
1

Algorithms for Vertex QT-DSM Tree

RHIC 2015 p+Au Run

Eleanor Judd

June 5, 2015

Change Log:

Date Description

May 4, 2015 First version for the 2015 p+Au data taking. The BBC and VPD boards

are using their standard algorithms. The ZDC QT board (ZD001) and

DSM board (ZD101) are using the heavy-ion versions of their

algorithms. The VT201 algorithm has been changed to remove the

Preceded and BBC-Large logic and replace it with the ZDC thresholds.

May 26, 2015 A new version of the ZD101 algorithm has been made to match the

input from the hybrid ZDC QT algorithm. In the hybrid logic the ZDC

East signals are processed using the heavy ion logic and the ZDC West

signals are processed using the proton logic. The ZD101 DSM

algorithm has also been simplified. The ZDC deadtime logic has been

deleted because it is not currently in use and the scaler output bits have

been reduced to the set that are currently used by the scaler system. The

output of the new ZD101 algorithm has been arranged to match the

input of the existing VT201 algorithm.

June 5, 2015 The VT201 algorithm has been re-implemented using new more

conservative software, which fixes the pass-through of the ZDC-W-

Back bit. Also the description of the ZDC logic has been updated to

make it clear which threshold bits are based on digital sums and which

are based on analog sums

The Vertex branch of the DSM tree is used to locate the primary vertex of the RHIC beam

collisions at STAR. All three relevant trigger detectors connect to this branch: Zero Degree

Calorimeters (ZDC), Beam-Beam Counters (BBC) and the Vertex Position Detector (VPD).

The raw detector signals are digitized and pre-processed in QT boards. The DSM tree is then

used to calculate TAC differences and combine ADC information.

2

Layer 0 QT Boards: BBQ_BB001:002

There are two BBC small-tile QT boards: one processes data from the East side of the

detector and the other from the West side. The algorithm has been changed in 2014 to add

a slewing correction to the original logic. Please see the documentation provided by Chris

Perkins for a detailed description of the new algorithm at

http://www.star.bnl.gov/public/trg/TSL/Software/qt_v6_d_doc.pdf

The algorithm still forms a 16-bit ADC Sum and 12-bit TAC Max. Only channels that

satisfy a “good hit” requirement are included in the ADC Sum and TAC Max. A “good

hit” is defined as one where the ADC value is greater than some threshold and the

corresponding TAC value is greater than TAC_MIN and less than TAC_MAX. The

channel mask register can be used to force the algorithm to ignore certain channels, but

note that ADC and TAC channels must each be masked individually. The old

algorithm is documented at

http://www.star.bnl.gov/public/trg/TSL/Software/qt_v5_6_doc.pdf

The slew correction logic is the same logic that was added to the MTD QT boards in 2013,

and is documented at http://www.star.bnl.gov/public/trg/TSL/Software/qt_v6_c_doc.pdf

1. Layer 1 DSM Boards: BBC_BB101

The BB101 DSM board processes data from the BBC-small-tile detector. The algorithm

receives ADC-sum and fastest-TAC data from the QT boards. The ADC sums are compared to

thresholds. A set of bits specified by the user is chosen from each incoming TAC value to

send to the scaler system. In parallel, the TAC difference is calculated. The difference is set to

zero if either of the two incoming TACS is zero, because a TAC value of zero implies there

were no good hits on that side of the BBC.

RBT File: bbc_bb101_2009_a.rbt

Users: BB101

Inputs: Ch0/1 = QT Board BB001 (East)

Ch2/3 = QT Board BB002 (West)

Ch4/7 = Unused

From each QT board:

bits 0:15 = ADC-Sum

bits 16:27 = Max TAC (Value of zero implies NO good hits)

LUT: 1:1

Registers:

Four registers, all thresholds can be set independently

R0: BBCsmall-EastADCsum_th (16 bits)

R1: BBCsmall-WestADCsum_th (16)

R2: BBCsmall-EastTAC-select (3)

0 => select bits 0:6

1 => select bits 1:7

…

5 => select bits 5:11

3

R3: BBCsmall-WestTAC-select (3)

Same value definitions as for R2

Action:

1
st
 Latch input

2
nd

 Compare each ADC-sum to its threshold

Calculate: TAC difference = 4096 + TAC-E – TAC-W

Define: Good-TAC-E = TAC-E > 0, same for West side

Make all possible bit selections from TAC-E and TAC-W, including overflow

logic. For example:

TAC-E-overflow-0 = TAC-E(7), (8), (9), (10) or (11)

If (TAC-E-overflow-0 = 1) then TAC-E-scaler-0 = 127

Else TAC-E-scaler-0 = TAC-E(0:6)

Same logic for all possible bit selections from TAC-E (see description of

register R2) and TAC-W

3
rd

 Delay ADC-sum threshold bits

Zero out TAC difference if either Good-TAC-E or Good-TAC-W is false,

otherwise just delay TAC difference

Use R2 to select the TAC-E scaler bits:

 If (R2 = 0) then chose TAC-E-scaler-0

 Else if (R2 = 1) then chose TAC-E-scaler 1

 Etc…

Do the same for West side, using R3 to control the selection.

4
th
 Latch output

Output to VT201:

(0-12) TAC difference

(13) Unused

(14) ADC-sum-E > th0

(15) ADC-sum-W > th0

Scalers:

(0-6) selected bits of TAC-E

(7-13) selected bits of TAC-W

(14) ADC-sum-E > th0

(15) ADC-sum-W > th0

2. Layer 0 QT Boards: BBQ_BB003

There is just one BBC large-tile QT board and it receives data from both the East and West

sides of the detector. The algorithm was written by Chris Perkins and is documented at

http://www.star.bnl.gov/public/trg/TSL/Software/qt_v5_f_doc.pdf

3. Layer 1 DSM Board: BBC_BB102

The BB102 DSM board processes data from the BBC-large-tile detector. The algorithm

receives a hit flag and fastest-TAC data for each of the East and West sides of the detector

4

from the QT board. The hit flags indicate there was at least one good hit on each side, and they

are just passed through to the output. A set of bits specified by the user is chosen from each

incoming TAC value to send to the scaler system. In parallel, the TAC difference is calculated.

The difference is set to zero if either of the two incoming TACS is zero, because a TAC value

of zero implies there were no good hits on that side of the BBC.

RBT File: bbc_bb102_2010_b.rbt

Users: BB102

Inputs: Ch0/1 = QT Board BB003 (East and West)

Ch2/7 = Unused

From the QT board:

bits 0:11 = MAX TAC East (value of zero implies no good hits)

bits 12:23 = MAX TAC West

bit 24 = East hit

bit 25 = West hit

LUT: 1:1

Registers:

R0: BBClarge-EastTAC-select (3)

0 => select bits 0:6

1 => select bits 1:7

…

5 => select bits 5:11

R1: BBClarge-WestTAC-select (3)

Same value definitions as for R0

Action:

1
st
 Latch input

2
nd

 Delay hit bits to 4
th
 step

Calculate: TAC difference = 4096 + TAC-E – TAC-W

Define: Good-TAC-E = TAC-E > 0, same for West side

Make all possible bit selections from TAC-E and TAC-W, including overflow

logic. For example:

TAC-E-overflow-0 = TAC-E(7), (8), (9), (10) or (11)

If (TAC-E-overflow-0 = 1) then TAC-E-scaler-0 = 127

Else TAC-E-scaler-0 = TAC-E(0:6)

Same logic for all possible bit selections from TAC-E (see description of

register R0) and TAC-W (see register R1)

3
rd

 Zero out TAC difference if either Good-TAC-E or Good-TAC-W is false,

otherwise just delay TAC difference to the 4
th
 step

Use R0 to select the TAC-E scaler bits:

 If (R0 = 0) then chose TAC-E-scaler-0

 Else if (R0 = 1) then chose TAC-E-scaler-1

 Etc…

Do the same for West side, using R1 to control the selection.

5

4
th
 Latch output

Output to VT201:

(0-12) TAC difference

(13) Unused

(14) East hit

(15) West hit

Scalers:

(0-6) selected bits of TAC-E

(7-13) selected bits of TAC-W

(14) East hit

(15) West hit

4. Layer 0 QT Boards: BBQ_VP001:002

The two VPD QT boards use the same algorithm as is used by the two small-tile BBC QT

boards. See documentation above for BBQ_BB001:002.

5. Layer 1 DSM Board: BBC_VP101

RBT File: bbc_vp101_2009_a.rbt

Users: VP101

Inputs: Ch0/3 = Unused

Ch4/5 = QT Board VP003 (East)

Ch6/7 = QT Board VP004 (West)

The VP101 DSM board receives VPD data from 2 QT boards. The logic needed to do this

analysis is the same as that used by the BB101 algorithm. The VP101 algorithm is therefore

identical to the BB101 algorithm in every way, except for the input map. Please see the

BBC_BB101 documentation above for details of the logic.

6. Layer 0 QT Board: BBQ_ZD001

The single ZDC QT board receives signals from both the East and West sides of the ZDC. The

algorithm can be configured to compare the ZDC-Front and ZDC-Back ADC values, and their

digital sum, to a threshold (the “proton” logic) or to compare the analog sum to multiple

thresholds (the “heavy ion” logic). It should be noted that the proton logic uses the “good hit”

requirement for all hits (ADC > threshold and associated TAC in window) but the heavy ion

logic does not. In the current setup the East side is configured to use the heavy-ion logic and

the West side is configured to use the proton logic. The algorithm was written by Chris Perkins

and is documented at http://www.star.bnl.gov/public/trg/TSL/Software/qt_v6_f_doc.pdf

7. Layer 1 DSM Board: BBC_ZD101

The ZD101 DSM board processes data from the ZDC detector. The algorithm receives TAC

data from the ZD001 QT board. The TAC difference is calculated. The difference is set to zero

6

if either of the two incoming TACS is zero, because a TAC value of zero implies there were no

good hits on that side of the ZDC. A user-specified set of bits is then chosen to be passed on to

VT201. The algorithm also receives various threshold bits from the East and West sides of the

detector. The East threshold bits were produced using the heavy-ion QT logic which does NOT

include a “good hit” requirement. They are therefore zeroed out if the East TAC value is zero.

The West threshold bits were produced using the proton QT logic, which DOES include a

“good hit” requirement. Those bits are therefore just passed through to the output unmodified

RBT File: bbc_zd101_2015_a.rbt

Users: ZD101

Inputs: Ch0/1 = QT Board ZD001

Ch2:7 = Unused

From the QT board:

bits 0:9 = West-1 TAC

bits 10:19 = East-1 TAC

bits 20:22 = Truncated Total West sum (Unused in this algorithm)

bit 23 = Front West ADC > threshold

bit 24 = Back West ADC > threshold

bit 25 = West ADC digital sum > threshold

bit 26 = East analog sum > threshold-0

bit 27 = East analog sum > threshold-1

bit 28 = East analog sum > threshold-2

bit 29 = East analog sum > threshold-3

bit 30 = East attenuated analog sum > threshold-4 (Unused in this algorithm)

bit 31 = East attenuated analog sum > threshold-5 (Unused in this algorithm)

LUT: 1:1

Register:

R0: ZDC-TACdiff-select (2 bits)

0 => select bits 0:8

1 => select bits 1:9

2 => select bits 2:10

Action:

1
st
 Latch input

2
nd

 Delay the 4 East threshold bits to the 3
rd

 step.

Delay the 3 West threshold bits directly to the 4
th
 step.

Calculate: TAC difference = 1024 + TAC-E – TAC-W

Define: Good-TAC-E = TAC-E > 0, same for West side

3
rd

 Combine the 4 East threshold bits with the Good-TAC-E bit, e.g.:

Sum-E-th0 = East-th0 and Good-TAC-E, etc…

Use R0 to select the TAC difference bits, including overflow logic and the

“good” TAC cut, i.e.:

Diff-overflow-0 = TAC-diff(9) or (10)

Diff-overflow-1 = TAC-diff(10)

7

If (Good-TAC-E = 0 or Good-TAC-W = 0) then output = 0

Else if (R0 = 0)

 If (Diff-overflow-0 = 1) then output = 511

Else output = TAC-diff(0:8)

Else if (R0 = 1)

 If (Diff-overflow-1 = 1) then output = 511

 Else output = TAC-diff(1:9)

Else

Output = TAC-diff(2:10)

4
th
 Latch output

Output to VT201:

(0-8) TAC difference

(9) Digital-Sum-W > threshold

(10) Front-W > threshold

(11) Back-W > threshold

(12) Analog-Sum-E > th0

(13) Analog-Sum-E > th1

(14) Analog-Sum-E > th2

(15) Analog-Sum-E > th3

Scalers:

(0-9) Unused

(10) Digital-Sum-W > th

(11) Digital-Sum-W > th

(12) Analog-Sum-E > th0

(13) Analog-Sum-E > th0

(14) Front-W > th

(15) Back-W > th

8. Layer 2 Vertex DSM Board: L1-VT201

All threshold bits of the Vertex tree from the large and small-tile BBC, the ZDC and the VPD

are brought into the Vertex DSM. The large-tile BBC data is no longer needed for triggering so

it is ignored by this algorithm. The threshold bits from the other 3 detectors are passed on to

the TCU. In parallel the TAC difference values are brought into the Vertex DSM. Windows are

placed around each TAC difference, and the “inside window” bits get passed through to the

TCU and the scaler system. A minimum bias bit, based on an OR of information from the 3

detectors is also created for use by the scaler system

RBT File: l1_vt201_2015_e.rbt

Users: VT201

Inputs: Ch 0 = BB101

Ch 1 = BB102 (Unused in this algorithm)

Ch 2 = ZD101

Ch 3 = Unused

Ch 4 = VP101

Ch 5:7 = Unused

8

From Small tile BBC-DSM BB101

(0-12) Small tile TAC-Difference

(13) Unused

(14/15) Small tile ADC East/West sum > th0

From ZDC DSM ZD101

(0-8) TAC difference

(9) Digital-Sum-W > th

(10) Front-W > th

(11) Back-W > th

(12) Analog-Sum-E > th0

(13) Analog-Sum-E > th1

(14) Analog-Sum-E > th2

(15) Analog-Sum-E > th3 (Unused in this algorithm)

From VPD-DSM VP101

(0-12) VPD TAC-Difference

(13) Unused

(14/15) VPD ADC East/West> th0

LUT: Either 1-to-1 or TAC-difference range conversion

Registers:

R0: BBCsmall-TACdiff-Min (13 bits)

R1: BBCsmall-TACdiff-Max (13)

R2: ZDC-TACdiff-Min (9)

R3: ZDC-TACdiff-Max (9)

R4: VPD-TACdiff-Min (13)

R5: VPD-TACdiff-Max (13)

R6: VPD-TACdiff2-Min (13)

R7: VPD-TACdiff2-Max (13)

R8: Minimum-Bias-Select (3)

Action

1
st
 Latch inputs

2
nd

 Delay the BBC and ZDC threshold bits to the 4
th
 step.

Delay the VPD bits and a 2
nd

 copy of the BBC threshold bits to the 3
rd

 step.

Compare each of the 3 TAC differences to its minimum and maximum value,

as specified in the relevant registers. The logic looks for the TAC difference to

be greater than the minimum and less than the maximum. The VPD TAC

difference is compared to two separate sets of min/max values defining two

separate windows.

3
rd

 Make the VPD coincidence bit:

VPD-COINC = VPD-E>th0 and VPD-W>th0

Combine the results of the TAC difference comparisons to determine if each

TAC difference is inside its specified window, e.g.:

9

VPD-Tdiff = R4 < VPD TAC difference < R5

Combine the results of the TAC difference comparisons and the ADC

threshold bits to make the minimum bias bit, using R8 to turn each component

on/off, i.e.:

MB = (R8(0) and BBC-S-Tdiff and BBC-S-E>th0 and BBC-S-W>th0) or

 (R8(1) and ZDC-Tdiff) or

 (R8(2) and VPD-Tdiff)

4
th
 Latch Outputs

Output to TCU:

Bit

Name

Description

Bit 0 BBC-TAC BBC small-tile TAC difference in window

Bit 1 BBC-E BBC small-tile East ADC sum > threshold

Bit 2 BBC-W BBC small-tile West ADC sum > threshold

Bit 3 ZDC-W ZDC Digital-Sum-West > th

Bit 4 ZDC-Front-W ZDC Front-West > th

Bit 5 ZDC-Back-W ZDC Back-West > th

Bit 6 ZDC-TAC ZDC TAC difference in window

Bit 7 ZDC-E ZDC Analog-Sum-East > th0

Bit 8 ZDC-th1-E ZDC Analog-Sum-East > th1

Bit 9 ZDC-th2-E ZDC Analog-Sum-East > th2

Bit 10 Unused

Bit 11 Unused

Bit 12 MinB At least one selected TAC difference in window

Bit 13 VPD-TAC VPD TAC difference in window

Bit 14 VPD-TAC2 VPD TAC difference in 2
nd

 window

Bit 15 VPD-COINC VPD East ADC sum > threshold and VPD West ADC

sum > threshold

Output to Scalers

Bit

Description

Bit 0 BBC small-tile TAC difference in window

Bits 1:5 Unused

Bit 6 ZDC TAC difference in window

Bits 7:10 Unused

Bit 11 VPD TAC difference in window

Bit 12 Unused

Bit 13 MinB

Bits 14:15 Unused

