-3

GPIB Clear, 34-3

GPIB Initialization, 34-4

GPIB Misc, 34-4

GPIB Read, 34-5

GPIB Serial Poll, 34-5

GPIB Status, 34-6

GPIB Trigger, 34-6

© National Instruments Corporation

GPIB Wait, 34-6

GPIB Write, 34-6

Greater Or Equal To 0?, 9-7

Greater Or Equal?, 9-7

Greater Than 0?, 9-7

Greater?, 9-6

gts — Go from active Controller to standby, 34-10

H

Hamming Window, 42-6
Hanning Window, 42-6
Harmonic Analyzer, 40-3
Hex Digit?, 9-7
Histogram, 44-7
Hyperbolic Cosine, 4-14
Hyperbolic Sine, 4-15
Hyperbolic Tangent, 4-15

ICTR Control, 27-5, 28-10

IIR Cascade Filter, 41-10

IIR Cascade Filter with Integrated Circuit, 41-11
IIR Filter, 41-11

IIR Filter with Integrated Circuit, 41-11
Implies, 5-4

Impulse Pattern, 38-4

Impulse Response Function, 40-4

In Port (Windows 3.1 and Windows 95), 13-7
In Range?, 9-7

Index & Append, 6-8

Index & Bundle Cluster Array, 8-5
Index & Strip, 6-8

Index Array, 7-5

Initialize Array, 7-5

Insert Menu Items, 12-10

Insert Queue Element, 13-13

Integral x(t), 39-13

Interleave 1D Arrays, 7-6

Interpolate 1D Array, 7-6

Inv Chebyshev Coefficients, 41-12

Inv Chi Square Distribution, 44-8

Inv F Distribution, 44-9

Inv Normal Distribution, 44-9

Inv T Distribution, 44-9

Inverse Chebyshev Filter, 41-12
Inverse Complex FFT, 39-13

© National Instruments Corporation -5

Index

Inverse Cosine, 4-15

Inverse Fast Hilbert Transform, 39-14
Inverse FHT, 39-15

Inverse Hyperbolic Cosine, 4-15
Inverse Hyperbolic Sine, 4-15
Inverse Hyperbolic Tangent, 4-16
Inverse Matrix, 45-12

Inverse Real FFT, 39-16

Inverse Sine, 4-16

Inverse Tangent, 4-16

Inverse Tangent (2 Input), 4-16
Invoke Node, 12-3, 51-3

IP To String, 48-3

ist — Set individual status bit, 34-11

J

Join Numbers, 13-4

K

Kaiser-Bessel Window, 42-6

L

Less Or Equal To 0?, 9-8
Less Or Equal?, 9-8

Less Than 0?, 9-8

Less?, 9-8

Lexical Class, 9-8

Line Feed, 6-20

Linear Fit, 43-4

Linear Fit Coefficients, 43-4
List Directory, 11-17

llo — Local lockout, 34-11
loc — Go to local, 34-7

loc — Place Controller in local state, 34-11
Local Variable, 3-4

Lock Range, 11-17
Logarithm Base 2, 4-18
Logarithm Base 10, 4-18
Logarithm Base X, 4-18
Logical Shift, 13-4

LPM-16 Calibrate, 29-14
LU Factorization, 45-13

Make Alias, 52-13

LabVIEW Function and VI Reference Manual

Index

MakeAddr, 35-10

Mantissa & Exponent, 13-5
Master Slave Config, 29-14
Match Pattern, 6-8

Matrix Condition Number, 45-13
Matrix Norm, 45-13

Matrix Rank, 45-14

Max & Min, 9-9

Mean, 44-10

Measure Frequency, 26-3
Measure Pulse Width or Period, 26-4
Median, 44-10

Median Filter, 41-13

MIO Calibrate (Windows), 29-15
MIO Configure (Windows), 29-16
Mode, 44-10

Moment About Mean, 44-11
Move, 11-17

MSE, 44-11

Natural Logarithm, 4-19

Natural Logarithm (Arg +1), 4-19
Network Functions (avg), 40-4
New Directory, 11-17

New File, 11-18

Nonlinear Lev-Mar Fit, 43-5
Normal Distribution, 44-11
Normalize Matrix, 46-4
Normalize Vector, 46-5

Not, 5-4

Not A Notifier, 13-10

Not A Number/Path/Refnum?, 9-9
Not A Path, 11-27

Not A Queue, 13-14

Not A Refnum, 11-27

Not A Rendezvous, 13-16

Not A Semaphore, 13-18

Not And, 5-4

Not Equal To 07, 9-9

Not Equal?, 9-9

Not Exclusive Or, 5-4

Not Or, 5-4

Number To Boolean Array, 4-11, 5-5
Numeric Integration, 47-2

LabVIEW Function and VI Reference Manual -6

0

Octal Digit?, 9-10

off — Take controller offline, 34-12
off — Take device offline, 34-7
One Button Dialog Box, 10-8
Open Application Reference, 12-3
Open Automation Refnum, 51-2
Open Config Data, 11-22

Open File, 11-18

Open VI Reference, 12-4
Open/Create/Replace File, 11-7
Or, 5-5

Or Array Elements, 5-5

Out Port (Windows 3.1 and Windows 95), 13-7
Outer Product, 45-14

P

Parks-McClellan, 41-13
PassControl, 35-3

Path Constant, 11-27

Path To Array Of Strings, 11-18, 6-19
Path To String, 11-18, 6-19

Path Type, 11-18

pct — Pass control, 34-8

Peak Detector, 40-5, 47-3

Periodic Random Noise, 38-4

Pick Line & Append, 6-11

Polar To Complex, 4-20
Polynomial Interpolation, 43-5
Power & Frequency Estimate, 40-5
Power Of 2, 4-19

Power Of 10, 4-19

Power Of X, 4-19

Power Spectrum, 39-17

ppc — Parallel poll configure, 34-8
ppc — Parallel poll configure (enable and disable), 34-12
PPC Accept Session, 53-2

PPC Browser, 52-5, 53-2

PPC Close Port, 53-2

PPC End Session, 53-3

PPC Inform Session, 53-3

PPC Open Port, 53-3

PPC Read, 53-4

PPC Start Session, 53-4

PPC Write, 53-5

PPoll, 35-5

PPollConfig, 35-2

© National Instruments Corporation

PPollUnconfig, 35-5

ppu — Parallel poll unconfigure, 34-12

PREFIX Close, 32-2

PREFIX Error Message, 32-2

PREFIX Error Query, Error Query (Multiple) and Error
Message, 32-3

PREFIX Initialize and PREFIX Initialize (VXI,
Reg-based), 32-3

PREFIX Message-Based Template and Register-Based

Template, 32-4
PREFIX Register-Based Template, 32-4
PREFIX Reset, 32-4
PREFIX Revision Query, 32-5
PREFIX Self-Test, 32-5
PREFIX Utility Clean UP Initialize, 32-5
PREFIX Utility Default Instrument Setup, 32-6
PREFIX VI Tree, 32-6
Print Panel, 12-5
Printable?, 9-10
Property Node, (Application Control Functions), 12-5,
Property Node (ActiveX Automation Functions), 51-3
Pseudolnverse Matrix, 45-14
Pulse Parameters, 40-5
Pulse Pattern, 38-5
Pulse Width or Period Meas Config, 27-7

Q

QR Factorization, 45-15
Quick Scale 1D, 46-6
Quick Scale 2D, 46-6
Quit, 12-6

R

Ramp Pattern, 38-5

Rational Interpolation, 43-5
RcvRespMsg, 35-8

Re/lIm To Complex, 4-21

Read Characters From File, 11-7
Read File, 11-7

Read from Digital Line, 23-1
Read from Digital Port, 23-2
Read From 116 File, 11-13

Read From SGL File, 11-13
Read From Spreadsheet File, 11-10
Read Key (Boolean), 11-22
Read Key (Double), 11-22

Read Key (132), 11-23

© MNational Instruments Corporation

-7

Index

Read Key (Path), 11-23

Read Key (String), 11-23

Read Key (U32), 11-23

Read Lines From File, 11-10

ReadStatus, 35-3

Real FFT, 39-18

Receive, 35-3

ReceiveSetup, 35-9

Refnum To Path, 11-19, 6-19

Release Semaphore, 13-18

Remove Key, 11-24

Remove Queue Element, 13-14

Remove Section, 11-24

Replace Array Element, 7-6

ResetSys, 35-6

Reshape Array, 7-6

Resize Rendezvous, 13-16

Reverse 1D Array, 7-6

Reverse String, 6-11

RMS, 44-12

Rotate 1D Array, 7-7

Rotate Left With Carry, 13-5

Rotate Right With Carry, 13-5

Rotate String, 6-11

Rotate, 13-5

Route Signal, 29-16

rpp — Conduct parallel poll, 34-12

rsc — Release or request system control, 34-13

rsv — Request service and/or set the serial poll
status byte, 34-13

RTSI Control, 29-16

S

Sample Variance, 44-12

Sawtooth Wave, 38-6

Scale 1D, 46-7

Scale 2D, 46-7

Scaled Time Domain Window, 40-6
Scaling Constant Tuner, 29-17, 30-9
Scan From String, 6-11

Scan String for Tokens, 6-13

SCXI Cal Constants, 29-17

SCXI Temperature Scan, 30-11
Search 1D Array, 7-7

Secant, 4-16

Seconds To Date/Time, 10-9

Seek, 11-19

LabVIEW Function and VI Reference Manual

Index

Select, 9-10

Select & Append, 6-13

Select & Strip, 6-14

Send, 35-3

Send Notification, 13-10
SendCmds, 35-9
SendDataBytes, 35-9

SendIFC, 35-6

SendList, 35-5

SendLLO, 35-7

SendSetup, 35-9

Sequence Structure, 3-2

Serial Port Break, 36-2

Serial Port Init, 36-2

Serial Port Read, 36-2

Serial Port Write, 36-2

Set DAQ Device Information, 29-17
Set Menu Item Info, 12-11

Set Occurrence, 13-20

Set SCXI Information, 29-18
Set Serial Buffer Size, 33-19
SetRWLS, 35-7

SetTimeOut, 35-10

sic — Send interface clear, 34-13
Simple Error Handler, 10-11
Sinc, 4-17

Sinc Pattern, 38-7

Sine, 4-17

Sine & Cosine, 4-17

Sine Pattern, 38-7

Sine Wave, 38-8

Solve Complex Linear Equations, 45-15
Solve Linear Equations, 45-16
Sort 1D Array, 7-7

Spectrum Unit Conversion, 40-7
Spline Interpolant, 43-6

Spline Interpolation, 43-7

Split 1D Array, 7-7

Split Number, 13-5

Split String, 6-14

Spreadsheet String To Array, 6-14
Square Wave, 38-8

sre — Unassert or assert remote enable, 34-14
Standard Deviation, 44-12

Stop, 12-6

String Constant, 6-20

String Length, 6-14

String Subset, 6-14

LabVIEW Function and VI Reference Manual -8

String To Byte Array, 4-11, 6-19
String To IP, 48-3

String To Path, 11-19, 6-20
Strip Path, 11-11

SVD Factorization, 45-17
Swap Bytes, 13-6

Swap Words, 13-6

T

T Distribution, 44-13

Tab, 6-20

Tangent, 4-17

TCP Close Connection, 48-3

TCP Create Listener, 48-3

TCP Listen, 48-2

TCP Open Connection, 48-4

TCP Read, 48-4

TCP Wait on Listener, 48-4

TCP Write, 48-4

Temporary Directory Constant, 11-28
Test Complex Positive Definite, 45-18
Test Positive Definite, 45-18
TestSRQ, 35-7

TestSys, 35-8

Threshold 1D Array, 7-7

Threshold Peak Detector, 40-7, 47-4
Tick Count (ms), 10-9

To Byte Integer, 4-12

To Decimal, 6-17

To Double Precision Complex, 4-12
To Double Precision Float, 4-12

To Engineering, 6-17

To Exponential, 6-17

To Extend Precision Complex, 4-12
To Extended Precision Float, 4-12
To Fractional, 6-17

To Hexadecimal, 6-18

To Long Integer, 4-12

To Lower Case, 6-15

To Octal, 6-18

To Single Precision Complex, 4-13
To Single Precision Float, 4-13

To Unsigned Byte Integer, 4-13

To Unsigned Long Integer, 4-13

To Unsigned Word Integer, 4-13

To Upper Case, 6-15

To Word Integer, 4-13

© National Instruments Corporation

Trace, 45-18

Transfer Function, 40-7
Transpose 2D Array, 7-8
Triangle Wave, 38-9
Triangle Window, 42-7
Trigger, 35-4

TriggerList, 35-6

Two Button Dialog Box, 10-9
Type and Creator, 11-19
Type Cast, 13-6

U

UDP Close, 49-1

UDP Open, 49-1

UDP Read, 49-2

UDP Write, 49-2

Unbundle By Name, 8-6
Unbundle, 8-6

Unflatten From String, 13-7
Uniform White Noise, 38-10
Unit Vector, 46-8

Unwrap Phase, 39-19

User Definable Arithmetic Constants, 4-8

v

Variance, 44-13

VI Library Constant, 11-28

VISA Assert Trigger, 33-5

VISA Clear, 33-5

VISA Close, 33-5

VISA Disable Event, 33-10

VISA Discard Events, 33-10

VISA Enable Event, 33-11

VISA Find Resource, 33-6

VISA In8/1n16 / In32, 33-12

VISA Lock, 33-6

VISA Map Address, 33-16

VISA Memory Allocation, 33-13, 33-17

VISA Memory Free, 33-13, 33-17

VISA Move In8 / Move In16 / Move In32, 33-14
VISA Move Out8 / Move Outl6 / Move Out32, 33-14
VISA Open, 33-7

VISA Out8 / Outl6 / Out32, 33-15

VISA Peek8 / Peekl6 / Peek32, 33-17

© National Instruments Corporation -9

Index

VISA Poke8 / Pokel6 / Poke32, 33-17
VISA Read, 33-8

VISA Read STB, 33-9

VISA Status Description, 33-9

VISA Unlock, 33-9

VISA Unmap Address, 33-18

VISA Wait On Event, 33-11

VISA Write, 33-9

Volume Info, 11-20

W

Wait (ms), 10-9

Wait at Rendezvous, 13-16

Wait for GPIB RQS, 34-6

Wait On Notification, 13-10

Wait On Notification From Multiple, 13-11
Wait On Occurrence, 13-20

Wait Until Next ms Multiple, 10-10
Wait+ (ms), 27-7

WaitSRQ, 35-8

While Loop, 3-3

White Space?, 9-10

Write Characters To File, 11-11
Write File, 11-11

Write Key (Boolean), 11-24
Write Key (Double), 11-24

Write Key (132), 11-25

Write Key (Path), 11-25

Write Key (String), 11-25

Write Key (U32), 11-26

Write to Digital Line, 23-2

Write to Digital Port, 23-3

Write To 116 File, 11-13

Write To SGL File, 11-14

Write To Spreadsheet File, 11-12

Y
YI[il = Clip {X[il}, 39-19
Y[i] = X[i-n], 39-19

z

Zero Padder, 39-20

LabVIEW Function and VI Reference Manual

	LabVIEW Function and VI Reference Manual
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING

	Contents
	About This Manual
	Organization of the Product User Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction to the G Functions and VIs
	Locating the G Functions and VIs
	Function and VI Overviews
	Structures
	Numeric Functions
	Boolean Functions
	String Functions
	Array Functions
	Cluster Functions
	Comparison Functions
	Time and Dialog Functions
	File I/O Functions
	Advanced Functions
	DAQ
	Instrument I/O
	Communication
	Analysis VIs
	Select A VI...
	Tutorial
	Instrument Driver Library
	User Library
	Application Control

	Chapter 2 G Function and VI Reference Overview
	G Functions Overview
	Introduction to Polymorphism
	Polymorphism
	Unit Polymorphism
	Numeric Conversion
	Overflow and Underflow
	Wire Styles

	Chapter 3 Structures
	Structures Overview
	Case Structure
	Sequence Structure
	For Loop
	While Loop
	Formula Node
	Global Variable
	Local Variable

	Chapter 4 Numeric Functions
	Polymorphism for Numeric Functions
	Polymorphism for Transcendental Functions
	Polymorphism for Conversion Functions
	Polymorphism for Complex Functions
	Arithmetic Function Descriptions
	User Definable Arithmetic Constants

	Conversion Functions Descriptions
	Boolean Array To Number
	Boolean To (0,1)
	Byte Array To String
	Cast Unit Bases
	Convert Unit
	Number To Boolean Array
	String To Byte Array
	To Byte Integer
	To Double Precision Complex
	To Double Precision Float
	To Extend Precision Complex
	To Extended Precision Float
	To Long Integer
	To Single Precision Complex
	To Single Precision Float
	To Unsigned Byte Integer
	To Unsigned Long Integer
	To Unsigned Word Integer
	To Word Integer

	Trigonometric and Hyperbolic Functions Description...
	Cosecant
	Cosine
	Cotangent
	Hyperbolic Cosine
	Hyperbolic Sine
	Hyperbolic Tangent
	Inverse Cosine
	Inverse Hyperbolic Cosine
	Inverse Hyperbolic Sine
	Inverse Hyperbolic Tangent
	Inverse Sine
	Inverse Tangent
	Inverse Tangent (2 Input)
	Secant
	Sinc
	Sine
	Sine & Cosine
	Tangent
	Exponential
	Exponential (Arg) –1
	Logarithm Base 2
	Logarithm Base 10
	Logarithm Base X
	Natural Logarithm
	Natural Logarithm (Arg +1)
	Power Of 2
	Power Of 10
	Power Of X

	Complex Function Descriptions
	Complex Conjugate
	Complex To Polar
	Complex To Re/Im
	Polar To Complex
	Re/Im To Complex

	Additional Numeric Constants Descriptions
	Additional User Definable Constants
	Fixed Constants

	Chapter 5 Boolean Functions
	Polymorphism for Boolean Functions
	Boolean Function Descriptions
	And
	And Array Elements
	Boolean Array To Number
	Boolean To (0,1)
	Compound Arithmetic
	Exclusive Or
	Implies
	Not
	Not And
	Not Exclusive Or
	Not Or
	Number To Boolean Array
	Or
	Or Array Elements
	Boolean Constant

	Chapter 6 String Functions
	Overview of Polymorphism for String Functions
	Polymorphism for String Functions
	Polymorphism for Additional String to Number Funct...
	Polymorphism for String Conversion Functions

	Format Strings Overview
	String Function Descriptions
	Array To Spreadsheet String
	Concatenate Strings
	Format Into String
	Index & Append
	Index & Strip
	Match Pattern
	Pick Line & Append
	Reverse String
	Rotate String
	Scan From String
	Scan String for Tokens
	Select & Append
	Select & Strip
	Split String
	Spreadsheet String To Array
	String Length
	String Subset
	To Lower Case
	To Upper Case

	Additional String To Number Function Descriptions
	Format & Append
	Format & Strip
	From Decimal
	From Exponential/Fract/Eng
	From Hexadecimal
	From Octal
	To Decimal
	To Engineering
	To Exponential
	To Fractional
	To Hexadecimal
	To Octal

	String Conversion Function Descriptions
	Array Of Strings To Path
	Byte Array To String
	Path To Array Of Strings
	Path To String
	Refnum To Path
	String To Byte Array
	String To Path

	String Fixed Constants
	String Constant
	Carriage Return
	Empty String
	End of Line
	Line Feed
	Tab

	Chapter 7 Array Functions
	Array Function Overview
	Out-of-Range Index Values

	Polymorphism for Array Functions
	Array Function Descriptions
	Array Max & Min
	Array Size
	Array Subset
	Array To Cluster
	Build Array
	Cluster To Array
	Decimate 1D Array
	Index Array
	Initialize Array
	Interleave 1D Arrays
	Interpolate 1D Array
	Replace Array Element
	Reshape Array
	Reverse 1D Array
	Rotate 1D Array
	Search 1D Array
	Sort 1D Array
	Split 1D Array
	Threshold 1D Array
	Transpose 2D Array

	Chapter 8 Cluster Functions
	Cluster Function Overview
	Polymorphism for Cluster Functions
	Setting the Order of Cluster Elements
	Cluster Function Descriptions
	Array To Cluster
	Build Cluster Array
	Bundle
	Bundle By Name
	Cluster To Array
	Index & Bundle Cluster Array
	Unbundle
	Unbundle By Name

	Chapter 9 Comparison Functions
	Comparison Function Overview
	Boolean Comparison
	String Comparison
	Numeric Comparison
	Cluster Comparison
	Comparison Modes
	Character Comparison

	Polymorphism for Comparison Functions
	Comparison Function Descriptions
	Decimal Digit?
	Empty String/Path?
	Equal?
	Equal To 0?
	Greater?
	Greater Or Equal?
	Greater Or Equal To 0?
	Greater Than 0?
	Hex Digit?
	In Range?
	Less?
	Less Or Equal?
	Less Or Equal To 0?
	Less Than 0?
	Lexical Class
	Max & Min
	Not A Number/Path/Refnum?
	Not Equal?
	Not Equal To 0?
	Octal Digit?
	Printable?
	Select
	White Space?

	Chapter 10 Time, Dialog, and Error Functions
	Time, Dialog, and Error Functions Overview
	Timing Functions
	Error Handling Overview
	Error I/O and the Error State Cluster

	Time and Dialog Function Descriptions
	Date/Time To Seconds
	Format Date/Time String Function
	Get Date/Time In Seconds
	Get Date/Time String
	One Button Dialog Box
	Seconds To Date/Time
	Tick Count (ms)
	Two Button Dialog Box
	Wait (ms)
	Wait Until Next ms Multiple

	Error Handling VI Descriptions
	Find First Error
	General Error Handler
	Simple Error Handler

	Chapter 11 File Functions
	File I/O VI and Function Overview
	High-Level File VIs
	Low-Level File VIs and File Functions
	Byte Stream and Datalog Files
	Flow-Through Parameters
	Error I/O in File I/O Functions
	Permissions
	File I/O Function and VI Descriptions
	Build Path
	Close File
	Open/Create/Replace File
	Read Characters From File
	Read File
	Read From Spreadsheet File
	Read Lines From File
	Strip Path
	Write Characters To File
	Write File
	Write To Spreadsheet File

	Binary File VI Descriptions
	Read From I16 File
	Read From SGL File
	Write To I16 File
	Write To SGL File

	Advanced File Function Descriptions
	Access Rights
	Array Of Strings To Path
	Copy
	Delete
	EOF
	File Dialog
	File/Directory Info
	Flush File
	List Directory
	Lock Range
	Move
	New Directory
	New File
	Open File
	Path To Array Of Strings
	Path To String
	Path Type
	Refnum To Path
	Seek
	String To Path
	Type and Creator
	Volume Info

	Configuration File VIs
	Close Config Data
	Open Config Data
	Read Key (Boolean)
	Read Key (Double)
	Read Key (I32)
	Read Key (Path)
	Read Key (String)
	Read Key (U32)
	Remove Key
	Remove Section
	Write Key (Boolean)
	Write Key (Double)
	Write Key (I32)
	Write Key (Path)
	Write Key (String)
	Write Key (U32)

	File Constants Descriptions
	Current VI’s Path Constant
	Default Directory Constant
	Empty Path
	Not A Path
	Not A Refnum
	Path Constant
	Temporary Directory Constant
	VI Library Constant

	Chapter 12 Application Control Functions
	Application Control Functions
	Call By Reference Node
	Call Chain
	Close Application or VI Reference
	Invoke Node
	Open Application Reference
	Open VI Reference
	Print Panel
	Property Node
	Quit
	Stop

	Help Function Descriptions
	Control Help Window
	Control Online Help
	Get Help Window Status

	Menu Functions
	Delete Menu Items
	Enable Menu Tracking
	Get Menu Item Info
	Get Menu Selection
	Get Menu Shortcut Info
	Insert Menu Items
	Set Menu Item Info

	Chapter 13 Advanced Functions
	Advanced Function Descriptions
	Beep
	Code Interface Node
	Call Library Function

	Data Manipulation Function Descriptions
	Flatten To String
	Join Numbers
	Logical Shift
	Mantissa & Exponent
	Rotate
	Rotate Left With Carry
	Rotate Right With Carry
	Split Number
	Swap Bytes
	Swap Words
	Type Cast
	Unflatten From String

	Memory VI Descriptions
	In Port (Windows 3.1 and Windows 95)
	Out Port (Windows 3.1 and Windows 95)

	Synchronization VIs
	Notification VIs
	Cancel Notification
	Create Notifier
	Destroy Notifier
	Get Notifier Status
	Not A Notifier
	Send Notification
	Wait On Notification
	Wait On Notification From Multiple

	Queue VIs
	Create Queue
	Destroy Queue
	Flush Queue
	Get Queue Status
	Insert Queue Element
	Not A Queue
	Remove Queue Element

	Rendezvous VIs
	Create Rendezvous
	Destroy Rendezvous
	Get Rendezvous Status
	Not A Rendezvous
	Resize Rendezvous
	Wait at Rendezvous

	Semaphore VIs
	Acquire Semaphore
	Create Semaphore
	Destroy Semaphore
	Get Semaphore Status
	Not A Semaphore
	Release Semaphore

	Occurrence Function Descriptions
	Generate Occurrence
	Set Occurrence
	Wait On Occurrence

	Chapter 14 Introduction to the LabVIEW Data Acquisition VIs
	Finding Help Online for the DAQ VIs
	The Analog Input VIs
	Easy Analog Input VIs
	Intermediate Analog Input VIs
	Analog Input Utility VIs
	Advanced Analog Input VIs
	Locating Analog Input VI Examples

	Analog Output VIs
	Easy Analog Output VIs
	Intermediate Analog Output VIs
	Analog Output Utility VIs
	Advanced Analog Output VIs
	Locating Analog Output VI Examples

	Digital Function VIs
	Easy Digital I/O VIs
	Intermediate Digital I/O VIs
	Advanced Digital I/O VIs
	Locating Digital I/O VI Examples

	Counter VIs
	Easy Counter VIs
	Intermediate Counter Input VIs
	Advanced Counter VIs
	Locating Counter VI Examples

	Calibration and Configuration VIs
	Signal Conditioning VIs

	Chapter 15 Easy Analog Input VIs
	Easy Analog Input VI Descriptions
	AI Acquire Waveform
	AI Acquire Waveforms
	AI Sample Channel
	AI Sample Channels

	Chapter 16 Intermediate Analog Input VIs
	Handling Errors
	Intermediate Analog Input VI Descriptions
	AI Clear
	AI Config
	AI Read
	AI Single Scan
	AI Start

	Chapter 17 Analog Input Utility VIs
	Handling Errors
	Analog Input Utility VI Descriptions
	AI Continuous Scan
	AI Read One Scan
	AI Waveform Scan

	Chapter 18 Advanced Analog Input VIs
	Advanced Analog Input VI Descriptions
	AI Buffer Config
	AI Buffer Read
	AI Clock Config
	AI Control
	AI Group Config
	AI Hardware Config
	AI Parameter
	AI SingleScan
	AI Trigger Config

	Chapter 19 Easy Analog Output VIs
	Easy Analog Output VI Descriptions
	AO Generate Waveform
	AO Generate Waveforms
	AO Update Channel
	AO Update Channels

	Chapter 20 Intermediate Analog Output VIs
	Handling Errors
	Analog Output VI Descriptions
	AO Clear
	AO Config
	AO Start
	AO Wait
	AO Write

	Chapter 21 Analog Output Utility VIs
	Handling Errors
	Analog Output Utility VI Descriptions
	AO Continuous Gen
	AO Waveform Gen
	AO Write One Update

	Chapter 22 Advanced Analog Output VIs
	Advanced Analog Output VI Descriptions
	AO Buffer Config
	AO Buffer Write
	AO Clock Config
	AO Control
	AO Group Config
	AO Hardware Config
	AO Parameter
	AO Single Update
	AO Trigger and Gate Config (Windows)

	Chapter 23 Easy Digital I/O VIs
	Easy Digital I/O Descriptions
	Read from Digital Line
	Read from Digital Port
	Write to Digital Line
	Write to Digital Port

	Chapter 24 Intermediate Digital I/O VIs
	Handling Errors
	Intermediate Digital I/O VI Descriptions
	DIO Clear
	DIO Config
	DIO Read
	DIO Single Read/Write
	DIO Start
	DIO Wait
	DIO Write

	Chapter 25 Advanced Digital I/O VIs
	Digital Port VI Descriptions
	DIO Port Config
	DIO Port Read
	DIO Port Write

	Digital Group VI Descriptions
	Digital Buffer Config
	Digital Buffer Control
	Digital Buffer Read
	Digital Buffer Write
	Digital Clock Config
	Digital Group Config
	Digital Mode Config
	DIO Parameter
	Digital Single Read
	Digital Single Write
	Digital Trigger Config

	Chapter 26 Easy Counter VIs
	Easy Counter VI Descriptions
	Count Events or Time
	Generate Delayed Pulse
	Generate Pulse Train
	Measure Frequency
	Measure Pulse Width or Period

	Chapter 27 Intermediate Counter VIs
	Handling Errors
	Intermediate Counter VI Descriptions
	Adjacent Counters
	Continuous Pulse Generator Config
	Counter Read
	Counter Start
	Counter Stop
	Delayed Pulse Generator Config
	Down Counter or Divider Config
	Event or Time Counter Config
	ICTR Control
	Pulse Width or Period Meas Config
	Wait+ (ms)

	Chapter 28 Advanced Counter VIs
	Advanced Counter VI Descriptions
	CTR Buffer Config
	CTR Buffer Read
	CTR Group Config
	CTR Mode Config
	CTR Pulse Config
	CTR Control
	ICTRControl

	Chapter 29 Calibration and Configuration VIs
	Calibration and Configuration VI Descriptions
	1200 Calibrate
	A2000 Calibrate
	A2000 Configure
	A2100 Calibrate
	A2100 Config
	A2150 Config
	A2150 Calibrate (Macintosh)
	AO-6/10 Calibrate (Windows)
	Channel To Index
	DAQ Occurrence Config (Windows)
	Device Reset
	DSA Calibrate
	DSP2200 Calibrate (Windows)
	DSP2200 Configure (Windows)
	E-Series Calibrate
	Get DAQ Device Information
	Get SCXI Information
	LPM-16 Calibrate
	Master Slave Config
	MIO Calibrate (Windows)
	MIO Configure (Windows)
	Route Signal
	RTSI Control
	Scaling Constant Tuner
	SCXI Cal Constants
	Set DAQ Device Information
	Set SCXI Information

	Channel Configuration VIs
	Get DAQ Channel Names
	Get Channel Information
	Get Scale Information

	Chapter 30 Signal Conditioning VIs
	Signal Conditioning VI Descriptions
	Convert RTD Reading
	Convert Strain Gauge Reading
	Convert Thermistor Reading
	Convert Thermocouple Buffer
	Convert Thermocouple Reading
	Scaling Constant Tuner
	SCXI Temperature Scan

	Chapter 31 Introduction to LabVIEW Instrument I/O VIs
	Instrument Drivers Overview
	Instrument Driver Distribution
	CD-ROM Instrument Driver Distribution

	Instrument Driver Template VIs

	Introduction to VISA Library
	Introduction to GPIB
	LabVIEW Traditional GPIB Functions
	GPIB 488.2 Functions
	Single-Device Functions
	Multiple-Device Functions
	Bus Management Functions
	Low-Level Functions
	General Functions

	Serial Port VI Overview

	Chapter 32 Instrument Driver Template VIs
	Introduction to Instrument Driver Template VIs
	Instrument Driver Template VI Descriptions
	PREFIX Close
	PREFIX Error Message
	PREFIX Error Query, Error Query (Multiple) and Err...
	PREFIX Initialize and PREFIX Initialize (VXI, Reg-...
	PREFIX Message-Based Template and Register-Based T...
	PREFIX Register-Based Template
	PREFIX Reset
	PREFIX Revision Query
	PREFIX Self-Test
	PREFIX Utility Clean UP Initialize
	PREFIX Utility Default Instrument Setup
	PREFIX VI Tree

	Chapter 33 VISA Library Reference
	Operations
	VISA Library Reference Parameters
	VISA Operation Descriptions
	Easy VISA Find Resources
	Easy VISA Read
	Easy VISA Serial Write and Read
	Easy VISA Write and Read
	Easy VISA Write
	VISA Assert Trigger
	VISA Clear
	VISA Close
	VISA Find Resource
	VISA Lock
	VISA Open
	VISA Read
	VISA Read STB
	VISA Status Description
	VISA Unlock
	VISA Write

	Event Handling Functions
	VISA Disable Event
	VISA Discard Events
	VISA Enable Event
	VISA Wait On Event

	High Level Register Access Functions
	VISA In8 / In16 / In32
	VISA Memory Allocation
	VISA Memory Free
	VISA Move In8 / Move In16 / Move In32
	VISA Move Out8 / Move Out16 / Move Out32
	VISA Out8 / Out16 / Out32

	Low Level Register Access Functions
	VISA Map Address
	VISA Memory Allocation
	VISA Memory Free
	VISA Peek8 / Peek16 / Peek32
	VISA Poke8 / Poke16 / Poke32
	VISA Unmap Address

	VISA Serial Functions
	Flush Serial Buffer
	Set Serial Buffer Size

	VISA Property Node
	VISA Property Node Descriptions
	Fast Data Channel
	General Settings
	GPIB Settings
	Interface Information
	Message-Based Settings
	Modem Line Settings
	PXI Resources
	PXI Settings
	Register-Based Settings
	Serial Settings
	Version Information
	VME/VXE Settings

	Chapter 34 Traditional GPIB Functions
	Traditional�GPIB Function Parameters
	Traditional GPIB Function Behavior
	Traditional GPIB Function Descriptions
	GPIB Clear
	GPIB Initialization
	GPIB Misc
	GPIB Read
	GPIB Serial Poll
	GPIB Status
	GPIB Trigger
	GPIB Wait
	Wait for GPIB RQS
	GPIB Write

	GPIB Device and Controller Functions
	Device Functions
	loc – Go to local
	off – Take device offline
	pct – Pass control
	ppc – Parallel poll configure

	Controller Functions
	cac – Become active Controller
	cmd – Send IEEE�488 commands
	dma – Set DMA mode or programmed I/O mode
	gts – Go from active Controller to standby
	ist – Set individual status bit
	llo – Local lockout
	loc – Place Controller in local state
	off – Take controller offline
	ppc – Parallel poll configure (enable and disable)...
	ppu – Parallel poll unconfigure
	rpp – Conduct parallel poll
	rsc – Release or request system control
	rsv – Request service and/or set the serial poll s...
	sic – Send interface clear
	sre – Unassert or assert remote enable

	Chapter 35 GPIB 488.2 Functions
	GPIB 488.2 Common Function Parameters
	GPIB 488.2 Function Descriptions (Single-Device Fu...
	DevClear
	PPollConfig
	PassControl
	ReadStatus
	Receive
	Send
	Trigger

	GPIB 488.2 Multiple-Device Function Descriptions
	AllSPoll
	DevClearList
	EnableLocal
	EnableRemote
	FindRQS
	PPoll
	PPollUnconfig
	SendList
	TriggerList

	GPIB 488.2 Bus Management Function Descriptions
	FindLstn
	ResetSys
	SendIFC
	SendLLO
	SetRWLS
	TestSRQ
	TestSys
	WaitSRQ

	GPIB 488.2 Low-Level I/O Function Descriptions
	RcvRespMsg
	ReceiveSetup
	SendCmds
	SendDataBytes
	SendSetup

	GPIB 488.2 General Function Descriptions
	MakeAddr
	SetTimeOut

	Chapter 36 Serial Port VIs
	Serial Port VI Descriptions
	Bytes at Serial Port
	Serial Port Break
	Serial Port Init
	Serial Port Read
	Serial Port Write

	Chapter 37 Introduction to Analysis in LabVIEW
	Full Development System
	Analysis VI Overview
	Analysis VI Organization
	Notation and Naming Conventions

	Chapter 38 Signal Generation VIs
	Signal Generation VI Descriptions
	Arbitrary Wave
	Chirp Pattern
	Gaussian White Noise
	Impulse Pattern
	Periodic Random Noise
	Pulse Pattern
	Ramp Pattern
	Sawtooth Wave
	Sinc Pattern
	Sine Pattern
	Sine Wave
	Square Wave
	Triangle Wave
	Uniform White Noise

	Chapter 39 Digital Signal Processing VIs
	Signal Processing VI Descriptions
	AutoCorrelation
	Complex FFT
	Convolution
	Cross Power
	CrossCorrelation
	Decimate
	Deconvolution
	Derivative x(t)
	Fast Hilbert Transform
	FHT
	Integral x(t)
	Inverse Complex FFT
	Inverse Fast Hilbert Transform
	Inverse FHT
	Inverse Real FFT
	Power Spectrum
	Real FFT
	Unwrap Phase
	Y[i] = Clip {X[i]}
	Y[i] = X[i-n]
	Zero Padder

	Chapter 40 Measurement VIs
	Measurement VI Descriptions
	AC & DC Estimator
	Amplitude and Phase Spectrum
	Auto Power Spectrum
	Cross Power Spectrum
	Harmonic Analyzer
	Impulse Response Function
	Network Functions (avg)
	Peak Detector
	Power & Frequency Estimate
	Pulse Parameters
	Scaled Time Domain Window
	Spectrum Unit Conversion
	Threshold Peak Detector
	Transfer Function

	Chapter 41 Filter VIs
	Filter VI Descriptions
	Bessel Coefficients
	Bessel Filter
	Butterworth Coefficients
	Butterworth Filter
	CascadeÆDirect Coefficients
	Chebyshev Coefficients
	Chebyshev Filter
	Convolution
	Elliptic Coefficients
	Elliptic Filter
	Equiripple BandPass
	Equiripple BandStop
	Equiripple HighPass
	Equiripple LowPass
	FIR Narrowband Coefficients
	FIR Narrowband Filter
	FIR Windowed Coefficients
	FIR Windowed Filter
	IIR Cascade Filter
	IIR Cascade Filter with Integrated Circuit
	IIR Filter
	IIR Filter with Integrated Circuit
	Inv Chebyshev Coefficients
	Inverse Chebyshev Filter
	Median Filter
	Parks-McClellan

	Chapter 42 Window VIs
	Window VI Descriptions
	Blackman Window
	Blackman-Harris Window
	Cosine Tapered Window
	Exact Blackman Window
	Exponential Window
	Flat Top Window
	Force Window
	General Cosine Window
	Hamming Window
	Hanning Window
	Kaiser-Bessel Window
	Triangle Window

	Chapter 43 Curve Fitting VIs
	Curve Fitting VI Descriptions
	Exponential Fit
	Exponential Fit Coefficients
	General LS Linear Fit
	General Polynomial Fit
	Linear Fit
	Linear Fit Coefficients
	Nonlinear Lev-Mar Fit
	Polynomial Interpolation
	Rational Interpolation
	Spline Interpolant
	Spline Interpolation

	Chapter 44 Probability and Statistics VIs
	Probability and Statistics VI Descriptions
	1D ANOVA
	2D ANOVA
	3D ANOVA
	Chi Square Distribution
	Contingency Table
	erf(x)
	erfc(x)
	F Distribution
	General Histogram
	Histogram
	Inv Chi Square Distribution
	Inv F Distribution
	Inv Normal Distribution
	Inv T Distribution
	Mean
	Median
	Mode
	Moment About Mean
	MSE
	Normal Distribution
	RMS
	Sample Variance
	Standard Deviation
	T Distribution
	Variance

	Chapter 45 Linear Algebra VIs
	Linear Algebra VI Descriptions
	A x B
	A x Vector
	Cholesky Factorization
	Complex A x B
	Complex A x Vector
	Complex Cholesky Factorization
	Complex Determinant
	Complex Dot Product
	Complex Eigenvalues & Vectors
	Complex Inverse Matrix
	Complex LU Factorization
	Complex Matrix Condition Number
	Complex Matrix Norm
	Complex Matrix Rank
	Complex Matrix Trace
	Complex Outer Product
	Complex PseudoInverse Matrix
	Complex QR Factorization
	Complex SVD Factorization
	Create Special Complex Matrix
	Create Special Matrix
	Determinant
	Dot Product
	EigenValues & Vectors
	Inverse Matrix
	LU Factorization
	Matrix Condition Number
	Matrix Norm
	Matrix Rank
	Outer Product
	PseudoInverse Matrix
	QR Factorization
	Solve Complex Linear Equations
	Solve Linear Equations
	SVD Factorization
	Test Complex Positive Definite
	Test Positive Definite
	Trace

	Chapter 46 Array Operation VIs
	Array Operation VI Descriptions
	1D Linear Evaluation
	1D Polar To Rectangular
	1D Polynomial Evaluation
	1D Rectangular To Polar
	2D Linear Evaluation
	2D Polynomial Evaluation
	Normalize Matrix
	Normalize Vector
	Quick Scale 1D
	Quick Scale 2D
	Scale 1D
	Scale 2D
	Unit Vector

	Chapter 47 Additional Numerical Method VIs
	Additional Numerical Method VI Descriptions
	Complex Polynomial Roots
	Numeric Integration
	Peak Detector
	Threshold Peak Detector

	Chapter 48 TCP VIs
	TCP VI Description
	TCP Listen

	TCP/IP Functions
	IP To String
	String To IP
	TCP Close Connection
	TCP Create Listener
	TCP Open Connection
	TCP Read
	TCP Wait on Listener
	TCP Write

	Chapter 49 UDP VIs
	UDP VI Descriptions
	UDP Close
	UDP Open
	UDP Read
	UDP Write

	Chapter 50 DDE VIs
	DDE Client VI Descriptions
	DDE Advise Check
	DDE Advise Start
	DDE Advise Stop
	DDE Close Conversation
	DDE Execute
	DDE Open Conversation
	DDE Poke
	DDE Request

	DDE Server VI Descriptions
	DDE Srv Check Item
	DDE Srv Register Item
	DDE Srv Register Service
	DDE Srv Set Item
	DDE Srv Unregister Item
	DDE Srv Unregister Service

	Chapter 51 ActiveX Automation Functions
	ActiveX Automation Function Descriptions
	Open Automation Refnum
	Close Automation Refnum
	Invoke Node
	Property Node

	Data Conversion Function
	ActiveX Variant to G Data

	Chapter 52 AppleEvent VIs
	General AppleEvent VI Behavior
	The User Identity Dialog Box
	Target ID
	Send Options
	Targeting VI Descriptions
	Get Target ID
	PPC Browser

	AppleEvent VI Descriptions
	AESend Do Script
	AESend Finder Open
	AESend Open
	AESend Open Document
	AESend Print Document
	AESend Quit Application

	LabVIEW-Specific AppleEvent VIs
	AESend Abort VI
	AESend Close VI
	AESend Open, Run, Close VI
	AESend Run VI
	AESend VI Active?

	Advanced Topics
	Constructing and Sending Other AppleEvents
	Creating AppleEvent Parameters
	Low-Level AppleEvent VIs
	AESend
	Make Alias
	Creating AppleEvent Parameters Using Object Specif...
	AECreate Comp Descriptor
	AECreate Logical Descriptor
	AECreate Object Specifier
	AECreate Range Descriptor
	AECreate Descriptor List
	AECreate Record

	Object Support VI Example

	Sending AppleEvents to LabVIEW from�Other�Applicat...
	Required AppleEvents
	LabVIEW Specific AppleEvents
	Replies to AppleEvents
	Event: Run VI
	Event: Abort VI
	Event: VI Active?
	Event: Close VI

	Chapter 53 Program to Program Communication VIs
	PPC VI Descriptions
	PPC Accept Session
	PPC Browser
	Close All PPC Ports
	PPC Close Port
	PPC End Session
	Get Target ID
	PPC Inform Session
	PPC Open Port
	PPC Read
	PPC Start Session
	PPC Write

	Appendix A Error Codes
	Numeric Error Codes

	Appendix B DAQ Hardware Capabilities
	MIO and AI Device Hardware Capabilities
	Lab and 1200 Series and Portable Devices Hardware�...
	54xx Devices
	SCXI Module Hardware Capabilities
	Analog Output Only Devices Hardware Capabilities
	Dynamic Signal Acquisition Devices Hardware�Capabi...
	Digital Only Devices Hardware Capabilities
	Timing Only Devices Hardware Capabilities
	5102 Devices Hardware Capabilities

	Appendix C GPIB Multiline Interface Messages
	Multiline Interface Messages

	Appendix D Customer Communication
	Index
	Numbers/Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Figures
	Figure 27�1. Setup Mode in ICTR Control
	Figure 27�2. Setup Mode 1 in ICTR Control
	Figure 27�3. Setup Mode 2 in ICTR Control
	Figure 27�4. Setup Mode 3 in ICTR Control
	Figure 27�5. Setup Mode 4 in ICTR Control
	Figure 27�6. Setup Mode 5 in ICTR Control
	Figure 28�1. Unbuffered Mode 2 and 3 Counting
	Figure 28�2. Buffered Mode 3 Counting
	Figure 28�3. Unbuffered Mode 4 High Pulse Width Me...
	Figure 28�4. Buffered Mode 4 Rising-Edge Pulse Wid...
	Figure 28�5. Unbuffered Mode 4 Rising-Edge Period ...
	Figure 28�6. Buffered Mode 4 Rising-Edge Pulse Wid...
	Figure 28�7. Unbuffered Mode 6 High Pulse Width Me...
	Figure 28�8. Buffered Mode 6 High Pulse Width Meas...
	Figure 28�9. Buffered Mode 7 Semi-Period Measureme...
	Figure 30�1. Strain Gauge Bridge Completion Networ...
	Figure 30�2. Strain Gauge Bridge Completion Networ...
	Figure 30�3. Strain Gauge Bridge Completion Networ...
	Figure 30�4. Circuit Diagram of a Thermistor in a ...
	Figure 30�5. Circuit Diagram of a Thermistor with ...
	Figure 41�1. Lowpass Filter
	Figure 41�2. Highpass Filter
	Figure 41�3. Bandpass Filter
	Figure 41�4. Bandstop Filter

	Tables
	Table 6�1. Special Escape Codes�
	Table 6�2. String Syntax (Continued)
	Table 6�3. Possible Format into String Errors�
	Table 6�4. Format Specifiers (Continued)
	Table 6�5. Special Characters for Match Pattern (C...
	Table 6�6. Strings for the Match Pattern Examples ...
	Table 6�7. Scan from String Errors�
	Table 6�8. Scan from String Examples (Continued)
	Table 9�1. Lexical Class Number Descriptions (Cont...
	Table 10�1. Valid Value of Elements for Date/Time ...
	Table 10�2. Format Codes for the Time Format Strin...
	Table 18�1. AI Buffer Config VI Device-Specific Se...
	Table 18�2. Device-Specific Settings and Ranges fo...
	Table 18�3. Device-Specific Settings and Ranges fo...
	Table 18�4. Device-Specific Settings and Ranges fo...
	Table 18�5. AI Hardware Config Channel Configurati...
	Table 18�6. Device-Specific Settings and Ranges fo...
	Table 18�7. Device-Specific Settings and Ranges fo...
	Table 18�8. Restrictions for Analog Triggering on ...
	Table 18�9. Digital Trigger Sources for Devices wi...
	Table 18�10. Device-Specific Settings and Ranges f...
	Table 18�11. Device-Specific Settings and Ranges f...
	Table 18�12. Device-Specific Settings and Ranges f...
	Table 18�13. Device-Specific Settings and Ranges f...
	Table 25�1. Device Specific Parameters and Legal R...
	Table 28�1. Counter Chips and Their Available DAQ ...
	Table 28�2. Valid Counter Numbers for CTR Group Co...
	Table 28�3. Adjacent Counters
	Table 29�1. Channel to Index VI Parameter Examples...
	Table 29�2. Channel to Index VI Parameter Examples...
	Table 34�1. Command String Device Functions�
	Table 34�2. Command String Controller Functions (C...
	Table 51�1. New and Old ActiveX Automation Functio...
	Table 52�1. AppleEvent Descriptor String Formats (...
	Table A�1. Numeric Error Code Ranges (Continued)
	Table A�2. VISA Error Codes (Continued)
	Table A�3. Analysis Error Codes (Continued)
	Table A�4. Data Acquisition VI Error Codes (Contin...
	Table A�5. AppleEvent Error Codes �
	Table A�6. Instrument Driver Error Codes �
	Table A�7. PPC Error Codes (Continued)
	Table A�8. GPIB Error Codes�
	Table A�9. LabVIEW Function Error Codes (Continued...
	Table A�10. LabVIEW-Specific PPC Error Codes�
	Table A�11. TCP and UDP Error Codes�
	Table A�12. Serial Port Error Codes
	Table A�13. LabVIEW-Specific Error Codes for Apple...
	Table A�14. DDE Error Codes (Continued)
	Table B�1. Analog Input Configuration Programmabil...
	Table B�2. Analog Input Characteristics—MIO and AI...
	Table B�3. Analog Input Characteristics—MIO and AI...
	Table B�4. Internal Channel Support—MIO and AI Dev...
	Table B�5. Analog Output Characteristics—MIO and A...
	Table B�6. Analog Output Characteristics—E-Series ...
	Table B�7. Digital I/O Hardware Capabilities—MIO a...
	Table B�8. Counter Characteristics—MIO and AI Devi...
	Table B�9. Counter Usage for Analog Input and Outp...
	Table B�10. Analog Input Configuration Programmabi...
	Table B�11. Analog Input Characteristics—Lab and 1...
	Table B�12. Analog Input Characteristics—Lab and 1...
	Table B�13. Analog Output Characteristics—Lab and ...
	Table B�14. Counter Usage for Analog Input and Out...
	Table B�15. Digital I/O Hardware Capabilities—Lab ...
	Table B�16. Analog Output and Digital Output Chara...
	Table B�17. Counter/Timer Characteristics—Lab and ...
	Table B�18. Analog Input Characteristics—SCXI Modu...
	Table B�19. Analog Output Characteristics—SCXI Mod...
	Table B�20. Relay Characteristics—SCXI Modules�
	Table B�21. Digital Input and Output Characteristi...
	Table B�22. Terminal Block Selection Guide—SCXI Mo...
	Table B�23. Analog Input Configuration Programmabi...
	Table B�24. Analog Input Configuration Programmabi...
	Table B�25. Analog Output Characteristics—Analog O...
	Table B�26. Analog Input Configuration Programmabi...
	Table B�27. Analog Output Characteristics—Dynamic ...
	Table B�28. Analog Input Characteristics—Dynamic S...
	Table B�29. Digital Hardware Capabilities—Digital ...
	Table B�30. Digital Hardware Capabilities—Timing O...
	Table B�31. Counter/Timer Characteristics—Timing O...
	Table B�32. Analog Input Configuration Programmabi...
	Table B�33. Analog Input Characteristics
	Table B�34. Analog Input Characteristics, Part 2�

	fix: DAQ Hardware Capabilities,

