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Abstract

The note describes a reconstruction package for fitting decayed particles. The pack-
age is based on the Kalman filter. The Kalman filter procedure has been modified in
order to operate with an extended model of measurements and to filter by an optimum
measurement.

The reconstructed decayed particle contains all necessary information about the par-
ticle both at the point of its generation and at the point of its decay. Therefore, the
developed method is suitable both for the complete reconstruction of decayed particles
and for the reconstruction of vertices only.

Results of tests of the reconstruction package are presented and discussed.

1 Introduction

In modern high-energy physics experiments the most interesting physics is often extracted
from the properties of (short lived) decayed particles, which are not detected by the detector
system and has to be reconstructed from its daughter particles.

Usually, the existing reconstruction packages [1, 2, 3, 4, 5, 6, 7, 8] are only focused on recon-
struction of the production and decay vertices without direct estimation of the parameters
of the decayed particle itself.

The goal of this paper is to develop a method of reconstruction of the decayed particle
parameters and associated covariance matrix using a set of daughter tracks estimates and
their covariance matrices.

The developed algorithm is based on the Kalman filter method [1]. The standard Kalman
filter approach has been modified in order to operate with an extended model of measurements
and to filter by an optimum measurement.

The algorithm uses a natural particle parametrization r = (x, y, z, px, py, pz, E, s)
T , which

makes the algorithm independent on geometry of the detector system. After estimation
of the parameters of the particle, additional physics parameters, which are not explicitly
included into the state vector, the particle momentum P , the invariant mass M , the length
of flight L in the laboratory coordinate system, and the time of life of the particle cT in its
own coordinate system, are easily calculated.

The algorithm has been successfully tested on simulated data of the CBM experiment [9, 10].
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2 The Kalman filter method

The Kalman filter method [1] is intended for finding the optimum estimation r of an unknown
state vector rt according to the measurements mk, k = 1 . . . n of the vector rt.

The Kalman filter starts with a certain initial approximation r = r0 and refines the vector r,
consecutively adding one measurement after the other. The optimum value is obtained after
the addition of the last measurement.

In the general case the unknown vector rt can change from one measurement to the next:

rt
k = Akrt

k−1 + νk , (1)

where Ak — a linear opperator, νk — a process noise between (k − 1)-th and k-th measure-
ments.

The measurement mk linearly depends on rt
k:

mk = Hkrt
k + ηk , (2)

where ηk — an error of the k-th measurement.

It is assumed that measurement errors ηi and the process noise νj are uncorrelated, unbiased
(< ηi >=< νj >= 0) and those covariance matrices Vk, Qk are known:

< ηi · ηT
i > ≡ Vi ,

< νj · νT
j > ≡ Qj .

(3)

The algorithm of fitting consists of four stages:

1. Initialization step. Choose an approximate value of vector r0. Its covariance matrix is
set to C0 = I · inf2, where inf denotes a large positive number.

2. Prediction step. If it is known that the original vector rt changes between (k − 1)-th
and k-th measurement (Eq.1), then upon transfer to the k-th measurement its current
estimation rk−1 also changes in the same manner:

r̃k = Akrk−1 ,

C̃k = AkCk−1A
T
k +Qk ,

(4)

where r̃k — an optimal estimation of the vector rt
k according to the first k − 1 mea-

surements. In contrast to the prediction operator Ak, describing deterministic changes
of the vector rt in time, the process noise Qk describes probabilistic deviations of the
vector rt.

3. Filtration step. For each measurement mk a vector rk, which is the optimum estimation
of the vector rt

k according to the first k measurements, is calculated:

Kk = C̃kH
T
k (Vk +HkC̃kH

T
k )−1 ,

rk = r̃k +Kk(mk −Hkr̃k) ,
Ck = C̃k −KkHkC̃k ,

χ2
k = χ2

k−1 + (mk −Hkr̃k)T (Vk +HkC̃kH
T
k )−1(mk −Hkr̃k) .

(5)
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Here r̃k, C̃k — the optimum estimation, and its covariance matrix, obtained at the previous
step and extrapolated to the k-th measurement; mk, Vk — the k-th measurement and its
covariance matrix; ζk — residual; the matrix Hk — the model of the measurement; the
matrix Kk is the so-called gain matrix; the value χ2

k is the total χ2-deviation of the obtained
estimation rk from the measurements m1, . . .mk.

The vector rn obtained after the filtration of the last measurement is the desired optimal
estimation with the covariance matrix Cn.

In the case the measurements mk non-linearly depend on rt
k, it is necessary to linearize the

model of measurement. As a point of linearization a certain vector r0
k is taken:

mk(rt
k) = hk(rt

k) + ηk ≈ hk(r0
k) +Hk(rt

k − r0
k) + ηk , (6)

where Hk is the Jacobian of hk(rk) at r0
k:

Hk (ij) =
∂hk(rk) (i)

∂rk (j)

∣∣∣∣∣
rk=r0

k

. (7)

The Kalman filter with non-linear measurement model is called the extended Kalman filter.
Equations of filtration for the extended Kalman filter are the same as in the linear case (5)
with an exception for the residual ζk, which is calculated according to the formula:

ζk = mk −
(
hk

(
r0
k

)
+Hk

(
r̃k − r0

k

))
. (8)

The result of the non-linear fit depends on the point of linearization r0
k. Taking the current

solution r̃k as the point of linearization for k-th measurement, the extended Kalman filter (8)
coincides with the usual one (5). But in order to get more robust and precise results, the
fitting procedure must be repeated several times, using the optimal estimation rn as the
linearization point for all the measurements on the next iteration.

In this work two modifications of the conventional filtration procedure will be used: filtration
with an extended model of measurement and filtration by an optimum measurement.

2.1 Filtration with an extended model of measurement

Here we extend the standard equations of filtration (5) for the case of a more general model
of measurement.

Let the measurement mk (2) is related to the state vector with a more general equation:

Gkmt
k = Hkrt

k , (9)

where mt
k— the true value of the measurement.

Let us show that for the extended model of measurement (9) the equations of filtration (5)
have the following form:

Kk = C̃kH
T
k

(
HkC̃kH

T
k +GkVkG

T
k

)−1
,

ζk = Gkmk −Hkr̃k ,
rk = r̃k +Kk · ζk ,

Ck = C̃k −KkHkC̃k ,

χ2
k = χ2

k−1 + ζT
k ·
(
HkC̃kH

T
k +GkVkG

T
k

)−1
· ζk .

(10)
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One can see that in the case of the standard measurement model (Gk ≡ I) Eqs. (10) coincide
with the conventional Kalman filter (5).

The equations of filtration (10) estimate the optimum value rk of the state vector from all
previous measurements and the measurement mk. However, the measurement mk itself is
random variable, and its optimum value mf

k can also be estimated from all previous mea-
surements:

Km
k = VkG

T
k

(
HkC̃kH

T
k +GkVkG

T
k

)−1
,

mf
k = mk −Km

k · ζ ,
V f

k = Vk −Km
k GkVk ,

Df
k = Km

k HkC̃k ,

(11)

where Km
k — the measurement gain matrix; mf

k , V
f
k — the optimum values of the measure-

ment mk and its covariance matrix; Df
k — the matrix of covariances between mf

k and rk:

Df
k (i,j) = cov(mf

k (i), rk (j)) . (12)

To proof the Eqs. (10, 11) let us group the state vector r̃k and the measurement mk into a
combined state vector r̂k:

r̂k =

(
r̃k

mk

)
,

Ĉk =

(
C̃k O
O Vk

)
,

(13)

and make an update of the combined state vector r̂k according to the measurement model (9).
From (9) follows:

0 = Hkrt
k −Gkmt

k ≡ (Hk, −Gk) · r̂t
k . (14)

Therefore, the update of the state vector r̃k by the measurement mk is equivalent to the
update of the combined state vector r̂k by a zero measurement 0 with the null matrix of
errors and the measurement model Ĥk:

Ĥk = (Hk, −Gk) ,
0 = Ĥk · r̂t

k .
(15)

Now the combined state vector r̂k with the measurement (15) can be updated by the con-
ventional Kalman filter (5):

K̂k = ĈkĤ
T
k

(
O + ĤkĈkĤ

T
k

)−1
=

(
Kk

−Km
k

)
,

ζk = 0− Ĥkr̂k = Gkmk −Hkr̃k ,(
rk

mf
k

)
= r̂k + K̂kζk =

(
r̃ +Kkζk

mk −Km
k ζk

)
,(

Ck Df T
k

Df
k V f

k

)
= Ĉk − K̂kĤkĈk =

(
C̃k O
O Vk

)
−
(
Kk

−Km
k

)(
HkC̃k, −GkVk

)
=

(
C̃k −KkHkC̃k C̃kH

T
k K

m T
k

Km
k HkC̃k Vk −Km

k GkVk

)
,

χ2
k = χ2

k−1 + ζT
k

(
O + ĤkĈkĤ

T
k

)−1
ζk

= χ2
k−1 + ζT

k

(
HkC̃kH

T
k +GkVkG

T
k

)−1
ζk .

(16)
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After taking the parts corresponding to the state vector rk and the measurement mf
k from r̂k

and Ĉk, we obtain the optimum estimation rk, Ck of the vector rt
k (Eqs. 10) and the optimum

estimation mf
k , V

f
k of the measurement mt

k (Eqs. 11) from the first k measurements.

In the case of a non-linear model of measurement, similarly to the conventional Kalman
filter (8), only the residual ζk is changed:

ζk = gk(m0
k) +Gk(mk −m0

k)− (hk(r0
k) +Hk(rk − r0

k)) . (17)

2.2 Filtration of the state vector by an optimum measurement

Here we construct the optimum estimation rk, when it is more convenient to operate not with
the measurement mk itself, but with its optimum1 value mf

k . In this case the equation of
filtration (10) are transformed such that rk , Ck , χ

2
k are expressed using the optimum values

mf
k , V

f
k :

Kf
k = C̃kH

T
k

(
HkC̃kH

T
k

)−1
,

ζf
k = Gkm

f
k −Hkr̃k ,

rk = r̃k +Kf
k ζf

k ,

Ck = C̃k −Kf
k

(
HkC̃kH

T
k −GkV

f
k G

T
k

)
Kf T

k ,

χ2
k = χ2

k−1 + ζf T
k

(
HkC̃kH

T
k −GkV

f
k G

T
k

)−1
ζf

k .

(18)

To proof Eqs. (18) let us introduce several temporary matrices:

A = HkC̃kH
T
k ,

B = GkVkG
T
k ,

S = (A+B)−1 .

(19)

To exclude mk, Vk from Eqs. (10) it is sufficient to express S and ζk using the optimum values
mf

k , V
f
k . Transforming the expressions for Gkm

f
k and GkV

f
k G

T
k from Eqs. (11):

Gkm
f
k = Gkmk −B (A+B)−1 ζk

= Gkmk − (I−A (A+B)−1) · (Gkmk −Hkr̃k)
= Hkr̃k +AS · ζk ,

GkV
f
k G

T
k = B −B (A+B)−1B = A−A (A+B)−1A = A−ASA ,

(20)

we obtain the expressions for ζk and S:

ζk = S−1A−1
(
Gkm

f
k −Hkr̃k

)
,

S = A−1
(
A−GkV

f
k G

T
k

)
A−1 .

(21)

Now we substitute ζk and S from (21) into (10):

rk = r̃k + C̃kH
T
k Sζk = r̃k + C̃kH

T
k A

−1
(
Gkm

f
k −Hkr̃k

)
Ck = C̃k − C̃kH

T
k SHkC̃k = C̃k − C̃kH

T
k A

−1
(
A−GkV

f
k G

T
k

)
A−1HkC̃k ,

χ2
k = χ2

k−1 + ζT
k Sζk =

(
Gkm

f
k −Hkr̃k

)T
A−1 (A+B)A−1

(
Gkm

f
k −Hkr̃k

)
=

(
Gkm

f
k −Hkr̃k

)T (
A−GkV

f
k G

T
k

)−1 (
mf

k −Hkr̃k

)
.

(22)

1Such problem appears, for instance, during fitting a particle to the already reconstructed vertex.
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After introducing a matrix Kf
k and a vector ζf

k (by analogy to Kk and ζk in Eqs. (10)) and
substituting them into Eqs. (22), we obtain the required equations of filtration (18).

3 Construction of the mother particle at the decay vertex

The first task in the reconstruction of the mother particle is determination by the modified
Kalman filter (10) of its position, momentum and energy at the decay point, using the
estimates of the daughter particles obtained after the track fit.

Let the mother particle decayed into n daughter particles. We arrange the parameters of
the mother particle reconstructed from the first k daughter particles in a 7-dimensional state
vector rk:

rk ≡ (x, y, z, px, py, pz, E)T , (23)

or

rk ≡
(

vk

p
k

)
, (24)

where vk — the coordinate of the particle at the decay point, and p
k

— its 4-momentum.
Let us denote the covariance matrix of the state vector as Ck and the assumed position of
the decay point, used for the linearization of equations, as v0. Let us transport all daughter
particles into the region of v0.

Let the parameters of the k-th daughter particle are denoted rd
k

rd
k ≡

(
vd

k

pd
k

)
(25)

and the covariance matrix Cd
k .

For measuring the mother particle it is necessary to transport a daughter particle along its
trajectory into the decay point. The parameters of a daughter particle at the decay point are
mk:

mk = rd
k +

 pd
k

pd
k ×B · qk

0

 · sd
k +O

(
sd 2
k

)
,

< sd
k > = 0 ,

σ2
sd
k

= inf ,

(26)

where sd
k = ldk/p

d
k — the unknown length of the trajectory ldk from the parametrization point of

the daughter particle vd
k to the decay point vk, normalized by the momentum of the daughter

particle; σ2
sd
k

— the error of the parameter sd
k; B— the magnetic field value at the point vd

k;

qk — charge of the daughter particle; the term O
(
sd 2
k

)
describes the higher order deviations

of the daughter particle trajectory from a straight line in a magnetic field (see details in [11]).

Linearizing (26) at sd
k = 0, we obtain the measurement of the daughter particle parameters

at the decay point:

mk = rd
k ,

Vk = Cd
k +

 pd

pd ×B · qk
0


 pd

pd ×B · qk
0


T

· σ2
sd
k

,
(27)

6

CBM-SOFT-note-2007-003
7 May 2007



where Vk — the covariance matrix of the daughter particle parameters at the decay point.

The mother and daughter particles are related to each other:

(I,O)mt
k = (I,O) rt

k−1 , (28)

which is filtered by the modified Kalman filter (10) substituting:

r̃k ≡ rk−1 ,

C̃k ≡ Ck−1 ,
mk ≡ rd

k ,
Gk = Hk ≡ (I,O) .
rk ≡ rf

k−1 ,

Ck ≡ Cf
k−1 .

(29)

Let us give the equations of filtration in detail. In order to simplify the calculations, the
covariance matrices is split into the coordinate and momentum parts:

Ck−1 ≡
(
Cv

k−1 Cvp T
k−1

Cvp
k−1 Cp

k−1

)
, Vk ≡

(
V v

k V vp T
k

V vp
k V p

k

)
(30)

and also a temporary matrix Sk is introduced:

Sk =
(
Cv

k−1 + V v
k

)−1
. (31)

In these notations the equations of filtration (10, 11) can be written as:

Kk =
(
Cv

k−1

Cvp
k−1

)
Sk , Km

k =
(
V v

k

V vp
k

)
Sk ,

ζk = mv
k − vk ,

rf
k−1 = rk−1 +Kkζk =

(
vk−1 + Cv

k−1Skζk

p
k−1

+ Cvp
k−1Skζk

)
,

mf
k = mk −Km

k ζk =
(

vd
k − V v

k Skζk

pd
k
− V vp

k Skζk

)
,

Cf
k−1 = Ck−1 −Kk

(
Cv

k−1, C
vp T
k−1

)
=

(
Cv

k−1 − Cv
k−1SkC

v
k−1 Cvp T

k−1 − Cv
k−1SkC

vp T
k−1

Cvp
k−1 − C

vp
k−1SkC

v
k−1 Cp

k−1 − C
vp
k−1SkC

vp T
k−1

)
,

V f
k = Vk −Km

k

(
V v

k , V
vp T
k

)
=
(
V v

k − V v
k SkV

v
k V vp T

k − V v
k SkV

vp T
k

V vp
k − V vp

k SkV
v
k V p

k − V
vp
k SkV

vp T
k

)
,

Df
k = Km

k

(
Cv

k−1, C
vp T
k−1

)
=

(
V v

k SkC
v
k−1 V v

k SkC
vp T
k−1

V vp
k SkC

v
k−1 V vp

k SkC
vp T
k−1

)
,

χ2
k = χ2

k−1 + ζT
k Skζk ,

ndfk = ndfk−1 + 2 .
(32)

After the filtration the 4-momentum of the daughter particle is added to the 4-momentum
of the mother particle:

rk = rf
k−1 +Akm

f
k ,

Ck = Cf
k−1 +AkD

f
k +Df T

k AT
k +AkV

f
k A

T
k ,

(33)

where the matrix Ak:

Ak =

(
O O
O I

)
. (34)
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After substituting the expressions for rf
k−1,m

f
k , C

f
k−1, V

f
k and Df

k from (32) into (33), we
obtain the final equations for the update of the state vector of the mother particle by the
k-th daughter particle:

Sk =
(
Cv

k−1 + V v
k

)−1
.

rk =
(

vk−1 + Cv
k−1Sk

(
vd

k − vk−1

)
p

k−1
+ pd

k
+
(
Cvp

k−1 − V
vp
k

)
Sk

(
vd

k − vk−1

) ) ,

Ck =

(
Cv

k−1 − Cv
k−1SkC

v
k−1 Cvp T

k−1 − Cv
k−1Sk

(
Cvp

k−1 − V
vp
k

)T
Cvp

k−1 −
(
Cvp

k−1 − V
vp
k

)
SkC

v
k−1 Cp

k−1 + V p
k −

(
Cvp

k−1 − V
vp
k

)
Sk

(
Cvp

k−1 − V
vp
k

)T
)
,

χ2
k = χ2

k−1 +
(
vd

k − vk−1

)T
Sk

(
vd

k − vk−1

)
,

ndfk = ndfk−1 + 2 .
(35)

For more accurate linearization of the measurement mk (27), the filtration is accomplished
twice: first, according to (32) an approximate momentum pd 0 of the daughter particle is
calculated:

pd 0
k

= pd
k
− V vp

k (V v
k )−1

(
vd

k − v0
)
, (36)

then pd 0 is substituted into the matrix Vk (27), after which the filtration (35) is carried out.

If it is necessary in addition to select daughter tracks, then according to (32) the χ2 probability
of the fact that the k-th particle rd

k is daughter particle is calculated:

χ2
d =

(
vd

k − v0
)T (

Cv0
+ V v

k

)−1 (
vd

k − v0
)
, (37)

where Cv0
— the assumed error of the initial approximation v0. Then, only the particles

passing the χ2 cut are added to the mother track.

4 Measurement by the production vertex

After the particle is reconstructed at the decay point, into the state vector can be added a
new parameter s, which is equal to the particle path length from its production point to the
decay point, normalized to the particle momentum2:

s =
l

p
, (38)

where l — the length of the trajectory in the laboratory coordinate system, p — the particle
momentum.

The parameter s is initially taken equal to the approximate value s0, and the corresponding
element of the covariance matrix is initialized by the value σ2

s = inf:

r −→
(

r
s0

)
,

C −→
(
C 0
0 σ2

s

) (39)

All components of the state vector are now:

r = (x, y, z, px, py, pz, E, s)
T . (40)

2Such normalization is convenient, since in the used parametrization the direction of the particle motion
is assigned to the momentum vector.
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After adding the parameter s, all parameters of the particle are transported from the decay
point into the production point, where they are measured by the production vertex.

Let us denote an operator of the transport of the particle parameters into the production
point as f :

f(r) ≡ f(v,p, s) = r−

 p
p×B · q
0

 · s+O
(
s2
)
. (41)

We linearize the operator f with respect to the parameter s:

f(r) = f(v,p, s0)−

 p
p×B · q
0

 · (s− s0) . (42)

It is convenient to split the transport into two steps, corresponding to the terms in (42): the
transport of the particle position on the fixed value s = s0 and the subsequent correction of
the covariance matrix taking into account the error of the parameter s.

Since the transport on the fixed value s0 will be done only when the parameter s is either
already optimum or when it is equal to s0, then the linearization is always done at the current
value s0 = s.

In the general case the transport is done in magnetic field [11]. Here we illustrate the transport
in a special case, when the mother particle is not charged, or there is no magnetic field, and
the transport is accomplished along a straight line. The transported particle position is:

v̂ = v − s0 · p . (43)

The other components of the state vector do not change. The Jacobian Ft of the transport
along a straight line is:

Ft =



1 0 0 −s0 0 0 0
0 1 0 0 −s0 0 0
0 0 1 0 0 −s0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, (44)

and the transported particle r̂ and its covariance matrix Ĉ are:

r̂ = Ftr ,
Ĉ = FtCF

T
t .

(45)

Since s0 = s, then the state vector does not change during the correction. However, since
s has error, the covariance matrix will change. Here we will give the general case of the
operator f for the charged particle in a magnetic field:

r̃ = r̂−


p̂0

p̂0 ×B · q
0
0

 · (s− s0) ,
s0 = s .

(46)
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The Jacobian Fc of the correction is:

Fc =



1 0 0 0 0 0 0 −p̂0
x

0 1 0 0 0 0 0 −p̂0
y

0 0 1 0 0 0 0 −p̂0
z

0 0 0 1 0 0 0 −(p̂0
yBz − p̂0

zBy) · q
0 0 0 0 1 0 0 −(p̂0

zBx − p̂0
xBz) · q

0 0 0 0 0 1 0 −(p̂0
xBy − p̂0

yBx) · q
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, (47)

where B — the magnetic field at the production vertex, q — the particle charge. The
corrected values of the state vector and of the covariance matrix are:

r̃ = r̂ ,
C̃ = FcĈF

T
c .

(48)

After the transport of the particle into the production point, its position is measured by
the production vertex. We assume that the optimum position vp of the production vertex
is already known, and it does not change when fitting the particle to the vertex3. Since
the optimum value of the vertex is given, the filtration is accomplished by the modified
Kalman filter (18), where the production vertex vp is considered as measurement with the
measurement model Hp:

mf ≡ vp ,
V f ≡ Cp ,
Hp = (I, O) .

(49)

The measurement of the production point completes the reconstruction procedure.

5 Complete reconstruction scheme

Let us give the complete scheme of reconstruction of the particle parameters

r = (x, y, z, px, py, pz, E, s)
T (50)

and its covariance matrix according to the daughter particles rd
k, k = 1 . . . n.

Since the problem is nonlinear, the complete procedure of reconstruction is processed several
times, where each iteration consists of the following steps:

1. Choice of the initial approximation v0, initialization of χ2
0 = 0 and ndf0 = −3.

2. Transport of the k-th daughter particle rd
k, C

d
k into the initial vertex position v0, con-

struction of the parameters mk of the daughter particle at the decay point:

mk ≡
(

vd
k

pd
k

)
= rd

k ,

Vk ≡
(
V v

k V vp T
k

V vp
k V p

k

)
= Cd

k +

 pd
k

pd
k ×B · qk

0


 pd

k

pd
k ×B · qk

0


T

· σ2
s .

(51)

3Either this is the event primary vertex or, in the case of a decay chain, the production vertex is first fitted
using the particle, and then the particle is fitted to the reconstructed vertex.
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It is sufficient to take as σs the 10-times larger distance between v0 and vd
k divided by

the momentum pd
k.

3. If it is necessary to select daughter tracks, then the χ2 probability of the fact that the
k-th particle rd

k is daughter particle is calculated:

χ2
d =

(
vd

k − v0
)T (

Cv0
+ V v

k

)−1 (
vd

k − v0
)
. (52)

4. Calculation of the approximated momentum pd 0
k

of the daughter particle:

pd 0
k

= pd
k
− V vp

k (V v
k )−1

(
vd

k − v0
)
, (53)

and refinement of the matrix Vk:

Vk = Cd
k +

 pd 0
k

pd 0
k ×B · qk

0


 pd 0

k

pd 0
k ×B · qk

0


T

· σ2
s . (54)

5. Measurement of the state vector rk−1 by the daughter particle mk adding the 4-
momentum of the daughter particle to the 4-momentum of the mother particle:

Sk =
(
Cv

k−1 + V v
k

)−1
.

rk =
(

vk−1 + Cv
k−1Sk

(
vd

k − vk−1

)
p

k−1
+ pd

k
+
(
Cvp

k−1 − V
vp
k

)
Sk

(
vd

k − vk−1

) ) ,

Ck =

(
Cv

k−1 − Cv
k−1SkC

v
k−1 Cvp T

k−1 − Cv
k−1Sk

(
Cvp

k−1 − V
vp
k

)T
Cvp

k−1 −
(
Cvp

k−1 − V
vp
k

)
SkC

v
k−1 Cp

k−1 + V p
k −

(
Cvp

k−1 − V
vp
k

)
Sk

(
Cvp

k−1 − V
vp
k

)T
)
,

χ2
k = χ2

k−1 +
(
vd

k − vk−1

)T
Sk

(
vd

k − vk−1

)
,

ndfk = ndfk−1 + 2 .
(55)

Since at the first measurement the parameters of the mother particle are not yet
determined, the equations of filtration (55) are simplified and the measurement m1 is
directly copied into the state vector r1:

r1 = m1 ,
C1 = V1 ,
χ2

1 = 0 ,
ndf1 = −1 .

(56)

6. Repeat from the step 2 for the next daughter particle, until all the daughters are treated.

7. Precision of the particle parameters obtained after the fit can be improved in the case
of invariant mass M of the particle is known:

M2 = E2 −
(
p2

x + p2
y + p2

z

)
. (57)

In this case the parameters of the particle are measured by the one-dimensional mea-
surement with the measured value M2, the null error and the measurement matrix
HM2

HM2 = (0, 0, 0,−px,−py,−pz, E, 0) (58)

using the conventional Kalman filter (5).
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8. If the production vertex is given, then the constructed mother particle is transported
into the production point and then is measured by the production vertex:

r =

 vp

p̃ + C̃vp
(
C̃v
)−1

(vp − ṽ)

 ,

C =

 Cp Cp

(
C̃v
)−1

C̃vp T

C̃vp
(
C̃v
)−1

Cp C̃p − C̃vp
(
C̃v
)−1 (

C̃v − Cp

) (
C̃v
)−1

C̃vp T

 ,

∆χ2 = (vp − ṽ)T
(
C̃v − Cp

)−1
(vp − ṽ) ,

∆ndf = 2 .

(59)

In all iterations, except the last one, the particle is transported back into the decay
point by changing −s to s in (47, 48) in order to determine the linearization point v0

for the next iteration.

The reconstructed state vector and its covariance matrix contain all necessary information
about the particle both at the production point and at the decay point. Therefore, after
reconstruction the parameters of the particle can be transported into the decay point or into
the production point, as it is described in Sec. 4.

After estimation of the parameters of the particle, additional physics parameters, which are
not explicitly included into the state vector, the particle momentum P , the invariant mass
M , the length of flight L in the laboratory coordinate system, and the time of life of the
particle cT in its own coordinate system, can be easily calculated as:

P =
√
p2

x + p2
y + p2

z , σ2
P = HPCH

T
P ,

M =
√
E2 − P 2 , σ2

M = HMCH
T
M ,

L = s · P , σ2
L = HLCH

T
L ,

cT = s ·M , σ2
cT = HcTCH

T
cT ,

(60)

where
HP = ( 0, 0, 0, px, py, pz, 0, 0 )/P ,
HM = ( 0, 0, 0, −px, −py, −pz, E, 0 )/M ,
HL = ( 0, 0, 0, spx, spy, spz, 0, P 2 )/P ,
HcT = ( 0, 0, 0, −spx, −spy, −spz, sE, M2 )/M .

(61)

6 Results and discussion

The algorithm has been implemented for the CBM experiment [9, 10]. For these studies
central Au+Au collisions at 25 AGeV have been simulated. In the simulations we used the
main tracking detector of 7 silicon pixel stations positioned at 10, 20, 30, 40, 60, 80 and
100 cm from the target. The first 2 stations have thickness of 150 µm, while others —
400 µm. All detectors have idealized response (no fake hits, efficiency losses, pile-up etc.).
The non-homogeneous active magnetic field has been used to trace particles through the
detector.

For tests of the developed algorithm we have reconstructedD0 mesons, which are generated in
the event production vertex and then decayed into π+ and K− particles. Since D0 meson has
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a very short life time, it is not detected by the detector system, while its daughter particles
are well within the detector acceptance.

The ideal4 track finder has been used to collect hits into track groups. The track fitting routine
realises the Kalman filter in its conventional approach. The default π particle hypothesis has
been used for all tracks. For the π+ and K− daughter particles the correct particle hypothesis
have been used during the track fit in order to properly account for multiple scattering effects,
and in the reconstruction procedure to calculate the π+ and K− energy.

Production Vertex[µm] Decay Vertex[µm] Physical Parameters
x y z x y z P[%] M[MeV/c] L[µm] cT[µm]

Accuracy 0.81 0.73 5.50 2.64 2.64 63.88 0.79 11.34 64.10 9.81

Pull 1.14 1.10 1.11 1.13 1.13 1.10 1.20 1.19 1.11 1.11

Table 1: Resolutions and pulls of the decayed particle parameters obtained from 104 D0

decays in central Au+Au collisions at 25 AGeV

In the tests the algorithm first reconstructs the event production vertex using all reconstructed
tracks, then D0 meson is reconstructed from its two daughter particles π+ and K− using the
event production vertex as the production point.

The chosen parametrization of the decayed particle contains all necessary information about
the particle both at the point of its generation and at the point of its decay. Therefore, the
developed method is suitable both for the complete reconstruction of decayed particles and
for the reconstruction of vertices only. In the second case, the state vector can be reduced to
v, and all operations with p, s are removed, after that the algorithm is similar to the standard
approach (see, for instance, [6]).

Table 1 shows, that the algorithm provides a very high accuracy for the event vertex: the
resolutions of the x and y positions of the D0 production vertex are less than 1 µm, and the
z position is reconstructed with an accuracy 5.5 µm. The resolution of the D0 decay vertex
is 2.64 µm for x and y, and 63.88 µm for z. The normalized residuals (pulls) are close to
unity, thus showing that all parameters are well estimated.

The choosen parametrization is also physically natural and, therefore, is convenient for further
physics analysis. Table 1 shows resolutions and pulls of D0 physical parameters reconstructed
by the algorithm. The algorithm provides, for instance, estimations of the time of life of the
particle and the decay length together with the corresponding errors. Here the time of life
cT is reconstructed with an accuracy 9.8 µm, showing that the reconstructed D0 particles
are well separated from the event production vertex.

In addition, Figure 1 gives distributions of residuals and normalised residuals (pulls) of the D0

physical parameters. The RMS of the Gaussian fits to the residual and normalized residual
distributions are also given. A measure of the reliability of the fit are the pull distributions
of the fitted parameters. All pulls are centered at zero indicating that there is no systematic
shift in the reconstructed track parameter values. The distributions are well fitted using
Gaussian functions with small tails caused by the various non-Gaussian contributions to the
fit.

Figure 2 gives the distribution of the D0 life time with the fitted mean life (122.1 ± 2.2) µm,
which is close to the D0 mean life cτD0 = 122.9 µm [12] used in the simulations.

4It uses the Monte-Carlo information.
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Figure 1: Residuals and normalized residuals (pulls) of the D0 physical parameters P , M , L
and cT
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Figure 2: Distribution of the D0 life time

The developed algorithm has significantly reduced amount of calculations comparing to the
standard approach of vertex fitting. The state vector has the fixed size and does not grow
if the number of daughter particles increases. There is no inversion of 5 × 5 matrices in the
modified equations of filtration, thus improving the robustness of the covariance computations
with respect to round-off errors.

The algorithm extrapolates the track estimates rd
k to the point v0 of the vertex linearization.

As a result the measurement model Hk (29) is trivial and does not require matrix operations.
The linearization of all measurements remains correct also in presence of magnetic field.

There is no filtration of the first daughter track, that in the case of two-prong decays reduces
twice the calculations and, furthermore, avoids large initial values in the covariance matrix
making the algorithm numerically stable.

Having the mother particle fully reconstructed the algorithm can operate with it like with
an ordinary reconstructed track. For instance, the algorithm is able to transport the charged
mother particle in magnetic field. It is also possible to add measurements to the reconstructed
mother particle, that is important, when the decay had been occurred in a considerable
distance from the production vertex, and the mother particle itself has been registered by
the detector system.

7 Conclusion

A decayed particles reconstruction package based on the Kalman filter method has been
developed for the CBM experiment. The algorithm shows a high accuracy and reliability. The
presented algorithm of the decayed particles reconstruction provides the optimum estimation
of the parameters of the mother particle in the production and decay vertices.
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[3] R. Frühwirth, P. Kubinec, W. Mitaroff and M. Regler, Vertex reconstruction and track
bundling at the LEP collider using robust algorithms. Comp. Phys. Commun. 96 (1996)
189-208.

[4] D. Emeliyanov, I. Kisel, S. Masciocchi, M. Sang and Yu. Vassiliev, Primary vertex
reconstruction by Rover. HERA-B note 00-139, 2000.

[5] V. Eiges, D. Emeliyanov, V. Kekelidze, I. Kisel and Yu. Vassiliev, Test of vertex recon-
struction and fitting algorithms on J/ψ → µ+µ− data. HERA-B note 00-182, 2000.

[6] S. Gorbunov and I. Kisel, Primary vertex fit based on the Kalman filter. CBM-SOFT-
note-2006-001, GSI, Darmstadt, 9 January 2006.

[7] S. Gorbunov and I. Kisel, Secondary vertex fit based on the Kalman filter. CBM-SOFT-
note-2006-002, GSI, Darmstadt, 14 September 2006.

[8] W. Hulsbergen, Decay chain fitting with a Kalman filter. Nucl. Instr. and Meth. A 552
(2005) 566-575.

[9] CBM Collaboration, Compressed Baryonic Matter Experiment. Technical Status Report.
GSI, Darmstadt, 2005; 2006 Update
(http://www.gsi.de/documents/DOC-2006-Feb-108-1.pdf).

[10] I. Kisel, Event reconstruction in the CBM experiment. Nucl. Instr. and Meth. A566
(2006) 85-88.

[11] S. Gorbunov and I. Kisel, Analytic formula for track extrapolation in non-homogeneous
magnetic field. Nucl. Instr. and Meth. A559 (2006) 148-152.

[12] W.-M. Yao et al. (Particle Data Group), Review of Particle Physics, J. Phys. G: Nucl.
Part. Phys. 33 (2006) 1-1232.

16

CBM-SOFT-note-2007-003
7 May 2007


