
Rules for creating Register and Dictionary entries in Tier1 .dat files

John Nelson

18 December 2008, updated 8 January 2009

Page 1

Modifications: 8 January: Additional optional field for dictionary definitions.

The dictionary file used for Run Control contains four (or optionally, five) fields:

<crate object number> <VME board sub-address> <register number> <name> [#comment]

The <crate object number> is the crate identifier and is defined in RC_Config.h. The <VME board sub-
address> is the MS byte of the board’s actual VME address translated into decimal. The <register
number> relates to the register number in a given DSM or QT board. The dictionary name is <name>
and is a single string, that is, without spaces

An additional, optional, field has been added to the dictionary entry: a comment which must be prefaced
with the # character. The default register value and the comment will appear on the RC page

For a given DSM board, the register number is unambiguous. Register numbers range from 0 upwards.

Register numbers on QT boards have multiple assignments since each QT board consists of 5 parts (a
mother board and 4 daughter boards) each of which has 64 registers with numbers in the range 0 to 63.
In order to distinguish between these, <register number> in the dictionary file will have the decimal form:
Axx where xx is the decimal register number (0 to 63) and A = 0,1,2,3,4 or 5 depending on whether the
register number refers to a mother board (0); a named daughter board (1,2,3 or 4) or all 4 daughter boards
(5).

NB: An important change has been introduced into Tier1 file definitions. Registers are referred to by
register number and not by register address.

DSM crate definitions

1) If a board definition is preceded by a short name which begins with two ## characters such as:

##BE003
DSM_BASE_ADDRESS 0x12000000
etc.

then the short name will be inserted into the dictionary file to make it more readable.

2) Registers are defined by implied register number from 0 upwards. As an example:

DSM_ENG_REG 5
0x0b 0 BEMC-HighTowerTh0
0x0e 1 BEMC-HighTowerTh1
0x12 2 BEMC-HighTowerTh2 #This is threshold 2 for the High Tower
0x11 3 BEMC-HighTowerTh3
0x19 4 BEMC-TriggerPatchTh0

defines 5 registers in the range 0 to 4. Register values are in the first column and may be in hexadecimal
or decimal format. (Note: the second column in DSM Tier files previously defined a bit-mask. This is
no longer required and should not be included in the definitions.)

Dictionary entries follow on each line specifying the explicit register number which must be in decimal
format, and the name to be assigned to that register in the dictionary file. Optionally, a comment string
can be added after the label. This string must be prefixed with the # character.

If the explicit register number in the dictionary entry is -1 as in the next example:

0x19 -1 BEMC-TriggerPatchTh0

Page 2

then the name will not be entered in the dictionary but serves as a reference to the reader of the crate
definition file. Any default value or comment string will be ignored.

QT crate definitions

1) If a board definition is preceded by a short name which begins with two ## characters such as:

##QT003
QT_BASE_ADDRESS 0x12000000
etc.

then the short name will be inserted into the dictionary file to make it more readable.

2) Each QT board has a mother board and 4 daughter boards each with up to 64 registers that may
be defined. Registers may be defined in any order by giving the register number in the range 0 to 63, and
its value.

Register numbers and values may be given in hexadecimal or decimal format but not in mixed format on
the same line.

As an example:

QT_MB_REG 3
0x1 0x36 1 Gate_Start_Delay
15 61 15 GateEndDelay #The Gate End value should not exceed 10000
0x2 0x32 2 Output_Latch_Delay

defines 3 mother board registers with numbers 1,15 and 2, two of which are defined in hexadecimal. The
corresponding values are given. The following line definition will lead to a scanning error:

1 0x36 1 Gate_Start_Delay

since the register number and value are in mixed decimal and hexadecimal format.

Dictionary entries follow on each line specifying the explicit register number which must be in decimal
format, and the name to be assigned to that register in the dictionary file. Optionally, a comment string
can be added after the register label. This string must be prefixed with the # character.

If the explicit register number in the dictionary entry is -1 as in this example:

0x2 0x32 -1 OutputLatchDelay

then the name will not be entered in the dictionary but serves as a reference to the reader of the crate
definition file.

In this example, all 4 daughter boards on a particular QT board will be set as follows:

QT_DB_REG 2
3 1 3 Do_not_use_LUT
0x2 0x9 2 Start_writing_at-offset_9

two registers are defined, namely 3 and 2, and the corresponding values will be stored in all 4 daughter
boards.

Another example:

QT_D3_REG 2
3 1 3 Do_not_use_LUT
2 9 2 Start_writing_at_offset_9

defines two registers for daughter board 3 only.

Multiple (wild-card) definitions

Page 3

In certain circumstances, such as with QT crates, it is useful to be able to define a set of registers values
that will loaded into a particular set of registers for all boards in a given crate. These definitions cannot
be included in the Tier1 .dat files.

A separate wild-card file must be created and stored in the Tier1/Dictionary directory. The name of this
file must be the same as the master file defining a given Tier1 binary file. The contents of the wild-card
file will be appended to the dictionary file when it is created during a MakeConfig session.

QT definitions

The rules for constructing these are as follows. There are four fields:

<special object> <qt object number> <register number> <name>

The <special object> must always be 29. If the <qt object number> is a xxx_QT_OBJECT as defined in
RC_Config.h then what follows refers only to that particular crate. The <register number> will be in the
QT format, namely Axx. For example:

QT Boards

29 11 1 QT-1-GateStart 31
29 11 2 QT-1-OutputOffset 29 This is the output offset
29 11 15 QT-1-GateStop

will ensure that at Run Start, mother board registers (Axx format, A=0) 1,2 and 15 will be loaded for all
mother boards in the crate defined by <qt object number> 11. These entries refer to the decimal number
of a register as defined in December release of QT_mem_map.pdf.

In the case of wild card definitions, the default register and comment string can be added as shown. Note
thar in the case of wild-card definitions, the comment string must not have the # character as used in
normal definitions and the comment string must be preceded by the default register value. Adding the
default register value without the comment string is allowed.

Similarly:

29 12 103 Do_not_use_LUT

will set register 3 of all daughter boards number 1 in <qt object number> 12.

There are two other assignments to <qt object number> and these are 128 and 129.

The following construction:

29 128 5 QT-RunMode
29 128 13 QT-ZeroSuppress

will load registers 5 and 13 into all mother boards in all QT crates. Similarly:

29 129 2 QT-DataOffset
29 129 3 QT-UseLUT

will load registers 2 and 3 into all daughter boards in all QT crates.

TCU Input Bit Definitions

The file containing the <wild-card numbers> must also contain the definition of the TCU input bits. The
format to be used is:

<special object> <0> <bit number> <description> where <special object> must be 32 and the second
field must be 0. This should have a short header as shown in the following example:

TCU Bit definition

Page 4

32 0 0 MTD
32 0 1 TOF
32 0 2 FMS-pre
32 0 3 FMS
32 0 4 FPDE
32 0 5 ETOT
32 0 6 BHT-bit0
32 0 7 BHT-bit1
32 0 8 EJP0
32 0 9 JP1
32 0 10 JP2
32 0 11 FMSLED
32 0 12 VPD
32 0 13 BBC
32 0 14 BBC-pre
32 0 15 ZeroBias

