
1

Algorithms for Vertex QT-DSM Tree

RHIC 2016 dAu Run

Eleanor Judd

June 17, 2016

Change Log:

Date Description

January 18, 2016 First change for 2016 heavy-ion data taking. The input bit map of the

ZD101 algorithm has been updated to match the output bit map of the

hybrid ZDC QT algorithm in its heavy-ion mode. There are no changes

to the registers, the algorithm itself or the output bits.

March 3, 2016 The VPD logic has been changed to effectively calculate the mean good

TAC value on each side instead of selecting the fastest good TAC value.

In order to avoid the necessity of performing a generic, large integer

division the QT boards pass the sum and hit count to the DSM tree, and

the DSM algorithms multiply both the sums and the window cuts by the

product of the hit counts. All of this logic is in VP101 so VT201 now

just passes through ready-made ADC and TAC-in-window bits.

May 10, 2016 The BBC logic has been changed in BB101 to place a window cut on

the TAC sum. This is in addition to the existing window cut on the TAC

difference that is applied to VT201. A 3
rd

 VPD TAC window cut, which

was previously made and then discarded, is now passed through to the

TCU. In order to make room for these 2 new TCU bits the Preceded

logic has been dropped from VT201, and the 2 BBC-Large ADC bits

have been combined.

June 17, 2016 The VP101 logic has been changed to add a VPD ADC coincidence bit

in the output going to the scalers. There are no changes to the actual

trigger bits going to VT201 and the TCU.

The Vertex branch of the DSM tree is used to locate the primary vertex of the RHIC beam

collisions at STAR. All three relevant trigger detectors connect to this branch: Zero Degree

Calorimeters (ZDC), Beam-Beam Counters (BBC) and the Vertex Position Detector (VPD).

The raw detector signals are digitized and pre-processed in QT boards. The DSM tree is then

used to calculate TAC differences and combine ADC information to produce (for example)

minimum bias or ultra-peripheral triggers.

2

Layer 0 QT Boards: BBQ_BB001:002

There are two BBC small-tile QT boards: one processes data from the East side of the

detector and the other from the West side. The algorithm has been changed in 2014 to

add a slewing correction to the original logic. Please see the documentation provided

by Chris Perkins for a detailed description of the new algorithm at

http://www.star.bnl.gov/public/trg/TSL/Software/qt_v6_d_doc.pdf

The algorithm still forms a 16-bit ADC Sum and 12-bit TAC Max. Only channels that

satisfy a “good hit” requirement are included in the ADC Sum and TAC Max. A “good

hit” is defined as one where the ADC value is greater than some threshold and the

corresponding TAC value is greater than TAC_MIN and less than TAC_MAX. The

channel mask register can be used to force the algorithm to ignore certain channels, but

note that ADC and TAC channels must each be masked individually.

1. Layer 1 DSM Boards: BBC_BB101

The BB101 DSM board processes data from the BBC-small-tile detector. The algorithm

receives ADC-sum and fastest-TAC data from the QT boards. The ADC sums are compared to

thresholds. In parallel, both the TAC difference and the TAC sum are calculated. The

difference is set to zero if either of the two incoming TACS is zero, because a TAC value of

zero implies there were no good hits on that side of the BBC. The sum is compared to two

thresholds, which define a window. The result is true if the TAC sum is inside the window. It

is false if the sum falls outside the window or if either of the two incoming TACS is zero.

RBT File: bbc_bb101_2016_a.rbt

Users: BB101

Inputs: Ch0/1 = QT Board BB001 (East)

Ch2/3 = QT Board BB002 (West)

Ch4/7 = Unused

From each QT board:

bits 0:15 = ADC-Sum

bits 16:27 = Max TAC (Value of zero implies NO good hits)

LUT: 1:1

Registers:

Four registers, all thresholds can be set independently

R0: BBCsmall-EastADCsum_th (16 bits)

R1: BBCsmall-WestADCsum_th (16)

R2: BBCsmall-TACsum-Min (13)

R3: BBCsmall-TACsum-Max (13)

Action:

1
st
 Latch input

2
nd

 Compare each ADC-sum to its threshold

3

Calculate: TAC difference = 4096 + TAC-E – TAC-W

Calculate: TAC sum = TAC-E + TAC-W

Define: Good-TAC-E = TAC-E > 0

Define: Good-TAC-W = TAC-W > 0

3
rd

 Delay ADC-sum threshold bits

Zero out TAC difference if either Good-TAC-E or Good-TAC-W is false,

otherwise just delay TAC difference.

Compare the TAC sum to its minimum and maximum values, as specified in

registers #2 and #3. Combine the results to determine if the TAC sum is inside

its specified window, i.e.:

(R2 < TAC Sum < R3) AND Good-TAC-E AND Good-TAC-W

4
th
 Latch output

Output to VT201:

(0-12) TAC difference

(13) TAC sum in window

(14) ADC-sum-E > th0

(15) ADC-sum-W > th0

Scalers:

(0-13) Unused

(14) ADC-sum-E > th0

(15) ADC-sum-W > th0

2. Layer 0 QT Boards: BBQ_BB003

There is just one BBC large-tile QT board and it receives data from both the East and West

sides of the detector. The algorithm was written by Chris Perkins and is documented at

http://www.star.bnl.gov/public/trg/TSL/Software/qt_v5_f_doc.pdf

3. Layer 1 DSM Board: BBC_BB102

The BB102 DSM board processes data from the BBC-large-tile detector. The algorithm

receives a hit flag and fastest-TAC data for each of the East and West sides of the detector

from the QT board. The hit flags indicate there was at least one good hit on each side, and they

are just passed through to the output. A set of bits specified by the user is chosen from each

incoming TAC value to send to the scaler system. In parallel, the TAC difference is calculated.

The difference is set to zero if either of the two incoming TACS is zero, because a TAC value

of zero implies there were no good hits on that side of the BBC.

RBT File: bbc_bb102_2010_b.rbt

Users: BB102

Inputs: Ch0/1 = QT Board BB003 (East and West)

Ch2/7 = Unused

4

From the QT board:

bits 0:11 = MAX TAC East (value of zero implies no good hits)

bits 12:23 = MAX TAC West

bit 24 = East hit

bit 25 = West hit

LUT: 1:1

Registers:

R0: BBClarge-EastTAC-select (3)

0 => select bits 0:6

1 => select bits 1:7

…

5 => select bits 5:11

R1: BBClarge-WestTAC-select (3)

Same value definitions as for R0

Action:

1
st
 Latch input

2
nd

 Delay hit bits to 4
th
 step

Calculate: TAC difference = 4096 + TAC-E – TAC-W

Define: Good-TAC-E = TAC-E > 0, same for West side

Make all possible bit selections from TAC-E and TAC-W, including overflow

logic. For example:

TAC-E-overflow-0 = TAC-E(7), (8), (9), (10) or (11)

If (TAC-E-overflow-0 = 1) then TAC-E-scaler-0 = 127

Else TAC-E-scaler-0 = TAC-E(0:6)

Same logic for all possible bit selections from TAC-E (see description of

register R0) and TAC-W (see register R1)

3
rd

 Zero out TAC difference if either Good-TAC-E or Good-TAC-W is false,

otherwise just delay TAC difference to the 4
th
 step

Use R0 to select the TAC-E scaler bits:

 If (R0 = 0) then chose TAC-E-scaler-0

 Else if (R0 = 1) then chose TAC-E-scaler-1

 Etc…

Do the same for West side, using R1 to control the selection.

4
th
 Latch output

Output to VT201:

(0-12) TAC difference

(13) Unused

(14) East hit

(15) West hit

Scalers:

(0-6) selected bits of TAC-E

(7-13) selected bits of TAC-W

(14) East hit

5

(15) West hit

4. Layer 0 QT Boards: BBQ_VP001:002

There are two VPD QT boards: one processes data from the East side of the detector

and the other from the West side. The algorithm now forms a truncated 12-bit ADC

Sum, a full-range 16-bit Sum of slew- and noise-corrected TAC values and a “good

hit” count. Only channels that satisfy the “good hit” requirements are included in the

Sums. A “good hit” is defined as one where the ADC value is greater than some

threshold and the corresponding TAC value is greater than TAC_MIN and less than

TAC_MAX. Please see the documentation for a detailed description of the new

algorithm at http://www.star.bnl.gov/public/trg/TSL/Software/qt_v7_6_doc.pdf

5. Layer 1 DSM Board: BBC_VP101

The VP101 DSM board processes data from the VPD detector. The algorithm receives ADC-

and TAC sum data as well as hit counts from the QT boards. The ADC sums are compared to

thresholds. The TAC sum and hit counts are combined to effectively cut on the difference of

the means while avoiding the necessity of implementing a generic large integer division.

The standard calculation is:

�	 ∑��(�) −	
∑	
�()	� 	< �ℎ
��ℎ���

This can be re-written as:

�	��()��� −	��(�)�	�	� < �ℎ
��ℎ��� ∗ �(�)�()

Performing multiplication in the FPGA is easier than division, so the 2
nd

 equation is used.

NOTE: This algorithm takes 4 extra ticks of the 4xRHIC clock, which is used by the FPGA, to

complete all these calculations.

RBT File: bbc_vp101_2016_b.rbt

Users: VP101

Inputs: Ch0/3 = Unused

Ch4/5 = QT Board VP003 (East)

Ch6/7 = QT Board VP004 (West)

From each QT board:

bits 0:11 = ADC Sum

bits 12:15 = Hit Count

bits 16:31 = TAC Sum

LUT: 1:1

Registers:

Five registers, all thresholds can be set independently

6

R0: VPD-EastADCsum_th (12 bits)

R1: VPD-WestADCsum_th (12)

R2: VPD-MeanDiff-window1 (12)

R3: VPD-MeanDiff-window2 (12)

R4: VPD-MeanDiff-window3 (12)

Action:

1
st
 Latch input

2
nd

 Compare each ADC sum to its threshold

Calculate: �()∑� �(�)∑	 and �(�)�()

3
rd

 Delay the ADC sum threshold bits to the 8
th
 step

Calculate: ���� = ��()∑� − �(�)∑	�
Calculate: �ℎ1 = 	 2�(�)�() and the same for R3 and R4

4
th
 Compare the difference to the registers, i.e.: 	�"��#1 = 	���� < �ℎ1

Do the same for Windows 2 and 3.

5
th

– 7
th
 Extra time for calculations

8
th
 Latch output

Output to VT201:

(0) VPD Mean-TAC difference inside Window-1

(1) VPD Mean-TAC difference inside Window-2

(2) VPD Mean-TAC difference inside Window-3

(3:13) Unused

(14) ADC-sum-E > th0

(15) ADC-sum-W > th0

Scalers:

(0-12) Unused

(13) ADC-sum-E > th0 AND ADC-sum-W > th0

(14) ADC-sum-E > th0

(15) ADC-sum-W > th0

6. Layer 0 QT Board: BBQ_ZD001

The single ZDC QT board receives signals from both the East and West sides of the ZDC. The

algorithm can be configured to compare the ZDC-Front and ZDC-Back ADC values, and their

digital sum, to a threshold (the “proton” logic) or to compare the analog sum to multiple

thresholds (the “heavy ion” logic). It should be noted that the proton logic uses the “good hit”

requirement for all hits (ADC > threshold and associated TAC in window) but the heavy ion

logic does not. In the current setup both sides are configured to use the heavy-ion logic. The

algorithm was written by Chris Perkins and is documented at

http://www.star.bnl.gov/public/trg/TSL/Software/qt_v6_f_doc.pdf

7

7. Layer 1 DSM Board: BBC_ZD101

The ZD101 DSM board processes data from the ZDC detector. The algorithm receives TAC

data from the ZD001 QT board. A set of bits specified by the user is chosen from each

incoming TAC value to send to the scaler system. In parallel, the TAC difference is calculated.

The difference is set to zero if either of the two incoming TACS is zero, because a TAC value

of zero implies there were no good hits on that side of the ZDC. A user-specified set of bits is

then chosen to be passed on to VT201. In addition, the algorithm also receives the results of

comparing sums to thresholds. Most of those threshold bits are passed through to VT201

unmodified. Two thresholds, one from each side, are protected by a “preceded” signal in order

to deal with after-pulsing in the ZDC. This allows the user to zero out those two thresholds for

a certain number of RHIC clock ticks after a ZDC coincidence is detected. In addition two

other thresholds are combined (OR) to create a bit that can be used to define central triggers.

RBT File: bbc_zd101_2016_a.rbt

Users: ZD101

Inputs: Ch0/1 = QT Board ZD001

Ch2:7 = Unused

From the QT board:

bits 0:9 = West-1 TAC

bits 10:19 = East-1 TAC

bit 20 = West sum > threshold-0

bit 21 = West sum > threshold-1

bit 22 = West sum > threshold-2

bit 23 = West sum > threshold-3

bit 24 = West attenuated sum > threshold-4 (Unused in this algorithm)

bit 25 = West attenuated sum > threshold-5 (Unused in this algorithm)

bit 26 = East sum > threshold-0

bit 27 = East sum > threshold-1

bit 28 = East sum > threshold-2

bit 29 = East sum > threshold-3

bit 30 = East attenuated sum > threshold-4 (Unused in this algorithm)

bit 31 = East attenuated sum > threshold-5 (Unused in this algorithm)

LUT: 1:1

Registers:

R0: ZDC-TACdiff-select (2 bits)

0 => select bits 0:8

1 => select bits 1:9

2 => select bits 2:10

R1: ZDC-EastTAC-select (3)

0 => select bits 0:4

1 => select bits 1:5

…

5 => select bits 5:9

R2: ZDC-WestTAC-select (3)

Same value definitions as for R1

8

R3: ZDC-deadtime (4 bits)

Action:

1
st
 Latch input

2
nd

 Delay threshold-0,-1 and -2 bits to the 4
th
 step.

Zero out a copy of the threshold-0 bits if the Preceded bit is set, i.e.

Protected-West-th0 = West-th0 and NOT Preceded

Protected-East-th0 = East-th0 and NOT Preceded

Combine the threshold-3 bits:

East_or_West = East-th3 or West-th3

Calculate: TAC difference = 1024 + TAC-E – TAC-W

Define: Good-TAC-E = TAC-E > 0, same for West side

For the scaler output, make all possible bit selections from TAC-E and TAC-

W, including overflow logic. For example:

TAC-E-overflow-0 = TAC-E(5), (6), (7), (8) or (9)

If (TAC-E-overflow-0 = 1) then TAC-E-scaler-0 = 31

Else TAC-E-scaler-0 = TAC-E(0:4)

Same logic for all possible bit selections from TAC-E (see description of

register R1) and TAC-W

3
rd

 Delay the protected threshold bits and the East_or_West bit to the 4
th
 step.

For the VT201 output use R0 to select the TAC difference bits, including

overflow logic and the “good” TAC cut, i.e.:

Diff-overflow-0 = TAC-diff(9) or (10)

Diff-overflow-1 = TAC-diff(10)

If (Good-TAC-E = 0 or Good-TAC-W = 0) then output = 0

Else if (R0 = 0)

 If (Diff-overflow-0 = 1) then output = 511

Else output = TAC-diff(0:8)

Else if (R0 = 1)

 If (Diff-overflow-1 = 1) then output = 511

 Else output = TAC-diff(1:9)

Else

Output = TAC-diff(2:10)

For the scaler output use R1 to select the TAC-E scaler bits:

 If (R1 = 0) then chose TAC-E-scaler-0

 Else if (R1 = 1) then chose TAC-E-scaler-1

 Etc…

Do the same for the West side using R2 to control the selection.

For the Preceded logic check for a ZDC coincidence:

Coincidence = Protected-West-th0 and Protcted-East-th0 and

Good-TAC-W and Good-TAC-E

If there is a coincidence then initialize a counter to R3-1. Allow it to count

down to zero at a rate of one count per tick of the RHIC clock. Set the

“Preceded” bit to one while the counter is counting.

NOTE: If R3 = 0 then the Preceded logic is disabled.

4
th
 Latch output

9

Output to VT201:

(0-8) TAC difference

(9) Protected-sum-W > th0

(10) Sum-W > th1

(11) Sum-W > th2

(12) Protected-sum-E > th0

(13) Sum-E > th1

(14) Sum-E > th2

(15) Sum-E > th3 or Sum-W > th3

Scalers:

(0-4) selected bits of TAC-E

(5-9) selected bits of TAC-W

(10) Protected-sum-W > th0

(11) Sum-W > th0

(12) Protected-sum-E > th0

(13) Sum-E > th0

(14) ZDC coincidence

(15) Sum-E > th3 or Sum-W > th3

8. Layer 2 Vertex DSM Board: L1-VT201

All results of the Vertex tree are brought into the Vertex DSM. Threshold bits are passed on to

the TCU either as individual bits or in in combinations. In parallel windows are placed around

each TAC difference, and the “inside window” bits get passed through to the TCU and the

scaler system. A minimum bias bit, based on an OR of information from all 4 detectors is

created.

RBT File: l1_vt201_2016_b.rbt

Users: VT201

Inputs: Ch 0 = BB101

Ch 1 = BB102

Ch 2 = ZD101

Ch 3 = Unused

Ch 4 = VP101

Ch 5:7 = Unused

From Small tile BBC-DSM BB101

(0-12) Small tile TAC-Difference

(13) Small-tile TAC-Sum inside window

(14/15) Small tile ADC East/West sum > th0

From Large tile BBC-DSM BB102

(0-12) Large tile TAC-Difference

(13) Unused

(14/15) East/West hit

From ZDC DSM ZD101

(0-8) TAC difference

10

(9) Protected-sum-W > th0

(10) Sum-W > th1

(11) Sum-W > th2

(12) Protected-sum-E > th0

(13) Sum-E > th1

(14) Sum-E > th2

(15) Sum-E > th3 or Sum-W > th3

From VPD-DSM VP101

(0) VPD Mean-TAC Difference inside Window-1

(1) VPD Mean-TAC Difference inside Window-2

(2) VPD Mean-TAC Difference inside Window-3

(3/13) Unused

(14/15) VPD ADC East/West> th0

LUT: Either 1-to-1 or TAC-difference range conversion

Registers:

R0: BBCsmall-TACdiff-Min (13 bits)

R1: BBCsmall-TACdiff-Max (13)

R2: BBClarge-TACdiff-Min (13)

R3: BBClarge-TACdiff-Max (13)

R4: ZDC-TACdiff-Min (9)

R5: ZDC-TACdiff-Max (9)

R6: Minimum-Bias-Select (4)

R7: BBClarge-Combo-Sel (1)

Action

1
st
 Latch inputs

2
nd

 Delay all the threshold bits that need to go to the TCU to the 4
th
 step.

Delay a 2
nd

 copy of the ZDC-th0 bits, the threshold bits from BBC-small and

BBC-large and the VPD-window-1 bit to the 3
rd

 step.

Delay a copy of the ZDC and BBC-small TAC difference to the 4
th
 step.

Combine the ZDC (un-protected) th1 and th2 bits to make windows on the

East and West sides separately, i.e.:

ZDC-E-Window = Sum-E > th1 and not Sum-E > th2

ZDC-W-Window = Sum-W > th1 and not Sum-W > th2

Compare each of the 3 TAC differences to its minimum and maximum value,

as specified in the relevant registers. The logic looks for the TAC difference to

be greater than the minimum and less than the maximum.

3
rd

 Make the following combinations of ZDC bits:

ZDC-COINC = Protected-sum-W>th0 and Protected-sum-E>th0

ZDC-UPC = ZDC-E-Window and ZDC-W-Window

Combine the two BBC-large threshold bits using R7 to determine if the

combination is an AND (R7 = 1) or an OR (R7 = 0)

Combine the results of the TAC difference comparisons to determine if each

TAC difference is inside its specified window, e.g.:

11

ZDC-Tdiff = R4 < ZDC TAC difference < R6

Combine the results of the TAC difference comparisons and the ADC

threshold bits to make the minimum bias bit, using R6 to turn each component

on/off, i.e.:

MB = (R6(0) and BBC-S-Tdiff and BBC-S-E>th0 and BBC-S-W>th0) or

 (R6(1) and BBC-L-Tdiff and BBC-L-E>th0 and BBC-L-W>th0) or

 (R6(2) and ZDC-Tdiff) or

 (R6(3) and VPD-Win1)

4
th
 Latch Outputs

Output to TCU:

Bit

Name

Description

Bit 0 BBC-TAC BBC small-tile TAC difference in window

Bit 1 BBC-E BBC small-tile East ADC sum > threshold

Bit 2 BBC-W BBC small-tile West ADC sum > threshold

Bit 3 VPD-TAC2 VPD Mean-TAC difference in window-2

Bit 4 BBC-Sum BBC small-tile TAC sum in window

Bit 5 BBC-L BBC large-tile East hit AND/OR West hit

Bit 6 ZDC-TAC ZDC TAC difference in window

Bit 7 ZDC-E ZDC Protected-sum-East > th0

Bit 8 ZDC-W ZDC Protected-sum-West > th0

Bit 9 ZDC-UPC ZDC East in window (th1 and th2) AND

ZDC West in window (th1 and th2)

Bit 10 ZDC-EW ZDC Sum-East > th3 or ZDC Sum-West > th3

Bit 11 Minimum-Bias At least one selected TAC difference in window

Bit 12 VPD-TAC3 VPD Mean-TAC difference in window-3

Bit 13 VPD-TAC VPD Mean-TAC difference in window-1

Bit 14 VPD-E VPD East ADC sum > threshold

Bit 15 VPD-W VPD West ADC sum > threshold

Output to Scalers

Bit Description

Bit 0 BBC small-tile TAC difference in window

Bits 1:4 4 MSB of BBC small-tile TAC difference

Bit 5 BBC large-tile TAC difference in window

Bit 6 ZDC TAC difference in window

Bit 7 ZDC Protected-sum-East > th0 AND

ZDC Protected-Sum-West > th0

Bits 8:10 3 MSB of ZDC TAC difference

Bit 11 VPD Mean-TAC difference in window-1

Bit 12 VPD Mean-TAC difference in window-2

Bit 13 VPD Mean-TAC difference in window-3

Bits 14:15 Unused

