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Abstract

The note describes a Kalman filter based reconstruction routine for fitting the primary
vertex. Results of tests of the vertex routine are presented and discussed. The source
code is given in the Appendix.

1 Introduction

The goal of a vertex fit is to obtain the vertex position and associated covariance matrix
using a set of track estimates and their covariance matrices. The proposed algorithm is
aimed for the primary vertex fit problem which is characterized by high track multiplicity
and absence of additional physical constraints on the vertex tracks. The algorithm is based
on the extended Kalman filter method.

2 The extended Kalman filter method

The Kalman filter method [1] is intended for finding the optimum estimation r of an unknown
vector rt according to the known measurements mk, k = 1 . . . n of the vector rt.

The Kalman filter starts with a certain initial approximation r = r0 and refines the vector r,
consecutively adding one measurement after the other. The optimum value is attained after
the addition of the last measurement.

In the general case the unknown vector rt is changed from one measurement to the next.
Here we describe a simplified version of the Kalman filter, where the vector rt is identical for
all measurements.

The measurement mk linearly depends on rt:

mk = Hkrt + ηk , (1)

where ηk — an error of the k-th measurement. The error is unbiased and its covariance
matrix Vk is known:

< ηk > = 0 ,
< ηk · ηT

k > = Vk .
(2)

The algorithm of fitting consists of two stages:
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1. Initialization. Choose an approximate value of vector r0. Its covariance matrix is set
to C0 = I · inf, where inf denotes a large positive number.

2. Filtration. For each measurement mk a vector rk, which is the optimum estimation of
the vector rt according to the first k measurements, is calculated:

Sk = (Vk + HkCkH
T
k )−1 ,

Kk = CkH
T
k Sk ,

ζk = mk −Hkrk−1 , (3)
rk = rk−1 + Kkζk ,

Ck = Ck−1 −KkHkCk ,

χ2
k = χ2

k−1 + ζT
k Skζk .

Here rk−1, Ck−1 — the optimum estimation, obtained at the previous step and the error
covariance matrix; mk, Vk — the k-th measurement and its covariance matrix; the matrix
Hk — the model of measurement; the matrix Kk is the so-called gain matrix; the vector ζk

denotes residual; the value χ2
k is the total χ2-deviation of the obtained estimation rk from

the measurements m1, . . .mk.

The vector rn obtained after the filtration of the last measurement is the desired optimal
estimation with the covariance matrix Cn.

In the case the measurements mk nonlinearly depend on rt, it is necessary to linearize the
model of measurement. As a point of linearization a certain vector r0 is selected:

mk(rt) = hk(rt) + ηk ≈ hk(r0) + Hk(rt − r0) + ηk , (4)

where Hk is the Jacobian of hk(r) at r0:

Hk (ij) =
∂hk(r) (i)

∂r (j)

∣∣∣∣∣
r=r0

. (5)

The Kalman filter with nonlinear measurement model is called the extended Kalman filter.
Equations of filtration for the extended Kalman filter are the same as in the ordinary case (3)
with an exception for the residual ζk, which is calculated according to the formula:

ζk = mk − (hk(r0) + Hk(rk−1 − r0)) . (6)

As can be seen, the result of the fit depends on the point of linearization r0. Taking the
current solution rk−1 as the point of linearization, the extended Kalman filter coincides with
the usual one (6). But in order to get more robust and precise results, the fitting procedure
must be repeated several times, using the optimal estimation rn as the linearization point for
the next iteration.

3 Primary vertex fit

The fit of primary vertex consists in determining the position of the vertex using the track
estimates obtained after the track fitter. Each track estimate is considered as an independent
measurement of the vertex position [2, 3, 4]. The vertex fit is achieved by the extended
Kalman filter, described in the previous section.
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Let us denote:

r = (xv, yv, zv)T — the vertex position;

ak, bk, (q/p)k — the directions and the inverse momentum of the k-th track, originating from
the vertex r;

mk = (xk, yk, txk, tyk, (q/p)k)T — the k-th track estimate, parametrized at a certain zref ;

Vk — the covariance matrix of the k-th track estimate;

hk(r, ak, bk, (q/p)k) — parameters of the k-th track, extrapolated from zv to zref :

hk(r, ak, bk, (q/p)k) =


xv + ak · (zref − zv) + O((zref − zv)2)
yv + bk · (zref − zv) + O((zref − zv)2)

ak

bk

(q/p)k

 . (7)

Here the term O((zref − zv)2) describes the deviation of the track from a straight line in a
magnetic field (see details in [5]).

The measurement model is:

mk = hk(rt, at
k, b

t
k, (q/p)t

k) + ηk ,
< ηk · ηT

k > = Vk .
(8)

The measurement model is nonlinear in zv, ak, bk (7) and, therefore, should be linearized at
a certain values (z0

v , a0
k, b

0
k). Let us extrapolate the track estimates to z0

v (setting zref = z0
v).

The Jacobian Hk of the vector hk at z0
v is:

Hk =


1 0 −a0

k 0 0 0
0 1 −b0

k 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (9)

The linearised measurement model, according to (4), is:

mk(r) ≈


a0

k · z0
v

b0
k · z0

v

0
0
0

+


1 0 −a0

k 0 0 0
0 1 −b0

k 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





xv

yv

zv

ak

bk

(q/p)k


+ ηk . (10)

In the linearized model of measurement:

• only the x and y components of mk depend on the vertex parameters rk;

• these components do not depend on the parameters (ak, bk, (q/p)k) of the vertex track;

• the parameters of the k-th vertex track are measured only by the k-th track estimate mk.

Thus, the values ak, bk, (q/p)k do not influence the measurement of the vertex position rk

with the track estimate mk and, therefore, there is no need to fit these values at the k-th
step of the Kalman filter.
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The vertex fit is achieved according to eq. (3) of the Kalman filter with the state vector
r = (xv, yv, zv)T and the measurement model Hxy

k :

Hxy
k =

(
1 0 −a0

k

0 1 −b0
k

)
,

Sk = (V xy
k + Hxy

k CkH
xyT
k )−1 ,

Kk = CkH
xyT
k Sk ,

ζk = mxy
k −Hxy

k (rk−1 −

 0
0
z0
v

) , (11)

rk = rk−1 + Kkζk ,

Ck = Ck−1 −KkH
xy
k Ck ,

χ2
k = χ2

k−1 + ζT
k Skζk .

Here the two-dimensional measurement mxy
k and the matrix V xy

k denote the x and y compo-
nents of the track estimate mk and the corresponding part of its covariance matrix Vk.

The directions a0
k, b

0
k in eq. (11) are determined by fitting the track mk to the vertex guess r0

used in the linearization. For that, one step of filtration with the vertex (x0
v, y

0
v) as the

measurement with the null matrix of errors is performed:

H̃k =

(
1 0 0 0 0
0 1 0 0 0

)
,

K̃k = VkH̃
T
k (O + H̃kVkH̃

T
k )−1 ,

ζ̃k = (x0
v, y

0
v)

T − H̃kmk , (12)
m0

k = mk + K̃kζ̃k ,

a0
k = m0

k (2) ,

b0
k = m0

k (3) .

Here m0
k denotes the track fitted to the r0 vertex from which the directions a0

k, b
0
k are taken.

Note, that there is no need to calculate the momentum (q/p)0k of the vertex track.

Additionally, the χ2 distance between the track estimate and the vertex guess r0 is calculated
in order to reject wrong tracks:

χ2
k = ζ̃

T
k (C0 + H̃kVkH̃

T
k )−1ζ̃k , (13)

where C0 is the covariance matrix of the vertex guess r0.

The complete algorithm is following: Appendix

• First approximation of the vertex r = (x0
v, y

0
v , z

0
v), C. 032-045

• A few iterations of the vertex fit: 047-156

1. Initialization: 051-065

– Store vertex from previous iteration: r0 = r, C0 = C. 051-056

– The initial vertex state vector is taken from the previous iteration r = r0.
– The initial covariance matrix is set to C = I · inf. 058-062
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– Initialize the vertex χ2 and number of degrees of freedom. 064-065

2. Filtering (repeats for every track estimate): 067-154

– Extrapolate the track estimate mk to z0
v . 071

– Calculation of χ2-distance of the k-th track estimate from the vertex r0 (13). 079-085

– Calculation of parameters of the k-th vertex track a0
k, b

0
k (12). 087-095

– Update the state vector r with the Kalman filter formalism (11). 098-152

3. Repeat filtering for the next track.

• Make the next iteration of the fitting routine.

• Store r, C. 159-163

A special feature of the presented algorithm is the extrapolation of the track estimates to
the vertex linearization point r0. This approach makes it possible to fit the vertex without
including the track parameters into the vertex state vector (11) and to maximally simplify
the calculations. In particular, only two operations of division are performed for each track,
while in the standard approach [1] two-fold inversion of a 5× 5 matrix is required.

The source code of the algorithm is presented in the Appendix. In order to reduce the
calculations, all symmetrical matrices are stored as vectors in the low-triangle form A =
{A(00), A(01), A(11), A(20), A(21), A(22), A(30), . . .}.

4 Performance

The algorithm has been implemented for the CBM experiment [6].

Table 1 gives the precision of the primary vertex reconstruction obtained from 10000 events
of central Au+Au collisions at 25 AGeV. The algorithm provides a very high accuracy: the
residuals of the xv and yv positions of the primary vertex are less than 1 µm, and the zv

position is reconstructed with an accuracy better than 4 µm. The normalized residuals (pulls)
are close to unity. A little increase of the pulls is probably due to including some secondary
tracks into the primary vertex fit.

Parameter Resolution (µm) Pull
xv 0.67 1.08
yv 0.64 1.11
zv 3.62 1.10

Table 1: Residuals and normalised residuals (pulls) of the primary vertex parameters obtained
from 10000 events of central Au+Au collisions at 25 AGeV

The total number of reconstructed tracks used in the primary vertex fitting routine (Fig. 1)
is quite large. In order to investigate the dependence of the vertex resolution on this number,
the primary vertex fitting routine has been applied to smaller sub-sets of tracks (Fig. 2).
Such ∼ 1/

√
N type behavior allows a significant speedup of the fitting routine in case the

maximal precision of the primary vertex is not necessary. This will be especially important
for online event selection where time consumptions are crucial.
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Figure 1: Number of reconstructed tracks
per event used by the primary vertex fit al-
gorithm for central Au+Au collisions at 25
AGeV
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Figure 2: Primary vertex position resolu-
tions versus number of tracks used in the pri-
mary vertex fit (the scale for zv is shown on
the right side)

5 Conclusion

A primary vertex reconstruction routine based on the Kalman filter method has been de-
veloped for the CBM experiment. The algorithm shows a high accuracy and is suitable for
further implementation at the trigger level.

6 Acknowledgements

We acknowledge the support of the European Community-Research Infrastructure Activ-
ity under the FP6 “Structuring the European Research Area” programme (HadronPhysics,
contract number RII3-CT-2004-506078).

References
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Appendix

001 /** CbmKF::FitPrimaryVertex routine performs primary vertex fit
002 *
003 * @author S.Gorbunov
004 * @author I.Kisel
005 *
006 * @version 2.0
007 * @since 26.12.05
008 *
009 * Geometrical fit of the primary vertex with the Kalman Filter method.
010 *
011 */
012
013 #include "CbmKF.h"
014 #include "CbmKFTrackInterface.h"
015 #include "CbmKFVertexInterface.h"
016 #include "CbmKFTrack.h"
017
018 ClassImp(CbmKF)
019
020 void CbmKF::FitPrimaryVertex( vector<CbmKFTrackInterface*> &Tracks,
021 CbmKFVertexInterface &vtx )
022 {
023 //* Constants
024
025 const Double_t CutChi2 = 3.5*3.5;
026 const Int_t MaxIter = 3;
027
028 //* Vertex state vector and covariance matrix
029
030 Double_t r[3], *C = vtx.GetCovMatrix();
031
032 //* Initialize the vertex
033
034 for( Int_t i=0; i<6; i++ ) C[i]=0;
035 if( vTargets.empty() ){
036 r[0] = r[1] = r[2] = 0.;
037 C[0] = C[2] = 5.;
038 C[5] = 0.25;
039 }else{
040 CbmKFTube &t = vTargets[0];
041 r[0] = r[1] = 0.;
042 r[2] = t.z;
043 C[0] = C[2] = t.RR/3.5/3.5;
044 C[5] = (t.dz/2/3.5)*(t.dz/2/3.5);
045 }
046
047 //* Iterative fit of the vertex
048
049 for( Int_t iteration = 0; iteration < MaxIter; ++iteration ){
050
051 //* Store the vertex from the previous iteration
052
053 Double_t r0[3], C0[6];
054
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055 for( Int_t i=0; i<3; i++ ) r0[i] = r[i];
056 for( Int_t i=0; i<6; i++ ) C0[i] = C[i];
057
058 //* Initialize the vertex covariance, Chi^2 & NDF
059
060 C[0] = 100.;
061 C[1] = 0.; C[2] = 100.;
062 C[3] = 0.; C[4] = 0.; C[5] = 100.;
063
064 vtx.GetRefNDF() = -3;
065 vtx.GetRefChi2() = 0.;
066
067 for( vector<CbmKFTrackInterface*>::iterator itr = Tracks.begin();
068 itr != Tracks.end() ; ++itr ){
069
070 CbmKFTrack T(**itr);
071 Extrapolate( T, r0[2] );
072
073 Double_t *m = T.GetTrack();
074 Double_t *V = T.GetCovMatrix();
075 Double_t a = 0, b = 0;
076 {
077 Double_t zeta[2] = { r0[0]-m[0], r0[1]-m[1] };
078
079 //* Check the track Chi^2 deviation from the r0 vertex estimate
080
081 Double_t S[3] = { (C0[2]+V[2]), -(C0[1]+V[1]), (C0[0]+V[0]) };
082 Double_t s = S[2]*S[0] - S[1]*S[1];
083 Double_t chi2 = zeta[0]*zeta[0]*S[0] + 2*zeta[0]*zeta[1]*S[1]
084 + zeta[1]*zeta[1]*S[2];
085 if( chi2 > s*CutChi2 ) continue;
086
087 //* Fit of the vertex track slopes (a,b) to the r0 vertex estimate
088
089 s = V[0]*V[2] - V[1]*V[1];
090 if ( s < 1.E-20 ) continue;
091 s = 1./s;
092 a = m[2] + s*( ( V[3]*V[2] - V[4]*V[1] )*zeta[0]
093 + (- V[3]*V[1] + V[4]*V[0] )*zeta[1] );
094 b = m[3] + s*( ( V[6]*V[2] - V[7]*V[1] )*zeta[0]
095 + (- V[6]*V[1] + V[7]*V[0] )*zeta[1] );
096 }
097
098 //** Update the vertex (r,C) with the track estimate (m,V) :
099
100 //* Linearized measurement matrix H = { { 1, 0, -a}, { 0, 1, -b} };
101
102 //* Residual zeta (measured - estimated)
103
104 Double_t zeta[2] = { m[0] - ( r[0] - a*(r[2]-r0[2]) ),
105 m[1] - ( r[1] - b*(r[2]-r0[2]) ) };
106 //* CHt = CH’
107
108 Double_t CHt[3][2] = { { C[0] - a*C[3], C[1] - b*C[3]},
109 { C[1] - a*C[4], C[2] - b*C[4]},
110 { C[3] - a*C[5], C[4] - b*C[5]} };

8

CBM-SOFT-note-2006-001
I3HP-FutureDAQ-note-2006-001

9 January 2006



111
112 //* S = (H*C*H’ + V )^{-1}
113
114 Double_t S[3] = { V[0] + CHt[0][0] - a*CHt[2][0],
115 V[1] + CHt[1][0] - b*CHt[2][0],
116 V[2] + CHt[1][1] - b*CHt[2][1] };
117 //* Invert S
118 {
119 Double_t s = S[0]*S[2] - S[1]*S[1];
120 if ( s < 1.E-20 ) continue;
121 s = 1./s;
122 Double_t S0 = S[0];
123 S[0] = s*S[2];
124 S[1] = -s*S[1];
125 S[2] = s*S0;
126 }
127
128 //* Calculate Chi^2
129
130 vtx.GetRefChi2()+= zeta[0]*zeta[0]*S[0] + 2*zeta[0]*zeta[1]*S[1]
131 + zeta[1]*zeta[1]*S[2];
132 vtx.GetRefNDF() += 2;
133
134 //* Kalman gain K = CH’*S
135
136 Double_t K[3][2];
137
138 for( Int_t i=0; i<3; ++i ){ K[i][0] = CHt[i][0]*S[0] + CHt[i][1]*S[1] ;
139 K[i][1] = CHt[i][0]*S[1] + CHt[i][1]*S[2] ; }
140
141 //* New estimation of the vertex position r += K*zeta
142
143 for( Int_t i=0; i<3; ++i ) r[i]+= K[i][0]*zeta[0] + K[i][1]*zeta[1];
144
145 //* New covariance matrix C -= K*(CH’)’
146
147 C[0] -= K[0][0]*CHt[0][0] + K[0][1]*CHt[0][1];
148 C[1] -= K[1][0]*CHt[0][0] + K[1][1]*CHt[0][1];
149 C[2] -= K[1][0]*CHt[1][0] + K[1][1]*CHt[1][1];
150 C[3] -= K[2][0]*CHt[0][0] + K[2][1]*CHt[0][1];
151 C[4] -= K[2][0]*CHt[1][0] + K[2][1]*CHt[1][1];
152 C[5] -= K[2][0]*CHt[2][0] + K[2][1]*CHt[2][1];
153
154 }//* itr
155
156 }//* end of iterations
157
158 //* Copy the state vector to the output
159 //* ( the covariance matrix has been used directly )
160
161 vtx.GetRefX() = r[0];
162 vtx.GetRefY() = r[1];
163 vtx.GetRefZ() = r[2];
164 }
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