
1

STAR Trigger Auxiliary Configuration Files

H. J. Crawford, E. G. Judd, J. M. Engelage, C. W. Perkins, J. M. Nelson

August 28, 2018

The configuration of most of the STAR Level-0 Trigger System is controlled through the Tier1

file. That file contains the names of auxiliary files that are used to configure large memories like

look-up tables and DSM FPGA configuration memories. However, some pieces of the Level-0

VME system configured independently of the Tier1 file: the definition of which algorithm is

loaded into each QT board, and the definition of the QT slew correction tables. The procedure

for loading the QT algorithms and generating all of those auxiliary files is documented here.

Loading QT MCS Files

 Determine what type or generation QT board you need to load

o Connect to the debug port of the VME CPU:

 EITHER telnet trgserv.trg.bnl.local <port_number>

 OR grab <cpu_name>

 In order to get a list of which port numbers correspond to which CPU you

can enter “grab xxx”. Since “xxx” is not a valid CPU name the grab

command will respond by printing the list of valid CPU names and their

corresponding port numbers.

o At the prompt, use the “m” command to query the FPGA version running on the

mother board (i.e “m 0xYY804100,4” where “YY” is the VME address of the

board to be loaded

 If the value has the form “abcd####” then this is a 1st generation board.

 If the value has the form “fedc####” then it is a 2nd generation board

 1st Generation QT Boards

o MCS files are kept in startrg.starp.bnl.gov:~trg/chris/qt_mcs_files and the

program to load those files is up one directory in ~trg/chris

o Reboot the CPU using its minimal startup script, not the STAR data taking script

 Ctrl-x to get the CPU to reboot

 As it starts to reboot type any character to get it to stop and wait

 When you have a prompt enter “c” (for change)

 Carriage-return through the entries until you get to the startup file

 Make a note of which startup file the CPU is currently using, and then

change it to /home/startrg/trg/cfg/STARTUP/qt.startup.min

 Carriage-return until you come to the “VxWorks” prompt, and then enter

“@” to tell the CPU to finish booting.

o Change to the “/home/startrg/trg/chris” directory, load the program, change to the

qt_mcs_files subdirectory and run the program, i.e.:

-> cd "/home/startrg/trg/chris"

value = 0 = 0x0

2

-> ld < prom_programmer.o

value = 33528704 = 0x1ff9b80

-> cd "qt_mcs_files"

value = 0 = 0x0

-> prom_prog(0x10000000,"qt32b_l0_v6_4.mcs")

Programming board 0x10000000

Validating chain...

Found device...

Loading ISPEN instruction...

Checking for read/write protect...

Loading XSC_UNLOCK instruction...

Erasing PROM...

Loading ISPEN instruction...

Checking for read/write protect...

Loading XSC_DATA_BTC instruction...

Loading ISC_PROGRAM instruction...

Checking device status...

PROM ready for programming

Programming prom with: qt32b_l0_v6_4.mcs

PROM programmed: 65536

Verfying PROM contents

PROM verified 65536

Configuring FPGA...

FPGA configured

Time: 64s

value = 0 = 0x0

->

o Reboot the CPU (Ctrl-x) and then read the ID register of any of the 4 daughter

cards using the “m” command and check that it shows the correct version number.

This register returns 0xabcdN0XY where N is the geographic ID (0:3) of the

daughter card and X/Y is the major/minor version number of the code, e.g.:

-> m 0x109c4000,4

109c4000: abcd0064-.

o If correct, reboot the CPU with Ctrl-x, stopping the process before the CPU can

be loaded, change the startup script back to its original STAR data taking script

(qt.startup.full) and complete the reboot sequence using “@” at the VxWorks

prompt

 2nd Generation QT Boards

o The process for loading MCS files in 2nd generation QT boards is basically the

same as for the 1st generation boards. All the files are kept in the same directories.

However, a different program is loaded and the output message are also slightly

different.

o Reboot the CPU using its minimal startup script then change to the

“/home/startrg/trg/chris” directory, load the 2nd generation program, change to the

qt_mcs_files subdirectory and run the program, e.g:

3

-> ld < prom_programmer4.o

value = 33528704 = 0x1ff9b80

-> cd "qt_mcs_files"

value = 0 = 0x0

-> prom_prog(0x19000000,"qt32c_l0_v7_8.mcs")

To program XCF08P (QT8 2006) press 1

To program XCF16P (QT8 2015) press 2

2

Invalid Entry

Programming QT8 2015

Programming board 0x19000000

Validating chain...

Found device...

Loading ISPEN instruction...

Checking for read/write protect...

Loading XSC_UNLOCK instruction...

Erasing PROM...

Loading ISPEN instruction...

Checking for read/write protect...

Loading XSC_DATA_BTC instruction...

Loading ISC_PROGRAM instruction...

Checking device status...

PROM ready for programming

Programming prom with: qt32c_l0_v7_8.mcs

PROM programmed: 65536

Verfying PROM contents

PROM verified 65536

Configuring FPGA...

FPGA configured

Time: 64s

value = 0 = 0x0

o -> Reboot the CPU (Ctrl-x) and then read the ID register of any of the 4 daughter

cards using the “m” command and check that it shows the correct version number.

This register returns 0xfedcN0XY where N is the geographic ID (0:3) of the

daughter card and X/Y is the major/minor version number of the code, e.g.:

-> m 0x199c4000,4

199c4000: fedc0078-

o If correct, reboot the CPU with Ctrl-x, stopping the process before the CPU can

be loaded, change the startup script back to its original STAR data taking script

(qt.startup.full) and complete the reboot sequence using “@” at the VxWorks

prompt

QT LUT Files

 Binary Files

o The binary files are kept in startrg.starp.bnl.gov:~trg/cfg/Tier1/QT_LUT

4

o The name of the binary file is specified in the Tier1 file under the QT_DB_LUT

flag, which appears once for each QT board.

o During configuration the name of the binary file is extracted from the Tier1 file

and passed to the QT_LUT_Load function, which is part of QT_Config.C. The

location of the file is hardwired into QT_Config.C.

o QT_LUT_Load opens the binary file and downloads the information directly to

the LUTS. The function does not do any data processing because that has already

been done. The binary file contains the actual LUT data.

o QT_Config.C is kept in ~trg/trg_soft_dev/trglib

o The binary files are generated by l2ana01.trg.bnl.local:~trg/online_l2/qtPed.cc.

o The qtPed function is called once for each QT crate at the end of a pedestal run.

o The input is the data from that Run and the Crate TAC offset file, which can put

each channel in Offset-mode or Gain-mode (see appropriate section below for

details). Note that the default setting is the basic Pedestal-mode which is used for

ADC channels. Gain-mode is occasionally used for some ADC channels. Offset-

mode is only used for TAC channels.

o qtPed loops over all the data and calculates a hit count, ADC sum and ADC2 sum

for every channel of every board. All ADC values greater than 0 and less than

4095 (0xfff) are included.

o Next qtPed loops over every channel on every board and calculates the mean and

sigma for each channel. If mean = 0.0 then it is reset to (MIN_QT_PED = 1). The

pedestal value is then set to:

 Pedestal = ((int) (mean+0.5)) + qt_ped_offset

where qt_ped_offset has a default value of 1, but can be reset from the “TRG

RUN” window of the Run Control GUI. (NOTE: DETAILS ON THE

LOCATION OF THIS WINDOW STILL NEED TO BE FILLED IN).

o Finally, qtPed performs a triple nested loop over 17 QT boards (hardwired

maximum), 32 channels per board and ADC values from 0 to 4095. For each

value:

 If ADC < Pedestal, then LUT value = 0

 Else If Offset-mode AND ADC<offset then LUT value = 0

 Else If Pedestal-mode then, LUT value = ADC – Pedestal + qt_ped_offset

 Else If Offset-mode then LUT value = ADC – Offset

 Else If Gain-mode AND Gain>0 then

LUT value = (ADC – Pedestal + qt_ped_offset) << gain

 Else (i.e. Gain-mode AND Gain<0) then

LUT value = (ADC - Pedestal + qt_ped_offset) >> - gain

The LUT values are written to the binary files while the ((int) (mean+0.5)) and

sigma values are written to the Pedestal Mean files.

 Pedestal Mean Files

5

o The binary LUT files are difficult for us mere mortals to read so qtPed also writes

out the ASCII-format Means file in

l2ana01.trg.bnl.local:~trg/online_l2/ped/<crate>.mean.<run number>.

o Each file contains the (integer) mean ADC value and the sigma that were used to

create the binary LUT files for every channel of every board. NOTE that the

actual pedestal values include qt_ped_offset, which is not saved in the Means file.

 Crate TAC Offset Files

o The Crate TAC Offset files that are used in the pedestal calculations are kept on

startrg.starp.bnl.gov:~trg/cal/qt/<crateId>_tac.dat.

o During a Pedestal Run the qtPed function constructs the file name and location

using sprint(badchanFileName,”/home/startrg/trg/cal/qt/%s_tac.dat”,crateId) so

qtPed expects the filenames to be at this location in this form.

o For crates that contain QT boards from just one detector (e.g. EQ1, QT2, etc.) the

Crate TAC Offset file is actually a soft link to the current Detector TAC Offset

file in the ~staruser directory (see next section for details of those files), e.g.:

startrg eleanor 34 > ls -rtl e*tac*

lrwxrwxrwx. 1 staruser trg 41 Jul 30 16:55 eq1_tac.dat -> /home/startrg/staruser/eq1_tac_zeroed.dat

lrwxrwxrwx. 1 staruser trg 41 Jul 30 16:55 eq2_tac.dat -> /home/startrg/staruser/eq2_tac_zeroed.dat

lrwxrwxrwx. 1 staruser trg 41 Jul 30 16:55 eq3_tac.dat -> /home/startrg/staruser/eq3_tac_zeroed.dat

o For crates that contain QT boards from multiple detectors (BBQ and MXQ) the

Crate TAC Offset files are generated by merging the relevant Detector TAC

Offset files:

 create_bbq_offset will merge bbc_tac.dat, vpd_tac.dat and zdc_tac.dat to

create bbq_tac.dat

 create_mxq_offset will merge mtd_tac.dat, p2p_tac.dat, pxy_tac.dat,

mvpd_tac.dat and mtd2_tac.dat to create mxq_tac.dat

o The source code for both routines is kept in

~trg/trg_soft_dev/util/SUN/Tier1/create_<crateId>_offset.c.

o The names and location of those Detector TAC Offset files are hardwired into the

source code.

o The executables are kept in ~trg/bin so they are available from the staruser

account.

o The executables MUST be run from the ~staruser directory by someone logged in

as staruser. If they are run by someone logged in as trg then the output files

cannot subsequently be over-written by staruser and the routines will fail with an

error at that point.

 Detector TAC Offset Files

o The Detector TAC Offset files are kept on startrg.starp.bnl.gov:~staruser/.

o For those detectors like EPD, with many QT boards distributed over multiple

crates, the Detector TAC Offset files are named <crateID>_tac_<date>.dat

6

o The smaller detector systems, which share crates, have files named

<detector>_tac_<date>.dat. The current version of each file is defined by creating

a soft link in the ~staruser directory from the dated <detector>_tac_<date>.dat file

to the undated <detector>_tac.dat file that is read by the merging routine, e.g.:

 startrg eleanor 43 > ls -l m*tac.dat

 lrwxrwxrwx. 1 staruser rhstar 21 May 12 05:34 mtd2_tac.dat -> mtd2_tac_05122016.dat

 lrwxrwxrwx. 1 staruser rhstar 20 May 12 05:34 mtd_tac.dat -> mtd_tac_05122016.dat

 lrwxrwxrwx. 1 staruser rhstar 21 May 21 00:39 mvpd_tac.dat -> mvpd_tac_20160520.dat

o Each file contains offset and gain values for just those channels of those QT

boards that are in Offset-mode (i.e. TAC channels) or Gain-mode (i.e. gain-

corrected ADC channels). Any channel NOT listed in the TAC offset file will be

in the default Pedestal-mode.

 If the offset is -1 then the gain value is valid and the channel will be in

Gain-mode.

 If the offset is >=0 then the gain will be ignored and the channel will be in

Offset-mode.

o The file format is ASCII so they are human-writeable.

o The individual detector groups are responsible for creating their Detector TAC

Offset Files, setting the soft links and running the merging routine.

o A special TAC Offset file exists for each detector/crate, named

<detector/crateID>_tac_zeroed.dat. These files contain all channels that will

eventually be in either Offset-mode or Gain-mode. Each listed channel has offset

= 0, which effectively turns off all offset subtraction and gain correction. These

files are typically used at the beginning of a RHIC Run Period when the Offsets

are being calibrated.

QT Slew Correction Files

 Crate Slew Correction Files

o The Crate Slew Correction files are kept in

/home/startrg/trg/cal/qt/<crateId>_slew_corr.txt on startrg.starp.bnl.gov.

o These files are only usable by those subsystems that include the slew correction

logic in their QT algorithm, i.e. VPD, MTD, BBC and EPD.

o Each file contains entries for just those QT boards that actually use the slew

correction tables, which is currently just QT boards servicing VPD and MTD.

EPD may start using them in 2019.

o During configuration these files are read by the function qtLoadSlewCorrections,

which is part of QT_Config.C. The input file location is hardwired to

“/home/startrg/trg/cal/qt/<crateId>_slew_corr,txt”

o If qtLoadSlewCorrections fails to open the specified file, then it is assumed that

this crate does not use slew corrections and the function quits without error.

7

o If the Crate Slew Correction file contains slewing information for a QT board

whose algorithm does not include the slew correction logic then

qtLoadSlewCorrections will fail, and generate bus errors.

o For crates that contain QT boards from just one detector (EQ1:3) the Crate Slew

Correction file is actually a soft link to the current Detector Slew Correction file

in the ~staruser directory (see later section for details of those files), e.g.:

startrg eleanor 36 > ls -rtl e*slew*

lrwxrwxrwx. 1 staruser trg 49 Jul 30 16:58 eq1_slew_corr.txt -> /home/startrg/staruser/eq1_slew_corr.06172018.txt

lrwxrwxrwx. 1 staruser trg 49 Jul 30 16:58 eq2_slew_corr.txt -> /home/startrg/staruser/eq2_slew_corr.06172018.txt

lrwxrwxrwx. 1 staruser trg 49 Jul 30 16:59 eq3_slew_corr.txt -> /home/startrg/staruser/eq3_slew_corr.06172018.txt

o For crates that contain QT boards from multiple detectors (BBQ and MXQ) the

Crate Slew Correction files are generated by merging the relevant Detector Slew

Correction files:

 create_bbq_slew_corr will merge bbc_slew_corr.txt and

vpd_slew_corr.txt to create bbq_slew_corr.txt

 create_mxq_slew_corr will merge mtd_slew_corr.txt, mvpd_slew_corr.txt

and mtd2_slew_corr.txt to create mxq_slew_corr.txt

o The source code for both routines is kept in

~trg/trg_soft_dev/util/SUN/Tier1/create_<crateId>_slew_corr.c.

o The names and location of those Detector Slew Correction files are hardwired into

the merging routines.

o The executables are kept in ~trg/bin so they are available from the staruser

account.

o The executables MUST be run from the ~staruser directory by someone logged in

as staruser. If they are run by someone logged in as trg then the output files

cannot subsequently be over-written by staruser and the routines will fail with an

error at that point.

 Crate Slew Correction Archive

o In order to maintain a complete record of how each run is configured the slew

correction files are also saved for every run. These archive files are written by the

qtLoadSlewCorrections function to

“/home/startrg/trg/chris/run_info/slew_corr/<crateId>_slew_corr.<runnum>.txt”

o After each run has ended the archive files are then moved to

trgscratch.starp.bnl.gov:/data/plots/slew_corr/ by the make_plots perl script,

which runs on trgscratch.starp.bnl.gov.

 Detector Slew Correction Files

o The Detector Slew Correction files are kept on startrg.starp.bnl.gov:~staruser/.

o For those detectors like EPD, with many QT boards distributed over multiple

crates, the Detector Slew Correction files are named

<crateID>_slew_corr.<date>.txt

8

o The smaller detector systems, which share crates, have files named

<detector>_slew_corr.<date>.txt. The current version of each file is defined by

creating a soft link in the ~staruser directory from the dated

<detector>_slew_corr.<date>.txt file to the undated <detector>_slew_corr.txt file

that is read by the merging routine, e.g.:

startrg eleanor 44 > ls -l m*slew_corr.txt

lrwxrwxrwx. 1 staruser rhstar 27 Feb 9 19:01 mtd2_slew_corr.txt -> mtd2_slew_corr.20160209.txt

lrwxrwxrwx. 1 staruser rhstar 26 Feb 9 19:01 mtd_slew_corr.txt -> mtd_slew_corr.20160209.txt

lrwxrwxrwx. 1 staruser rhstar 27 May 21 11:25 mvpd_slew_corr.txt -> mvpd_slew_corr.20160521.txt

o Each file contains bin limits and slew correction values for JUST those channels

of those QT boards that use the slew correction logic.

o The file format is ASCII so they are human-writeable.

o The individual detector groups are responsible for creating their Detector Slew

Correction File, setting the soft links and running the merging routine.

o A special Detector Slew Correction file exists for each detector, named

<detector/crateID>_slew_corr_zero.txt. These files contain all channels that will

eventually use the slew correction logic. All of the slew correction values are set

to 0, which effectively turns off all the correction. These files are typically used at

the beginning of a RHIC Run Period when the slew corrections are being

calibrated.

DSM RBT Files

 RBT files are the DSM-equivalent of the QT MCS files. They are ASCII-formatted files,

which contain a header and the bit stream needed to configure the DSM Computational

FPGA. NOTES: When the RBT file is transferred from the Windows PC, where it was

generated, to startrg.starp.bnl.gov (Linux) the transfer must be done in text mode, not

binary mode, to avoid unwanted special characters being inserted at the end of each line.

Also the file must be edited to reduce the header to 6 lines. The format of the RBT header

was changed several times by Lattice over the years. In order to avoid complexity in the

STAR software the simplest solution was to remove the unwanted header lines from the

RBT files.

 These files are kept in startrg.starp.bnl.gov:~trg/cfg/Tier1/DSM.

 The name of the RBT file is specified in the Tier1 file with the DSM_FPGA_CNF flag,

which appears once for each DSM board.

 During configuration the name of the RBT file is extracted from the Tier1 file ad used by

the DSMinit function, which is part of DSM_Config.C, to configure the FPGA.

 DSM_Config.C is kept in ~trg/trg_soft_dev/trglib

DSM LUT Files

 General Information

9

o LUTS on DSM boards can be filled with a function generated during

configuration, or with data read from a binary file.

o The binary files are kept in startrg.starp.bnl.gov:~trg/cfg/Tier1/DSM_LUT

o The switch between function data or file data is made using control flags, which

can be specified with the DSM_LUT tag in the Tier1 file, and the binary file

name, which is specified under the DSM_LUT tag.

o During configuration the control flags and the name of the binary file are

extracted from the Tier1 file and examined by the DSMinit function, which is part

of DSM_Config.C

 If the control flags are present, then this indicates that the data is contained

in a crate-wide binary file (used by EMC and TOF). DSMinit will open

the file, read the data and call DSM_Mem_LUT to configure the LUTS.

 If the control flags are NOT present, then one file name is specified for

each of the four LUTS. If the file name is DSM_Mem_Zeros.dat then

DSMinit calls DSM_Mem_All, which automatically fills the whole

memory with zeros.

 If the file name is DSM_LUT_1to1.dat then DSMinit calls

DSM_Mem_Function with a function flag which automatically fills the

32-bit wide memory with two 16-bit ramps.

 If the file name is DSM_Single_1to1.dat then DSMinit calls

DSM_Mem_Function with a function flag which automatically fills the

32-bit wide memory with a single ramp.

 For any other file names DSMinit calls DSM_Mem_File, which opens the

binary file and downloads the information directly to the LUTS.

o DSM_Config.C is kept in ~trg/trg_soft_dev/trglib

o LUTS on DSM boards are typically defined as 1-to-1 maps. The exceptions are

the TOF and EMC layer-0 DSM boards, which use the LUTS to mask out dead or

noisy channels.

 TOF LUT Files

o TOF LUT files are generated using the tof_lut program.

o The source code is kept in ~trg/trg_soft_dev/util/SUN/Tier1/tof_lut.C.

o The executable is kept in ~trg/bin so it is available from the staruser account.

o The executable MUST be run by someone logged in as staruser. If it is run by

someone logged in as trg then the output files cannot subsequently be over-written

by staruser and tof_lut will fail with an error at that point.

o There are two input files:

 ~staruser/tof.<date>.dat contains a list of which trays should be masked

out. This file is ASCII format so it is human-writable.

10

 ~trg/trg_soft_dev/util/SUN/Tier1/tof_table.txt contains a map between

each TOF tray and its input location in the TOF DSM boards. It is ASCII

format. The filename and location are hardwired into tof_lut.C

o The output file is always ~trg/cfg/Tier1/DSM_LUT/tof.lut.bin

 EMC LUT Files

o EMC LUT files are generated using the conv_lut program.

o The source code is kept in ~trg/trg_soft_dev/util/SUN/Tier1/barrel_lut.C. NOTE:

the reason why the source code and executable have different names has been

forgotten.

o The executable is kept in ~trg/bin so it is available from the staruser account.

o The executable MUST be run by someone logged in as staruser. If it is run by

someone logged in as trg then the output files cannot subsequently be over-written

by staruser and conv_lut will fail with an error at that point.

o This program can generate LUT files for both BEMC and EEMC. The switch is

based on the name of the input data file.

o There are two input files:

 ~staruser/xxx.<date>.dat contains a list of which EMC trays should be

masked out. “xxx” MUST be one of “eec”, “bar”, “bce” or “bcw”. “bar”

covers both “bce” and “bcw” together. This file is ASCII format so it is

human-readable.

 ~trg/trg_soft_dev/util/SUN/Tier1/xxx_table.txt contains a map between

the relevant EMC patches and their input location in the EMC DSM

boards. The file names are constructed by conv_lut using the “xxx” value

that was specified for the input data file. The files location in the Tier1

subdirectory is hardwired into conv_lut. The file format is ASCII.

o The output files are always ~trg/cfg/Tier1/DSM_LUT/bce.lut.bin, bcw.lut.bin and

eec.lut.bin, depending on which “xxx” was specified on input. If “bar” was

specified, then both bce.lut.bin and bcw.lut.bin are generated.

 Special Cases

o In addition, it is sometimes necessary to use an LUT that contains a 1-to-1 map

with an individual noisy bit masked out. These LUT files are generated using the

spec_trg_luts program.

o The source code and executable (compiled for Linux) is kept in

~trg/trg_soft_dev/util/SUN/Tier1

o The input arguments consist of two 32-bit words and a print flag. The 1st word

defines which bits should be masked out. The 2nd word defines which bits should

be forced on and the print flag turns on/off the printing of verbose messages.

o The output file is produced in the directory where the program is run. If it is

created in a non-standard directory then the file must be moved to

~trg/cfg/Tier1/DSM_LUT.

11

DSM Input Memory Files

 Input Memories on DSM boards can be filled with a function generated during

configuration, or with data read from a binary file.

 The binary files are kept in startrg.starp.bnl.gov:~trg/cfg/Tier1/DSM_LUT

 The switch between function data or file data is made using the memory control flags

(DSM_INMEM_EN and DSM_INMEM_PLAY_REC) and the binary file name, which

is specified in the Tier1 file under the DSM_INMEM flag.

 During configuration the control flags and the name of the binary file are extracted from

the Tier1 file and examined by the DSMinit function, which is part of DSM_Config.C

o If the flags indicate that the Input memories are not enabled, or are enabled to

record data then DSMinit calls DSM_Mem_All, which automatically fills the

whole memory with zeros.

o Otherwise (i.e. the memories are enabled to play data) if the file name is

DSM_Mem_Zeros.dat then DSMinit calls DSM_Mem_All, which automatically

fills the whole memory with zeros.

o If the file name is DSM_Mem_Ones.dat then DSMinit calls DSM_Mem_All with

a different flag, which automatically fills the whole memory with ones

(0xffffffff).

o If the file name is DSM_8bit_Ramps.dat then DSMinit calls

DSM_Mem_Function with a function flag which automatically fills each 32-bit

wide memory with four 8-bit ramps.

o For any other file names DSMinit calls DSM_Mem_File, which opens the binary

file and downloads the information directly to the Input Memories. The function

does not do any data processing because that has already been done. The binary

file contains the actual data. DSM_Mem_File is hardwired to look for these

binary files in ~trg/cfg/Tier1/DSM_LUT

 DSM_Config.C is kept in ~trg/trg_soft_dev/trglib

DSM Output Memory Files

 Output Memories on DSM boards can be filled with zeroes or with data read from a

binary file.

 The binary files are kept in startrg.starp.bnl.gov:~trg/cfg/Tier1/DSM_LUT

 The switch between zeroes or file data is made using the memory control flags

(DSM_OUTMEM_EN and DSM_OUTMEM_PLAY_REC)

 During configuration the control flags and the name of the binary file are extracted from

the Tier1 file and examined by the DSMinit function, which is part of DSM_Config.C

o If the flags indicate that the output memories are not enabled, or are enabled to

record data then DSMinit calls DSM_Mem_All, which automatically fills the

whole memory with zeros.

12

o Otherwise, DSMinit calls DSM_Mem_File, which opens the binary file and

downloads the information directly to the Output Memories. The function does

not do any data processing because that has already been done. The binary file

contains the actual data. DSM_Mem_File is hardwired to look for the binary files

in ~trg/cfg/Tier1/DSM_LUT

 DSM_Config.C is kept in ~trg/trg_soft_dev/trglib

Checking DSM Memories

 Sometimes it is desirable to check exactly what values were downloaded to a particular

DSM memory block. This can be done using the readDSM program.

 The source code and executable (compiled for VME) are kept in ~trg/trg_soft_dev/trglib

 The arguments are the starting VME address of the memory block and an output file

name:

o int readDSM(int memAdd, char* fname)

 The output file is produced in /home/startrg/trg/dsm_test so this code will only work on

VME processors that have access to both the trglib and dsm_test directories.

 The code will read 65536 4-byte words from the specified starting VME address and

write the data to the output file in binary (not ASCII) format.

