Second Bunch Crossing Counter DSM Algorithm

January 8, 2020
RBT File: 11_bx202_2020_c.rbt
Users: BX202
Input

Input Channel	Bit Description
0	Lower 16 bits of BX201 output
1	Upper 16 bits of BX201 output
$2: 6$	Unused
7	Bit 0 - RHIC synchronization bit (aka revtick)

LUTS: 1-to-1
Registers

Register	Register Description	Register Name
0	Initial counter value, 16 bits.	BX_StartValueUpper2Bytes
1	Number of filled bunches in a RHIC ring	BX_NumBunches
2	Start delay in units of 4xRHIC clock ticks	BX_7bit_Start_Delay

Output Bits

Bit	Description
Bits 0:15	Current 16-bit bunch crossing counter value
Bits 16:22	Current 7-bit bunch type counter value
Bits 23	Unused
Bits 24:30	$2^{\text {nd }}$ copy of Current 7-bit bunch type counter value
Bits 31	Unused

Internal Logic

- 16-bit bunch crossing counter increments by one only when input from BX201 changes from 0xffffffff to 0x00000000.

Counts only when DSM is running.
Counter starts at a user defined value (Reg0).
Current counter value is output on output bits 0:15

- 7-bit bunch type counter increments by one on each tick of the RHIC clock.

Logic waits for a user-defined number of 4xRHIC clock ticks (Reg2) AFTER the DSM board goes into RUN mode before it is activated.
Counting doesn't begin until the first revtick signal is received AFTER the logic has been activated. All subsequent revtick signals are ignored.
Counter always starts from zero (0)
Resets to zero (0) when it reaches Reg1 - 1, e.g.:
if Reg1 = 120 then the counter values range from 0 to 119
if Reg1 $=121$ then the counter values range from 0 to 120
etc...
Current counter value is output on bits 16:22 and 24:30

