
Secondary vertex fit

based on the Kalman filter

S. Gorbunov1 and I. Kisel2,3

1DESY Zeuthen, Platanenallee 6, 15738 Zeuthen, Germany
2Kirchhoff Institute for Physics, University of Heidelberg, 69120 Heidelberg, Germany

3Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna,
Russia

Abstract

The note describes a reconstruction package for fitting secondary vertices. The pack-
age is based on the Kalman filter. The Kalman filter procedure has been modified in
order to operate with correlated errors of measurements and, as a result, to simplify
calculations avoiding operations with matrices.

Three approaches have been implemented: a geometrical fit using tracking information
without particle identification; a fit with a topological constraint on a mother particle
to originate from the primary vertex or another vertex in the decay chain; a fit with a
mass constraint when one or several combinations of particles in the vertex are known to
originate from a narrow width mass state.

Results of tests of the vertex package are presented and discussed. The source code
is given in the Appendix.

1 Introduction

The goal of a vertex fit is to obtain the vertex position and associated covariance matrix using
a set of track estimates and their covariance matrices. The proposed algorithm is aimed for
the secondary vertex fit problem, where besides the parameters of the vertex it is necessary
to obtain also the parameters of all vertex tracks and the complete covariance matrix, which
contains the covariances between the different tracks and between the tracks and the vertex.
The algorithm is based on the Kalman filter method [1].

The standard Kalman filter approach has been modified for the case of correlated errors of
measurements. The modification made it possible to completely exclude matrix operations
and, as a result, to substantially simplify the algorithm of the secondary vertex fit.

The algorithm has been successfully tested on simulated data of the CBM experiment [2].

2 The Kalman filter method

The Kalman filter method [1] is intended for finding the optimum estimation r of an unknown
vector rt according to the known measurements mk, k = 1 . . . n of the vector rt.

1

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

The Kalman filter starts with a certain initial approximation r = r0 and refines the vector r,
consecutively adding one measurement after the other. The optimum value is attained after
the addition of the last measurement.

In the general case the unknown vector rt is changed from one measurement to the next.
Here we describe a simplified version of the Kalman filter, where the vector rt is identical for
all measurements.

The measurement mk linearly depends on rt:

mk = Hkrt + ηk , (1)

where ηk — an error of the k-th measurement. The error is unbiased and its covariance
matrix Vk is known:

< ηk > = 0 ,
< ηk · ηT

k > = Vk .
(2)

It is assumed that errors of different measurements are uncorrelated. The algorithm of fitting
consists of two stages:

1. Initialization. Choose an approximate value of vector r0. Its covariance matrix is set
to C0 = I · inf, where inf denotes a large positive number.

2. Filtration. For each measurement mk a vector rk, which is the optimum estimation of
the vector rt according to the first k measurements, is calculated:

Sk = (Vk +HkCk−1H
T
k)−1 ,

Kk = Ck−1H
T
k Sk ,

ζk = mk −Hkrk−1 , (3)
rk = rk−1 +Kkζk ,

Ck = Ck−1 −KkHkCk−1 ,

χ2
k = χ2

k−1 + ζT
k Skζk .

Here rk−1, Ck−1 — the optimum estimation, obtained at the previous step and the error
covariance matrix; mk, Vk — the k-th measurement and its covariance matrix; the matrix
Hk — the model of measurement; the matrix Kk is the so-called gain matrix; the vector ζk

denotes residual; the value χ2
k is the total χ2-deviation of the obtained estimation rk from

the measurements m1, . . .mk.

The vector rn obtained after the filtration of the last measurement is the desired optimal
estimation with the covariance matrix Cn.

In the case the measurements mk nonlinearly depend on rt, it is necessary to linearize the
model of measurement. As a point of linearization a certain vector r0 is selected:

mk(rt) = hk(rt) + ηk ≈ hk(r0) +Hk(rt − r0) + ηk , (4)

where Hk is the Jacobian of hk(r) at r0:

Hk (ij) =
∂hk(r) (i)

∂r (j)

∣∣∣∣∣
r=r0

. (5)

2

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

The Kalman filter with nonlinear measurement model is called the extended Kalman filter.
Equations of filtration for the extended Kalman filter are the same as in the ordinary case (3)
with an exception for the residual ζk, which is calculated according to the formula:

ζk = mk − (hk(r0) +Hk(rk−1 − r0)) . (6)

As can be seen, the result of the fit depends on the point of linearization r0. Taking the current
solution rk−1 as the point of linearization for k-th measurement, the extended Kalman filter
coincides with the usual one (6). But in order to get more robust and precise results, the
fitting procedure must be repeated several times, using the optimal estimation rn as the
linearization point for all the measurements on the next iteration.

3 Modification of the Kalman filter

Here we modify the Kalman filter for the case when errors of measurements are correlated
and the correlation between the error of the current state vector rk−1 and an error of a new
measurement mk is known.

Let us examine the k-th step of fitting of an unknown vector rt by the Kalman filter. At
this stage the state vector rk−1 with the covariance matrix of errors Ck−1, been the optimum
estimation of rt according to the measurements m1, . . . ,mk−1, is already produced. Now it
is necessary to add to the state vector a new measurement mk:

mk = Hkrt + ηk ,
< ηk · ηT

k > = Vk ,
< ηk > = 0 ,

(7)

where, as in (1, 2), ηk denotes the measurement error, Vk — the known covariance matrix of
error.

In contrast to the standard Kalman filter, let the error ηk of the measurement mk is correlated
with errors of previous measurements mi<k, and, therefore, with the error of the state vector
rk−1. Assume a matrix Dk of covariances between mk and rk−1 is known:

Dk (i,j) = cov(mk (i), rk−1 (j)) . (8)

It is necessary to build an optimum estimation {rk, Ck} of the vector rt according to the
measurement mk and all previous measurements.

In order to properly include the correlations Dk, let us group the state vector rk−1 and the
measurement mk into a combined state vector r̂k−1:

r̂k−1 =

(
rk−1

mk

)
,

Ĉk−1 =

(
Ck−1 DT

k

Dk Vk

)
,

(9)

and make an update of the combined state vector r̂k−1 according to the measurement model
Hk. From (7) follows:

0 = Hkrt − (mk + ηk) ≡ Hkrt −mt
k ≡ (Hk, −I) · r̂t . (10)

3

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

Therefore, the update of the state vector rk−1 by the measurement mk is equivalent to the
update of the combined state vector r̂k−1 by a zero measurement 0 with the null matrix of
errors and the measurement model Ĥk:

0 = Ĥkr̂t ,

Ĥk =
(
Hk, −I

)
.

(11)

Now let us add the measurement (11) into the combined state vector r̂k−1 by the standard
Kalman filter (3). In order to shorten the text, let us introduce two matrices A and B:

A = HkCk−1 −Dk ,
B = HkD

T
k − Vk .

(12)

and several matrices used later:

ĤT
k =

(
HT

k

−I

)
,

ĤkĈk−1 =
(
A, B

)
,

Ĉk−1Ĥ
T
k =

(
AT

BT

)
.

(13)

According to (3) let us write the equations of filtering for the combined vector r̂:

Sk =
(
O + ĤkĈk−1Ĥ

T
k

)−1
=

(
AHT

k −B
)−1

,

K̂k = Ĉk−1Ĥ
T
k Sk =

(
ATSk

BTSk

)
,

ζk = 0− Ĥkr̂k−1 = mk −Hkrk−1 ,

r̂k = r̂k−1 + K̂kζk =

(
rk−1 +ATSkζk

mk +BTSkζk

)
,

Ĉk = Ĉk−1 − K̂kĤkĈk−1 =

(
Ck−1 DT

k

Dk Vk

)
−
(
ATSk

BTSk

)(
A, B

)
=

=

(
Ck−1 −ATSkA DT

k −ATSkB
Dk −BTSkA Vk −BTSkB

)
,

χ2
k = χ2

k−1 + ζT
k Skζk .

(14)

After taking parts corresponding to the state vector r from r̂k and Ĉk, we obtain1 the required
optimum estimation {rk, Ck} of the vector rt according to the measurements m1, . . . ,mk:

rk = rk−1 +ATSkζk = rk−1 +
(
Ck−1H

T
k −DT

k

)
Skζk ,

Ck = Ck−1 −ATSkA = Ck−1 −
(
Ck−1H

T
k −DT

k

)
Sk

(
HkCk−1 −Dk

)
.

(15)

Let us summarize the modified Kalman filter. If mk — the measurement of the vector rt

with the matrix of the errors Vk, rk−1 — the current state vector, Ck−1 — its covariance
1Since mt

k = Hkr
t, then after filtering (14) the part of the combined state vector r̂k, which corresponds to

the measurement mk, does not contain any additional information about the vector rt.

4

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

matrix, the error of the measurement mk is correlated with the error of the state vector rk−1,
and Dk — the corresponding matrix of the covariances:

Dk (i,j) = cov(mk (i), rk−1 (j)) , (16)

then the standard equations of the Kalman filter (3) are modified as follows:2

Sk =
(
Vk +HkCk−1H

T
k −DkH

T
k −HkD

T
k

)−1
,

Kk =
(
Ck−1H

T
k −DT

k

)
Sk ,

ζk = mk −Hkrk−1 , (17)
rk = rk−1 +Kkζk ,

Ck = Ck−1 −Kk (HkCk−1 −Dk) ,
χ2

k = χ2
k−1 + ζT

k Skζk .

Let us note that in the case of the absence of correlations (Dk = O) the formulae (17) coincide
with the standard Kalman filter (3).

In the case of a nonlinear model of measurement, as in the standard Kalman filter (6), only
the residual ζk is changed:

ζk = mk − (hk(r0) +Hk(rk−1 − r0)) . (18)

In practice, when the multidimensional measurement model Hk has many trivial elements,
which is the case for the vertex fit, the modified Kalman filter can be useful in order to
simplify the calculations by subdividing the measurements into parts.

4 Geometrical fit of secondary vertex

The fit of secondary vertex consists in determining the position of the vertex using the track
estimates obtained after the track fitter. Each track estimate is considered as an independent
measurement of the vertex position [3, 4, 5, 6, 7]. The vertex fit is achieved by the extended
Kalman filter, described in Sec. 2. The term geometrical vertex fit indicates here a pure fit
without applying additional constraints on the vertex tracks.

Let a vertex (xv, yv, zv) be composed of n tracks with slopes ak, bk and signed inverse mo-
menta (q/p)k. We arrange the parameters of the vertex and the parameters of all vertex
tracks in a (3 + 3n)-dimensional state vector r:

r = (xv, yv, zv, a1, b1, (q/p)1, . . . an, bn, (q/p)n) . (19)

Let us denote mk = (xk, yk, txk, tyk, (q/p)k)T — the k-th track estimate, parametrized at a
certain zref ; Vk — its covariance matrix of errors.

A track estimate is used as a measurement of a vertex track, whose parameters are unknown
yet. Since the k-th vertex track is parameterized at (unknown) z = zv, then for the measure-
ment it is necessary to extrapolate the vertex track to (known) position z = zref of the track

2The matrix in brackets is a covariance matrix (of Ĥkr̂k−1) and therefore is invertible.

5

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

estimate:

hk(r) =

xv + ak · (zref − zv) +O((zref − zv)2)
yv + bk · (zref − zv) +O((zref − zv)2)

ak

bk
(q/p)k

 . (20)

Here the term O((zref − zv)2) describes the deviation of the track from a straight line in a
magnetic field (see details in [8]). The measurement model is:

mk = hk(rt) + ηk ,
< ηk · ηT

k > = Vk .
(21)

The measurement model is nonlinear in zv, ak, bk (20) and, therefore, should be linearized at
a certain values (z0

v , a
0
k, b

0
k). Let us extrapolate the track estimates to z0

v (setting zref = z0
v).

The Jacobian Hk of the vector hk at z0
v is:

Hk =

1 0 −a0

k 0 · · · 0 0 0 0 0 · · · 0
0 1 −b0k 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 1 0 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 0 · · · 0
0 0 0 0 · · · 0 0 0 1 0 · · · 0

 . (22)

The linearised measurement model, according to (4), is:

mk(r) ≈

a0

kz
0
v

b0kz
0
v

0
0
0

+

1 0 −a0

k 0 · · · 0 0 0 0 0 · · · 0
0 1 −b0k 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 1 0 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 0 · · · 0
0 0 0 0 · · · 0 0 0 1 0 · · · 0

xv

yv

zv
...
ak

bk
(q/p)k

...

+ ηk . (23)

Since the k-th vertex track is measured only by the k-th track estimate mk, then before the
k-th measurement the covariance matrix C has the state:

Ck−1 =

C(00) · · · C(0,3k) 0 · · · 0
...

. . .
... 0 · · · 0

C(3k,0) · · · C(3k,3k) 0 · · · 0
0 0 0 inf 0 0
...

...
... 0

. . . 0
0 0 0 0 0 inf

. (24)

Therefore, there is no need to evaluate the part of the state vector and the covariance matrix
relating to the remaining k + 1, . . . , n vertex tracks at the k-th step. We will consider that
the state vector rk has dimensionality 3 + 3k, and will increase the size of the state vector
and of the covariance matrix Ck in proportion to the addition of the measurements:

rk−1 →
(
rT
k−1, a

0
k, b

0
k, (q/p)

0
k

)T
,

Ck−1 →
(
Ck−1 O

O I · inf

)
.

(25)

6

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

Usually [1] the state vector rk−1 (25) is filtered by the measurement mk (23) in accordance
with the formulae (3, 6) for the extended Kalman filter.

However, since the measurement mk has dimensionality 5, all matrix operations in the
Kalman filter are significantly complicated, in particular inversion of the matrix Sk of di-
mensionality 5 × 5 is required. The modified Kalman filter, constructed in the previous
chapter, makes it possible to substantially simplify the calculations.

To do this, let us subdivide the measurement mk into two parts — a momentum part mabp
k

and a coordinate part mxy
k :

mxy
k =

(
mk (0), mk (1)

)T
, mabp

k =
(
mk (2), mk (3), mk (4)

)T
,

V xy
k =

(
Vk (00) Vk (01)

Vk (10) Vk (11)

)
, V abp

k =

 Vk (22) Vk (23) Vk (24)

Vk (32) Vk (33) Vk (34)

Vk (42) Vk (43) Vk (44)

 ,

(26)

and consecutively add these measurements by the modified Kalman filter.

The reason for such subdivision of mk is that the momentum part mabp
k of the track estimate

measures only new parameters ak, bk, pk of the state vector. These new parameters are not
yet correlated with the rest of the state vector, therefore treatment of the measurement mabp

k

does not change other parameters of the state vector and can be simplified.

Because of this reason, the measurement mabp
k , which measures the directions and the mo-

mentum of the k-th vertex track is added first. The corresponding part of the measurement
model Hk (22) is:

Habp
k =

 0 · · · 0 1 0 0
0 · · · 0 0 1 0
0 · · · 0 0 0 1

 . (27)

Since the initial values of the parameters of the k-th track have infinite covariances (25),
therefore, the filtration of the state vector rk−1 (25) by the measurement mabp

k (26) is equiv-
alent to simple copying of the measurement into the state vector (the new state vector is
denoted as r̃k): Appendix

106-126r̃k =
(
rT
k−1,m

abp T
k

)T
,

C̃k =

(
Ck−1 O

O V abp
k

)
.

(28)

The value of χ2 does not change at this point, because the new parameters ak, bk, pk do not
yet differ from the measurement mabp

k , and the rest of the state vector is not changed. Number
of degrees of freedom also does not change, since introduction of three more parameters is
compensated by adding of the three dimensional measurement.

Now let us add into the state vector r̃k the remaining coordinate part mxy
k of the measurement

mk:

Hxy
k =

(
1 0 −a0

k 0 · · · 0
0 1 −b0k 0 · · · 0

)
. (29)

Since the measurement mxy
k is correlated with the measurement mabp

k , it is also correlated with
the state vector r̃k (28). Let us denote the matrix of covariances between the measurement

7

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

mxy
k and the state vector as Dk (16):

Dk =

(
0 · · · 0 Vk (02) Vk (03) Vk (04)

0 · · · 0 Vk (12) Vk (13) Vk (14)

)
. (30)

Let us use the modified Kalman filter (17, 18). Taking into account the fact that Hxy
k Dk = O

and DkH
xy T
k = O, we obtain the following equations of the geometrical fit of secondary

vertex: 131-191

Sk =
(
V xy

k +Hxy
k C̃kH

xy T
k

)−1
,

Kk =
(
C̃kH

xy T
k −DT

k

)
Sk ,

ζk = mxy
k −Hxy

k

(
r̃k −

(
0, 0, z0

v

)T)
,

rk = r̃k +Kkζk ,

Ck = C̃k −Kk

(
Hxy

k C̃k−1 −Dk

)
,

χ2
k = χ2

k−1 + ζT
k Skζk .

(31)

5 Constrained fit with the Kalman filter

Precision of the secondary vertex parameters obtained in the geometrical vertex fit can be
improved by taking into account several assumptions on the tracks associated to the ver-
tex [1, 2, 6, 9]. These assumptions are expressed in terms of constraints on the state vector
parameters.

5.1 Lagrange method

The Lagrange method [1, 9] is widely used to impose penalties on the state vector.

Let us designate the state vector before the addition of a penalty as r and after a penalty as
rc, and the covariance matrices as C and Cc respectively.

A constraint is an equation on the state vector parameters that has to be satisfied:

H · rc = 0 . (32)

We will call this type of penalty as exact constraint. For determining rc it is necessary to
minimize χ2(rc) with the fulfilment of (32):{

χ2(rc) = (rc − r)TC−1(rc − r) −→ min ,
H · rc = 0 .

(33)

In the Lagrange method a new function χ2
L is constructed:

χ2
L(rc,µ) = χ2(rc) + 2µTHrc −→ min , (34)

where µ are so-called Lagrange multipliers3. The function χ2
L is then minimized with respect

to rc and µ.

The function χ2
L satisfies two conditions:

3The coefficient 2 is undertaken to simplify further formulas.

8

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

• χ2
L coincides with χ2 when the constraint is fulfilled;

• the constraint H · rc = 0 is fulfilled at the point of the χ2
L minimum.

To minimize χ2
L one uses partial derivatives of χ2

L with respect to rc and µ:

1
2
∂χ2

L

∂rc
= C−1(rc − r) +HT µ = 0 , (35)

1
2
∂χ2

L

∂µ
= Hrc = 0 . (36)

Multiplying the first equation with HC and subtracting the second equation yields

−Hr +HCHT µ = 0 . (37)

Assuming the matrix HCHT is non-singular one can express µ:

µ = (HCHT)−1Hr , (38)

and substituting into (35) one obtains the desired state vector rc:

rc = r− CHT (HCHT)−1Hr . (39)

Let us denote
K = CHT (HCHT)−1 . (40)

Since rc = (I−KH)r, then the covariance matrix Cc is equal

Cc = (I−KH)C(I −KH)T . (41)

Let us rewrite and simplify it:

Cc = (I−KH)C − (C(KH)T −KHC(KH)T) . (42)

Taking into account the fact that

KHC(KH)T = KHCHTKT = CHT (HCHT)−1HCHT (HCHT)−1HC

= CHT (HCHT)−1HC = C(KH)T ,

we obtain
Cc = (I−KH)C . (43)

Substituting (39) into (32), we obtain the χ2(rc) value:

χ2(rc) = (CHT (HCHT)−1Hr)TC−1(CHT (HCHT)−1Hr)
= (Hr)T ((HCHT)−1HC)C−1(CHT (HCHT)−1)(Hr)
= (Hr)T (HCHT)−1(Hr) .

(44)

The final result is:
K = CHT (HCHT)−1 ,

rc = r−KHr ,

Cc = C −KHC ,

χ2
c = χ2 + (Hr)T (HCHT)−1(Hr) ,

(45)

9

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

5.2 Treatment of constraints with the Kalman filter

A more convenient way of adding penalties to the state vector is use of the Kalman filter [2,
6, 9].

Let us first consider the case when penalty is assigned with a certain error (soft constraint):

H · rc + η = 0 . (46)

Here the random variable η is un-biased and has a known covariance matrix Vc:

Vc ≡< η2 > . (47)

As can be seen from (46), soft constraint is a measurement of the state vector with the value
of measurement 0, the measurement matrix H and the error Vc. Therefore, the optimum
value of the state vector after imposition of the soft penalty is given by Eq. (3) of the Kalman
filter:

K = CHT (Vc +HCHT)−1 ,
rc = r−KHr ,
Cc = C −KHC ,
χ2

c = χ2 + (Hr)T (Vc +HCHT)−1(Hr) .

(48)

One can see that Eqs. (48) of the Kalman filter coincide with Eqs. (45) of the Lagrange
method when Vc = O. Therefore, the equations of the Kalman filter remain correct also
when Vc = O.

Thus, the Kalman filter method is the general method to impose penalties, where exact
constraint is a special case of soft constraint being considered as a measurement with a null
error.

In the case of nonlinear constraints the equation of penalty first is linearized as any other
measurement, after that the extended Kalman filter is applied.

6 Constrained fit of secondary vertex

In the secondary vertex fit every constraint is treated by the Kalman filter (48) as an one-
dimensional measurement with a null error. 368-390

Since the constraints are applied after the geometrical fit, this implies additional steps of the
Kalman filter algorithm with the corresponding measurement models.

Two types of constraints have been included into the vertex fit package: a topological con-
straint and a mass constraint. In both constraints the following values and their derivatives
are used: 392-442

pz
k =

1

|(q/p)k|
√

1 + a2
k + b2k

; ∇pz
k =

(
−akp

z
k

1 + a2
k + b2k

,
−bkpz

k

1 + a2
k + b2k

,
−pz

k

(q/p)k

)
;

px
k = akp

z
k ; ∇px

k =

(
pz

k + ak
∂pz

k

∂ak
, ak

∂pz
k

∂bk
, ak

∂pz
k

∂(q/p)k

)
;

py
k = bkp

z
k ; ∇py

k =

(
bk
∂pz

k

∂ak
, pz

k + bk
∂pz

k

∂bk
, bk

∂pz
k

∂(q/p)k

)
;

Ek =

√
1

(q/p)2k
+m2

k ; ∇Ek =

(
0, 0,

−1
Ek(q/p)3k

)
;

(49)

10

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

where mk is the mass hypothesis of k-th particle. Here the gradient ∇ denotes the vector of
the derivatives ∇f = (∂f/∂ak, ∂f/∂bk, ∂f/∂(q/p)k) for a certain variable f . Parameters of
the mother particle will be also used:

px =
n∑

k=1

px
k , py =

n∑
k=1

py
k , pz =

n∑
k=1

pz
k , E =

n∑
k=1

Ek . (50)

The state vector obtained after the geometrical fit is used in both constraints as the point of
linearization r0.

6.1 Topological constraint
455-493

The topological constraint is used to align a mother particle with the (already) known primary
vertex4. The mother track ends at the secondary vertex v = (xv, yv, zv) with momentum
p = (px, py, pz) and has to originate from the primary vertex vpv = (xpv, ypv, zpv).

We consider here only the case when trajectory of the mother particle is straight line (the
mother particle is either not charged or its decay has been occurred close to the primary
vertex and curvature of the trajectory in a magnetic field can be neglected). In this case
primary and secondary vertices are connected with a straight line

v − p · t = vpv , (51)

where the additional parameter t denotes length of the trajectory of the mother particle,
normalized to its momentum. The requirement (51) can be rewritten as a set of three
independent constraints:

0 = ∆x− px · t ,
0 = ∆y − py · t ,
0 = ∆z − pz · t ,

(52)

with notations ∆x = (xv − xpv), ∆y = (yv − ypv), ∆z = (zv − zpv).

Since in the CBM experiment all particles have z-component of momentum, then also for the
mother particle pz 6= 0. Therefore, we can avoid the calculation of t, expressing it from the
third Eq. (52)

t = ∆z/pz (53)

and substituting into the first two.

Finally, the topological constraint consists of two independent one-dimensional constraints:

0 = ∆x · pz −∆z · px ,

0 = ∆y · pz −∆z · py .
(54)

The constraint can be included directly into the Kalman filter as a set of two independent
measurements with null values and null errors. As a result, the mother track will point
exactly to the primary vertex.

The primary vertex errors can also be taken into account. The most elegant way to do this
is to add the primary vertex parameters into the state vector [6] 458-473

r = (xv, yv, zv, a1, b1, p1, . . . an, bn, pn, xpv, ypv, zpv) (55)

4This is also true for the previous vertex in a decay chain.

11

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

with the primary vertex covariance matrix included into the extended covariance matrix of
the state vector.

Two constraints (54) are added one by one. For the first constraint the linearised measurement
matrix Hx is:

479-482Hx =

(
pz, 0, −px,

· · · , ∆x
∂pz

k

∂ak
−∆z

∂px
k

∂ak
, ∆x

∂pz
k

∂bk
−∆z

∂px
k

∂bk
, ∆x

∂pz
k

∂(q/p)k
−∆z

∂px
k

∂(q/p)k
,

· · · , −pz, 0, px

)
.

(56)

The constructed topological constraint is used by the Kalman filter as an one-dimensional
measurement with the measured value equal to 0, the null error and the linearised measure-
ment matrix Hx: 484

0 = ∆x · pz −∆z · px +Hx(rt − r0) . (57)

The second constraint in (54) is treated in the same way: 486-491

Hy =

(
pz, 0, −py,

· · · , ∆y
∂pz

k

∂ak
−∆z

∂py
k

∂ak
, ∆y

∂pz
k

∂bk
−∆z

∂py
k

∂bk
, ∆y

∂pz
k

∂(q/p)k
−∆z

∂py
k

∂(q/p)k
,

· · · , −pz, 0, py

)
,

(58)

0 = ∆y · pz −∆z · py +Hy(rt − r0) . (59)

6.2 Mass constraint
444-452

The mass constraint can be applied in the case of one or several combinations of particles in
the vertex are known to originate from a narrow width mass state. Here we consider the case
of a single mass constraint, since multiple mass constraints can be treated in a similar way.
Let all the tracks are required by the mass constraint to form the invariant mass M .

The mass constraint reads

M2 = E2 −
(
px 2 + py 2 + pz 2

)
. (60)

Taking the partial derivatives of M2 one can calculate a linearised matrix HM of the mass
measurement:

447-450HM =

(
0, 0, 0, · · ·

2E
∂Ek

∂ak
− 2px ∂p

x
k

∂ak
− 2py ∂p

y
k

∂ak
− 2pz ∂p

z
k

∂ak
,

2E
∂Ek

∂bk
− 2px∂p

x
k

∂bk
− 2py ∂p

y
k

∂bk
− 2pz ∂p

z
k

∂bk
,

2E
∂Ek

∂(q/p)k
− 2px ∂p

x
k

∂(q/p)k
− 2py ∂p

y
k

∂(q/p)k
− 2pz ∂p

z
k

∂(q/p)k
,

· · ·
)
.

(61)

12

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

The mass constraint is used by Kalman filter as an ordinary one-dimensional measurement
with the measured value M2, a null error and the measurement matrix HM : 451

M2 = E2 −
(
px 2 + py 2 + pz 2

)
+HM (rt − r0) . (62)

7 The algorithm

The algorithm proceeds track by track and finally obtains the estimates of the vertex position
and parameters of the tracks composing the vertex together with the corresponding covariance
matrix. Finally, the scheme of the geometrical vertex fit algorithm is following: 058-204

• First approximation of the state vector r = (x0
v, y

0
v , z

0
v , . . . , a

0
k, b

0
k, (q/p)

0
k . . .). 062-074

• A few iterations of the vertex fit: 076-203

1. Initialization: 078-085

– Store state vector from previous iteration: r0 = r. 078

– The initial vertex state vector is taken from the previous iteration r = r0.
– The initial covariance matrix is set to C = I · inf. 080-082

– Initialize the vertex χ2 and number of degrees of freedom. 084-085

2. Filtering (repeats for every track estimate): 088-193

– Extrapolate the track estimate mk to z0
v . 092

– Update the state vector r with the Kalman filter formalism: 106-191

∗ Copying of the track parts of the track estimate mk into the state vector 108-126
r and the covariance matrix C (26, 28).

∗ Filtering of the state vector by the (x, y)-component of the track estimate 131-191
mk (26, 29, 30, 31).

3. Repeat filtering for the next track.

• Add constraints if they are required. 195-201

• Make the next iteration of the fitting routine.

The fitting algorithm obtains the optimum state vector and its covariance matrix, from
which then the required output values are extracted. Besides the position of the vertex and
parameters of the vertex tracks the reconstruction package includes also the procedures for
calculation of the mass and parameters of the mother particle.

The vertex parameters are simply copied from the state vector together with the covariance 207-215
matrix:

(xv, yv, zv) = (r(0), r(1), r(2)) ,

Cv =

 C(00) C(01) C(02)

C(10) C(11) C(12)

C(20) C(21) C(22)

 .
(63)

Parameters the the k-th vertex track are given in the standard parametrization (x, y, tx, ty, 225-259
(q/p)) and are combined from the vertex and the momentum part of the track: 231-236

Tk = t(r) ≡ (r(0), r(1), r(3k), r(3k+1), r(3k+2))T , (64)

13

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

in this case the track Tk is parametrized at zref = zv ≡ r(2).

Since in the parametrization of track the position zref is fixed, and the position of the
vertex zv has an error, then it is necessary to include this error for correct calculation of the
covariance matrix. For this, let us extrapolate the track Tk from zv to a certain arbitrary
zref and calculate the Jacobian of extrapolation at zref = zv. In accordance with (20, 22)
the Jacobian of transformation t(r) is equal:

Jt =

1 0 −r(3k) 0 · · · 0 0 0 0 0 · · · 0
0 1 −r(3k+1) 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 1 0 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 0 · · · 0
0 0 0 0 · · · 0 0 0 1 0 · · · 0

 . (65)

The covariance matrix of the k-th track is equal: 238-258

Ck = JtCJ
T
t . (66)

Parameters of the mother track Tm = (x, y, tx, ty, (q/p))T are also given in the standard 261-313
parametrization, and they are calculated from the momentum (px, py, pz) of the mather par-
ticle: 268-283

Tm = t(r) = (r(0), r(1), px/pz, py/pz, 1/p)T . (67)

The Jacobian of the transformation t is equal (taking into account the error zv): 287-299

Jt =

1 0 −px/pz 0 · · · 0
0 1 −py/pz 0 · · · 0

(pz∇px − px∇pz) /pz 2

(pz∇py − py∇pz) /pz 2

− (px∇px + py∇py + pz∇pz) /p3

 . (68)

The covariance matrix of the mother track is equal: 307-313

Cm = JtCJ
T
t . (69)

In the absence of the mass constraint it is possible to calculate the mass of the mother particle 316-337
and the error of mass. Using notations of Sec. 6.2:

M2 = E2 −
(
px 2 + py 2 + pz 2

)
,

σ2
M2 = HMCHM T .

(70)

Therefore:
M =

√
M2 ,

σM =
σM2

2M
.

(71)

Note that in the case of the secondary vertex fit with a mass constraint the fitted mass will
coincide with the value of the constraint.

14

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

Constant 228.9
Mean 0.9169
Sigma 44.62

m]µ) [mc
sv-zreco

sv
Resolution (z

-500 -400 -300 -200 -100 0 100 200 300 400 5000

50

100

150

200

250

Constant 228.9
Mean 0.9169
Sigma 44.62

Constant 188.7
Mean 0.002735
Sigma 1.094

svPull z
-10 -8 -6 -4 -2 0 2 4 6 8 100

20

40

60

80

100

120

140

160

180

200

Constant 188.7
Mean 0.002735
Sigma 1.094

Figure 1: Residuals and normalized residuals (pulls) of the secondary vertex z-position ob-
tained from 104 D0 decays in the non-homogeneous magnetic field by applying the full se-
quence of the vertex fitting routines: the geometrical fit and the fits with mass and topological
constraints

Parameter G G+M G+T G+M+T
xv 8.1 7.8 2.1 2.0
yv 8.1 8.0 2.0 2.0
zv 49.5 47.5 45.8 44.6

Table 1: Accuracy (in µm) of the secondary vertex parameters obtained from 104 D0 decays
in the inhomogeneous magnetic field by applying different sequences of the vertex fitting
routines: the geometrical (G) fit and the fits with mass (M) and topological (T) constraints

8 Results and discussion

The algorithms have been implemented for the CBM experiment [2].

Table 1 and figure 1 show residuals and normalized residuals of the D0 decay vertex param-
eters obtained at different stages of the full chain of the vertex fitting algorithms. One can
see that the mass constraint mainly improves the z-position of the vertex while the topolog-
ical constraint increases the resolution of the transversal parameters of the vertex. The best
resolution is reached by applying both, mass and topological, constraints. The longitudinal
resolution is improved comparing to the geometrical fit and now equals 44.6 µm. The pull of
the secondary vertex z-position shows that the vertex parameters are well estimated. Particle
hypothesis have been used during the track fits to properly account for multiple scattering
effects, and in the vertex fit procedure to apply the constraints.

Parameter S S+G S+G+M S+G+T S+G+M+T
pπ+ 0.68 0.68 0.44 0.65 0.42
pK− 0.69 0.68 0.54 0.66 0.52

Table 2: Relative momentum resolution δp/p (in %) of the secondary tracks obtained from
104 D0 decays in the inhomogeneous magnetic field by applying different sequences of the
track and vertex fitting routines: the standalone (S) track fit, the geometrical (G) vertex fit
and the vertex fits with mass (M) and topological (T) constraints

Table 2 shows the relative momentum resolutions of the secondary tracks at different stages of

15

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

the event reconstruction. The mass constrained secondary vertex fit gives the most significant
improvement of the momentum resolution for both particles. The difference in the momentum
resolution behavior of π+ and K− is probably due to their masses.

The presented algorithm of the secondary vertex fit provides the optimum estimation of
the vertex position and the parameters of the vertex tracks. Its advantage in comparison
with other known applications of the Kalman filter [1] consists in speed and simplicity of
calculations. This was possible to achieve due to:

1. Replacement of the 5-dimensional measurement (23) by the 2-dimensional measure-
ment (26) using the modified Kalman filter. In this case the number of calculations
is substantially decreased, for example, it executes one operation of division instead of
inversion of a 5× 5 matrix in the standard approach.

2. Extrapolation of the track estimates mk to the point z0
v of the vertex linearization. As

a result the measurement model Hk (22) contains only two nontrivial elements, and
matrix operations with Hk are reduced to arithmetical ones.

Avoiding matrix inversion in the implementation improves the robustness of the covariance
computations against roundoff errors.

In contrast to the primary vertex fit [7], in the secondary vertex fit the vertex coordinates
and the track parameters are treated together.

Both algorithms provide not only the optimal vertex position, but also optimal estimations
of the track parameters, including their momenta. The algorithm of the secondary vertex fit
calculates the complete error matrix, which includes the dependence of the vertex position
on the track parameters and also between tracks. The presence of the complete error matrix
after the geometrical fit makes it possible to refine the vertex position and the track param-
eters applying additional physical penalties on the tracks, such as the topological and mass
constraints.

In the absence of constraints there is no need in the complete covariance matrix. In this case
the primary vertex fit method described in [7] can be used to fit a secondary vertex providing
the same optimum solution.

9 Conclusion

A secondary vertex reconstruction package based on the Kalman filter method has been
developed for the CBM experiment. The algorithm shows a high accuracy and reliability.

10 Acknowledgements

We acknowledge the support of the European Community-Research Infrastructure Activ-
ity under the FP6 “Structuring the European Research Area” programme (HadronPhysics,
contract number RII3-CT-2004-506078).

16

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

References

[1] R. Frühwirth et al., Data analysis techniques for high-energy physics. Second edition,
Cambridge Univ. Press (2000).

[2] CBM Collaboration, Compressed Baryonic Matter Experiment. Technical Status Report.
GSI, Darmstadt, 2005; 2006 Update
(http://www.gsi.de/documents/DOC-2006-Feb-108-1.pdf).

[3] P. Billoir and S. Qian, Fast vertex fitting with a local parametrization of tracks. Nucl.
Instr. and Meth. A311 (1992) 139-150.

[4] R. Frühwirth, P. Kubinec, W. Mitaroff and M. Regler, Vertex reconstruction and track
bundling at the LEP collider using robust algorithms. Comp. Phys. Commun. 96 (1996)
189-208.

[5] D. Emeliyanov, I. Kisel, S. Masciocchi, M. Sang and Yu. Vassiliev, Primary vertex
reconstruction by Rover. HERA-B note 00-139, 2000.

[6] V. Eiges, D. Emeliyanov, V. Kekelidze, I. Kisel and Yu. Vassiliev, Test of vertex recon-
struction and fitting algorithms on J/ψ → µ+µ− data. HERA-B note 00-182, 2000.

[7] S. Gorbunov and I. Kisel, Primary vertex fit based on the Kalman filter. CBM-SOFT-
note-2006-001, GSI, Darmstadt, 9 January 2006.

[8] S. Gorbunov and I. Kisel, An analytic formula for track extrapolation in an inhomoge-
neous magnetic field. CBM-SOFT-note-2005-001, GSI, Darmstadt, 18 March 2005.

[9] W. Hulsbergen, Decay chain fitting with a Kalman filter. Nucl. Instr. and Meth. A 552
(2005) 566-575.

17

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

Appendix

/** The CbmKFSecondaryVertexFinder class
*
* @author S.Gorbunov, I.Kisel
* @version 1.0
* @since 06.02.06
*
* Class to find secondary vertex with the Kalman Filter method
*
*/
#ifndef CBM_KF_SECONDARY_VERTEX_FINDER_H
#define CBM_KF_SECONDARY_VERTEX_FINDER_H

#include "CbmKFTrackInterface.h"
#include "CbmKFVertexInterface.h"
#include <vector>
using namespace std;

class CbmKFSecondaryVertexFinder :public TObject {

vector<CbmKFTrackInterface*> vTracks;
Int_t NTracks, NDim, NDF;
Double_t Px, Py, Pz, E, P2, Chi2, MassConstraint;
vector<Double_t> r, C, r0, H, CHt[2], K[2], gPx, gPy, gPz, gE, J[5], JC[5];
CbmKFVertexInterface *VParent, *VGuess;

void Resize();
void AddConstraint(Double_t m, vector<Double_t> &H, Int_t N);
void CalculateDerivatives();
void AddMassConstraint();
void AddTopoConstraint();
Double_t & Cij(Int_t i, Int_t j){
return C[(j<=i) ? i*(i+1)/2+j :j*(j+1)/2+i];

}
public:

CbmKFSecondaryVertexFinder(){ Clear(); }
~CbmKFSecondaryVertexFinder(){}
void Clear();
void ClearTracks();
void AddTrack(CbmKFTrackInterface* Track);
void SetTracks(vector<CbmKFTrackInterface*> &vTracks);
void SetApproximation(CbmKFVertexInterface *Guess=0);
void SetMassConstraint(Double_t MotherMass=-1);
void SetTopoConstraint(CbmKFVertexInterface *Parent=0);
void Fit();
void GetVertex(CbmKFVertexInterface &vtx);
void GetVertex(CbmVertex &vtx);
void GetTrack(Int_t itrack, Double_t T[], Double_t C[]);
void GetMotherTrack(Double_t T[], Double_t C[]);
void GetMass(Double_t *M, Double_t *Error);

ClassDef(CbmKFSecondaryVertexFinder, 1);
};
#endif

18

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

001 /** Implementation of the CbmKFSecondaryVertexFinder class
002 *
003 * @author S.Gorbunov, I.Kisel
004 * @version 1.0
005 * @since 06.02.06
006 *
007 */
008
009 #include "CbmKFSecondaryVertexFinder.h"
010 #include "CbmKF.h"
011 #include "CbmKFTrack.h"
012 using namespace std;
013
014 ClassImp(CbmKFSecondaryVertexFinder)
015
016 void CbmKFSecondaryVertexFinder::Clear()
017 {
018 vTracks.clear();
019 VGuess =0;
020 VParent = 0;
021 MassConstraint = -1;
022 Resize();
023 }
024
025 void CbmKFSecondaryVertexFinder::ClearTracks()
026 {
027 vTracks.clear();
028 Resize();
029 }
030
031 void CbmKFSecondaryVertexFinder::AddTrack(CbmKFTrackInterface* Track)
032 {
033 vTracks.push_back(Track);
034 Resize();
035 }
036
037 void CbmKFSecondaryVertexFinder::SetTracks(vector<CbmKFTrackInterface*> &vTr)
038 {
039 vTracks = vTr;
040 Resize();
041 }
042
043 void CbmKFSecondaryVertexFinder::SetApproximation(CbmKFVertexInterface *Guess)
044 {
045 VGuess = Guess;
046 }
047
048 void CbmKFSecondaryVertexFinder::SetMassConstraint(Double_t MotherMass)
049 {
050 MassConstraint = MotherMass;
051 }
052
053 void CbmKFSecondaryVertexFinder::SetTopoConstraint(CbmKFVertexInterface *VP)
054 {
055 VParent = VP;
056 }

19

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

057
058 void CbmKFSecondaryVertexFinder::Fit()
059 {
060 const Int_t MaxIter=3;
061
062 if(VGuess){
063 r[0] = VGuess->GetRefX();
064 r[1] = VGuess->GetRefY();
065 r[2] = VGuess->GetRefZ();
066 }else {
067 if(CbmKF::Instance()->vTargets.empty()){
068 r[0] = r[1] = r[2] = 0.;
069 }else{
070 CbmKFTube &t = CbmKF::Instance()->vTargets[0];
071 r[0] = r[1] = 0.;
072 r[2] = t.z;
073 }
074 }
075
076 for (Int_t iteration =0; iteration<MaxIter;++iteration){
077
078 for(int i=0; i<NDim+3; i++) r0[i] = r[i];
079
080 for(Int_t i=0;i<6;++i) C[i]=0.0;
081
082 C[0] = C[2] = C[5] = 100.0;
083
084 NDF = -3;
085 Chi2 = 0.;
086
087 Int_t itr = 0;
088 for(vector<CbmKFTrackInterface*>::iterator tr=vTracks.begin();
089 tr!=vTracks.end(); ++tr,++itr)
090 {
091 CbmKFTrack T(**tr);
092 T.Extrapolate(r0[2]);
093
094 Int_t it = 3+3*itr;
095
096 NDF -= 3;
097
098 //* Measure the state vector with the track estimate
099
100 Chi2 += T.GetRefChi2();
101 NDF += T.GetRefNDF();
102
103 double *m = T.GetTrack();
104 double *V = T.GetCovMatrix();
105
106 //* Update the state vector with the momentum part of the track estimate
107
108 r[it+0] = m[2];
109 r[it+1] = m[3];
110 r[it+2] = m[4];
111
112 if(iteration==0){

20

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

113 r0[it+0]=r[it+0]; r0[it+1]=r[it+1]; r0[it+2]=r[it+2];
114 }
115
116 Double_t a = r0[it+0], b = r0[it+1];
117
118 for(Int_t i=it;i<it+3;++i)
119 for(Int_t j=0;j<it;++j) Cij(i,j) = 0;
120
121 Cij(it+0,it+0) = V[5];
122 Cij(it+1,it+0) = V[8];
123 Cij(it+1,it+1) = V[9];
124 Cij(it+2,it+0) = V[12];
125 Cij(it+2,it+1) = V[13];
126 Cij(it+2,it+2) = V[14];
127
128 NDF += 3;
129 Chi2 += 0.;
130
131 //* Update the state vector with the coord. part of the track estimate
132
133 //* Residual (measured - estimated)
134
135 Double_t zeta[2] = { m[0]-(r[0]-a*(r[2]-r0[2])),
136 m[1]-(r[1]-b*(r[2]-r0[2])) };
137
138 //* Measurement matrix H = { { 1, 0, -a, 0..0}, { 0, 1, -b,0..0} };
139
140 //* S = (H*C*H’ + V)^{-1}
141
142 Double_t S[3] = { V[0] + C[0] - 2*a*C[3] + a*a*C[5],
143 V[1] + C[1] - b*C[3] - a*C[4] + a*b*C[5],
144 V[2] + C[2] - 2*b*C[4] + b*b*C[5] };
145
146 //* Invert S
147 {
148 Double_t s = S[0]*S[2] - S[1]*S[1];
149 if (s < 1.E-20) continue;
150 s = 1./s;
151 Double_t S0 = S[0];
152 S[0] = s*S[2];
153 S[1] = -s*S[1];
154 S[2] = s*S0;
155 }
156
157 //* CHt = CH’
158
159 CHt[0][0] = C[0] - a*C[3]; CHt[1][0] = C[1] - b*C[3];
160 CHt[0][1] = C[1] - a*C[4]; CHt[1][1] = C[2] - b*C[4];
161 for(Int_t i=2;i<it;++i){
162 CHt[0][i] = Cij(i,0) - a*Cij(i,2);
163 CHt[1][i] = Cij(i,1) - b*Cij(i,2);
164 }
165 CHt[0][it+0] = -V[3]; CHt[1][it+0] = -V[4];
166 CHt[0][it+1] = -V[6]; CHt[1][it+1] = -V[7];
167 CHt[0][it+2] = -V[10]; CHt[1][it+2] = -V[11];
168

21

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

169 //* Kalman gain K = CH’*S
170
171 for(Int_t i=0;i<it+3;++i){
172 K[0][i] = CHt[0][i]*S[0] + CHt[1][i]*S[1];
173 K[1][i] = CHt[0][i]*S[1] + CHt[1][i]*S[2];
174 }
175
176 //* New estimation of the vertex position r += K*zeta
177
178 for(Int_t i=0;i<it+3;++i) r[i] += K[0][i]*zeta[0] + K[1][i]*zeta[1];
179
180 //* New covariance matrix C -= K*(CH’)’
181
182 for(Int_t i=0;i<it+3;++i){
183 for(Int_t j=0;j<=i;++j)
184 Cij(i,j) -= K[0][i]*CHt[0][j]+K[1][i]*CHt[1][j];
185 }
186
187 //* Calculate Chi^2 & NDF
188
189 NDF += 2;
190 Chi2 += zeta[0]*zeta[0]*S[0] + 2*zeta[0]*zeta[1]*S[1]
191 + zeta[1]*zeta[1]*S[2] ;
192
193 } // add tracks
194
195 // Put constraints if they exist
196
197 if(!VParent && MassConstraint<0.) continue;
198
199 CalculateDerivatives();
200 AddTopoConstraint();
201 AddMassConstraint();
202
203 }// iterations
204 }
205
206
207 void CbmKFSecondaryVertexFinder::GetVertex(CbmKFVertexInterface &vtx)
208 {
209 vtx.GetRefX() = r[0];
210 vtx.GetRefY() = r[1];
211 vtx.GetRefZ() = r[2];
212 for(int i=0; i<6; i++) vtx.GetCovMatrix()[i] = C[i];
213 vtx.GetRefChi2() = Chi2;
214 vtx.GetRefNDF() = NDF;
215 }
216
217 void CbmKFSecondaryVertexFinder::GetVertex(CbmVertex &vtx)
218 {
219 CbmKFVertexInterface vi;
220 GetVertex(vi);
221 vi.GetVertex(vtx);
222 }
223
224

22

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

225 void CbmKFSecondaryVertexFinder::GetTrack(Int_t itrack,
226 Double_t Par[], Double_t Cov[])
227 {
228 Int_t it = 3+3*itrack;
229 Double_t a = r[it+0], b = r[it+1];
230
231 Par[0] = r[0];
232 Par[1] = r[1];
233 Par[2] = a;
234 Par[3] = b;
235 Par[4] = r[it+2];
236 Par[5] = r[2];
237
238 Double_t *c = &(C[0]);
239 Double_t *i0 = c + it*(it+1)/2; // c(it+0,0)
240 Double_t *i1 = i0 + it; // c(it+0,it+0)
241 Double_t *i2 = i1 + it + 1; // c(it+1,it+0)
242 Double_t *i3 = i2 + it + 2; // c(it+2,it+0)
243
244 Cov[0]= c[0] -a*(2*c[3] -a*c[5]);
245 Cov[1]= c[1] -b*c[3] -a*(c[4] -b*c[5]);
246 Cov[2]= c[2] -b*(2*c[4] -b*c[5]);
247 Cov[3]= i0[0] -a*i0[2];
248 Cov[4]= i0[1] -b*i0[2];
249 Cov[5]= i1[0];
250 Cov[6]= i1[1] -a*i1[3];
251 Cov[7]= i1[2] -b*i1[3];
252 Cov[8]= i2[0];
253 Cov[9]= i2[1];
254 Cov[10]= i2[2] -a*i2[4];
255 Cov[11]= i2[3] -b*i2[4];
256 Cov[12]= i3[0];
257 Cov[13]= i3[1];
258 Cov[14]= i3[2];
259 }
260
261 void CbmKFSecondaryVertexFinder::
262 GetMotherTrack(Double_t Par[], Double_t Cov[])
263 {
264
265 if(!Par) return;
266
267 if(!VParent && MassConstraint<0.) CalculateDerivatives();
268 Double_t px=Px, py=Py, pz=Pz;
269
270 for(Int_t i=3;i<NDim;++i){
271 px += gPx[i]*(r[i]-r0[i]);
272 py += gPy[i]*(r[i]-r0[i]);
273 pz += gPz[i]*(r[i]-r0[i]);
274 }
275
276 Double_t p = sqrt(px*px + py*py + pz*pz);
277
278 Par[0] = r[0];
279 Par[1] = r[1];
280 Par[2] = px/pz;

23

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

281 Par[3] = py/pz;
282 Par[4] = 1./p;
283 Par[5] = r[2];
284
285 if(!Cov) return;
286
287 for (Int_t i=0; i<5; i++)
288 for (Int_t j=0;j<NDim;++j) J[i][j]=0.0;
289
290 J[0][0] = 1; J[0][2] = -Par[2];
291 J[1][1] = 1; J[1][2] = -Par[3];
292
293 double pz2i = 1./(pz*pz);
294 double p3i = 1./(p*p*p);
295 for(Int_t i=3;i<=NDim;++i){
296 J[2][i] = (gPx[i]*pz - gPz[i]*px)*pz2i;
297 J[3][i] = (gPy[i]*pz - gPz[i]*py)*pz2i;
298 J[4][i] = -p3i*(gPx[i]*px + gPy[i]*py +gPz[i]*pz);
299 }
300
301 for(Int_t i=0; i<5; i++)
302 for(Int_t j=0;j<NDim;j++){
303 JC[i][j]=0;
304 for(Int_t k=0; k<NDim; k++) JC[i][j]+=J[i][k]*Cij(k,j);
305 }
306
307 Int_t ii =0 ;
308 for(Int_t i=0; i<5; i++)
309 for(Int_t j=i;j<5;j++, ii++){
310 Cov[ii]=0;
311 for(Int_t k=0; k<NDim; k++) Cov[ii]+=JC[i][k]*J[j][k];
312 }
313 }
314
315
316 void CbmKFSecondaryVertexFinder::GetMass(Double_t *M, Double_t *Error)
317 {
318 if(!VParent && MassConstraint<0.) CalculateDerivatives();
319 H[0] = H[1] = H[2] = 0.;
320 for(Int_t i=3;i<NDim;++i)
321 H[i] = 2*(E*gE[i] - Px*gPx[i] - Py*gPy[i] - Pz*gPz[i]);
322
323 Double_t m = E*E - P2;
324 for(Int_t i=3;i<NDim;++i) m += H[i]*(r[i]-r0[i]);
325
326 for (Int_t i=0;i<NDim;++i){
327 CHt[0][i] = 0.0;
328 for (Int_t j=3;j<NDim;++j) CHt[0][i] += Cij(i,j)*H[j];
329 }
330
331 Double_t S = 0.;
332 for (Int_t i=3;i<NDim;++i) S += H[i]*CHt[0][i];
333
334 m = sqrt(m);
335 if(M) *M=m;
336 if(Error) *Error = (S>=0 && m>1.e-20) ? 0.5*sqrt(S)/m :1.e4;

24

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

337 }
338
339
340 void CbmKFSecondaryVertexFinder::Resize()
341 {
342 NTracks = vTracks.size();
343 NDim = 3+3*NTracks;
344 r.resize(NDim+3);
345 C.resize((NDim+3)*(NDim+3+1)/2);
346 r0.resize(NDim+3);
347 H.resize(NDim+3);
348 CHt[0].resize(NDim+3);
349 CHt[1].resize(NDim+3);
350 K[0].resize(NDim+3);
351 K[1].resize(NDim+3);
352 gPx.resize(NDim+3);
353 gPy.resize(NDim+3);
354 gPz.resize(NDim+3);
355 gE.resize(NDim+3);
356 J[0].resize(NDim);
357 J[1].resize(NDim);
358 J[2].resize(NDim);
359 J[3].resize(NDim);
360 J[4].resize(NDim);
361 JC[0].resize(NDim);
362 JC[1].resize(NDim);
363 JC[2].resize(NDim);
364 JC[3].resize(NDim);
365 JC[4].resize(NDim);
366 }
367
368 void CbmKFSecondaryVertexFinder::AddConstraint(Double_t m,
369 vector<Double_t> &H, Int_t N)
370 {
371 double zeta = m;
372 for(Int_t i=0;i<N;++i) zeta -= H[i]*(r[i]-r0[i]);
373
374 Double_t S = 0.;
375 for (Int_t i=0;i<N;++i){
376 CHt[0][i] = 0.0;
377 for (Int_t j=0;j<N;++j) CHt[0][i] += Cij(i,j)*H[j];
378 S += H[i]*CHt[0][i];
379 }
380
381 if(S<1.e-20) return;
382 S = 1./S;
383 Chi2 += zeta*zeta*S;
384 NDF += 1;
385 for(Int_t i=0, ii=0; i<N; ++i){
386 Double_t Ki = CHt[0][i]*S;
387 r[i]+= Ki*zeta;
388 for(Int_t j=0;j<=i;++j) C[ii++] -= Ki*CHt[0][j];
389 }
390 }
391
392 void CbmKFSecondaryVertexFinder::CalculateDerivatives()

25

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

393 {
394
395 Px = Py = Pz = E = 0.;
396
397 gPx[0] = gPx[1] = gPx[2] = 0;
398 gPy[0] = gPy[1] = gPy[2] = 0;
399 gPz[0] = gPz[1] = gPz[2] = 0;
400 gE [0] = gE [1] = gE [2] = 0;
401
402 for(Int_t i=0; i<NTracks; ++i){
403
404 Int_t it = 3+3*i;
405 Double_t a = r0[it+0];
406 Double_t b = r0[it+1];
407 Double_t qp = r0[it+2];
408 Double_t pq = 1./qp;
409 Double_t p = fabs(pq);
410 Double_t p2 = p*p;
411
412 Double_t t2 = 1./(1.0+a*a+b*b);
413 double pz = p*sqrt(t2);
414 double px = a*pz;
415 double py = b*pz;
416 double mass = vTracks[i]->GetMass();
417 double e = sqrt(p2 + mass*mass);
418
419 Px += px;
420 Py += py;
421 Pz += pz;
422 E += e;
423
424 gPz[it+0] = -px*t2;
425 gPz[it+1] = -py*t2;
426 gPz[it+2] = -pz*pq;
427
428 gPx[it+0] = a*gPz[it+0] + pz;
429 gPx[it+1] = a*gPz[it+1];
430 gPx[it+2] = a*gPz[it+2];
431
432 gPy[it+0] = b*gPz[it+0];
433 gPy[it+1] = b*gPz[it+1] + pz;
434 gPy[it+2] = b*gPz[it+2];
435
436 gE[it+0] = 0;
437 gE[it+1] = 0;
438 gE[it+2] = -p2*pq/e;
439 }
440
441 P2 = Px*Px+Py*Py+Pz*Pz;
442 }
443
444 void CbmKFSecondaryVertexFinder::AddMassConstraint()
445 {
446 if(MassConstraint<0) return;
447 H[0] = H[1] = H[2] = 0.;
448 for(Int_t i=3;i<NDim;++i){

26

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

449 H[i] = 2*(E*gE[i] - Px*gPx[i] - Py*gPy[i] - Pz*gPz[i]);
450 }
451 AddConstraint(MassConstraint*MassConstraint - (E*E - P2), H, NDim);
452 }
453
454
455 void CbmKFSecondaryVertexFinder::AddTopoConstraint()
456 {
457 if(!VParent) return;
458 // Add the parent vertex to the state vector
459 {
460 for(int i=NDim;i<NDim+3;i++)
461 for(int j=0; j<NDim;j++) Cij(i,j) = 0;
462
463 r[NDim+0] = r0[NDim+0] = VParent->GetRefX();
464 r[NDim+1] = r0[NDim+1] = VParent->GetRefY();
465 r[NDim+2] = r0[NDim+2] = VParent->GetRefZ();
466 Double_t *Cp = VParent->GetCovMatrix();
467 Cij(NDim+0,NDim+0) = Cp[0];
468 Cij(NDim+1,NDim+0) = Cp[1];
469 Cij(NDim+1,NDim+1) = Cp[2];
470 Cij(NDim+2,NDim+0) = Cp[3];
471 Cij(NDim+2,NDim+1) = Cp[4];
472 Cij(NDim+2,NDim+2) = Cp[5];
473 }
474
475 double dx = r0[0]-r0[NDim+0];
476 double dy = r0[1]-r0[NDim+1];
477 double dz = r0[2]-r0[NDim+2];
478
479 for(Int_t i=3;i<NDim;++i) H[i] = dx*gPz[i] - dz*gPx[i];
480
481 H[0]= Pz; H[1]= 0; H[2]= -Px;
482 H[NDim]= -Pz; H[NDim+1]= 0; H[NDim+2]= Px;
483
484 AddConstraint(0 -(dx*Pz - dz*Px), H, NDim+3);
485
486 for(Int_t i=3;i<NDim;++i) H[i] = dy*gPz[i] - dz*gPy[i];
487
488 H[0]= Pz; H[1]= 0; H[2] =-Py;
489 H[NDim]=-Pz; H[NDim+1]= 0; H[NDim+2]= Py;
490
491 AddConstraint(0 - (dy*Pz - dz*Py), H, NDim+3);
492
493 }

27

CBM-SOFT-note-2006-002
I3HP-FutureDAQ-note-2006-002

14 September 2006

