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Abstract

In the collisions of ultra-relativistic heavy ions in fixed-target and collider experi-
ments, multiplicities of several ten thousand charged particles are generated. The
main devices for tracking and particle identification are large-volume tracking de-
tectors (TPCs) producing raw event sizes in excess of 100 MBytes per event. With
increasing data rates, storage becomes the main limiting factor in such experiments
and, therefore, it is essential to represent the data in a way that is as concise as
possible. In this paper, we present several compression schemes, such as entropy
encoding, modified vector quantization, and data modeling techniques applied on
real data from the CERN SPS experiment NA49 and on simulated data from the
future CERN LHC experiment ALICE.
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1 Introduction

In relativistic heavy-ion collisions at AGS, SPS, RHIC and LHC energies,
charged particle multiplicities range from several hundred to approximately
60000. It has been proven that large-volume tracking devices that provide
three-dimensional spatial information, such as Time Projection Chambers
(TPCs) [1,2], have the capacity to handle such high multiplicities and high-
track densities (e.g., EOS [3], NA49 [4], STAR [5], ALICE [6]).

Fig. 1. Event display of a full event, generated with the ALICE fast simulator using
the HIJING parametrization (dN.,/dy = 8000). Only the projection of the tracks
in the n-range from 0 to 0.1 is shown.

The aforementioned detectors are operating at event rates of up to a few
hundred Hertz. The increasing integration density of particle detector read-
out electronics is driving up the number of channels producing raw data. The
expected data rate of the ALICE TPC of about 13 GBytes/sec after zero
suppression may serve as an example for the resulting data rates. Therefore,
advanced data compression techniques are becoming increasingly important.
Two data sets, real data taken by the NA49 experiment at the SPS and sim-
ulated data for the ALICE experiment at the LHC, will be discussed.



2 The Experiments

2.1 NA49

The current CERN SPS experiment, NA49, focuses on collisions of 2°"Pb-
projectiles with an incident energy of 160 GeV per nucleon with a lead target.
The main detectors are four large-volume tracking detectors: The two Vertex
Time Projection Chambers (VITPCs) inside two 1.5 Tesla super-conducting
magnets, and the two large Main Time Projection Chambers (MTPCs) posi-
tioned in a field-free region downstream of the magnets on both sides of the
beam [4]. These detectors record the trajectories of charged particles from
which the particle momenta are determined. In a central Pb-Pb collision, ap-
proximately 1600 charged particles are produced of which approximately 1300
are detected in the TPCs.

The tracking detector’s sensitive volume of about 36 m? is read out by approx-
imately 182000 8 bit ADC-channels times 512 time bins representing 9 - 107
volume elements. The 182000 pads are arranged orthogonal to the beam di-
rection in 234 rows (72 rows per VIPC and 90 rows per MTPC). Since the
occupancy in the TPC for a central Pb-Pb collision is about 10%, most of the
data will be noise centered around 0 after pedestal subtraction.

A typical pad signal is shown in Fig. 2. After shaping by the readout electron-
ics, the signal shows a good Gaussian symmetrization with a FWHM of about
three time bins [4].

The compressed raw data volume remaining after zero suppression is about
10 MBytes per event [7], resulting in 10 TBytes of data for a typical run of
10% events.
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Fig. 2. Time response of the NA49 electronics.



2.2 ALICE

ALICE (A Large Ion Collider Experiment) [8] at the Large Hadron Collider
(LHC) to be built at CERN will start to take data in 2006. Lead ions will
collide here at energies of up to 2.76 TeV per nucleon. The main subdetec-
tor in ALICE for tracking and particle identification is the cylindrical Time
Projection Chamber [6]. The expected maximum multiplicity during Pb-Pb
mode of dN,,/dy = 8000 will result in up to 20000 charged primary and sec-
ondary tracks in this detector. The occupancy will range between 15% at the
outermost and 40% at the innermost radius.

The number of ALICE TPC readout channels will be 570000, and the number
of time bins for each pad is 512. Taking into account the 10-bit ADC dynamic
range, the event size directly at the detector readout exceeds 350 MBytes.
Before compression algorithms as discussed in this paper are applied, the
amount of data is reduced in three steps as follows.

The ADC conversion gain is typically chosen such that ¢,,s. corresponds to 1
ADC count [6]. The TPC’s dynamic range corresponds to 10 bits. The resulting
relative accuracy increases with the ADC values and is not required for the
upper part of the dynamic range. Compressing the ADC values nonlinearly
from 10 to 8 bit leads to a constant relative accuracy over the whole dynamic
range and reduction of the event size down to 290 MBytes. Fig. 3 shows a plot
of the used conversion table [11].

Since it is problematic to resolve individual tracks that have a low p;, and
cross the TPC under small angles relative to the beam pipe, a 45-degree cone
is cut out of the data, resulting in the rejection of all particles which are not
in the geometrical acceptance of the outer detectors, such as the Transition
Radiation Detector (TRD) or the Time of Flight Detector (TOF). This cutout
reduces the data volume further by 40%.
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Fig. 3. Plot of the 10-to-8 bit conversion table.

The 10 to 8 bit conversion, the 45-degree cone cutout, and finally zero sup-
pression (i.e., pedestal subtraction, one-dimensional cluster-finding in time



direction and run-length encoding), reduce the raw event size of 350 MBytes
to about 66 MBytes + 15%, including 10% coding overhead.

At the maximum readout frequency of 200 Hertz, a resulting bandwidth of
13 GBytes/sec has to be handled. The volume of real data to be archived is
expected to be about 2.7 PBytes per year. Considering the estimated magnetic
tape costs in the first year of design luminosity of 0.6 EURO/GByte [9], the
costs for taping will be approximately 1600 kKEURO per year.



3 Zero Suppression and Data Coding

3.1 Zero Suppression

The most important compression technique for TPC data is to detect the hits
and discard the noise in between by replacing it with zeroes. This so-called zero
suppression is performed in the front-end electronics by pedestal subtraction
(a threshold operation) and one-dimensional hit-finding in time direction. The
long zero sequences can then be compressed by run-length encoding [10]. The
idea of run-length encoding (RLE) is to replace a sequence of identical symbols
by an escape character or tag, normally the symbol itself, and the length of
the sequence. In TPC data, the only datum for which we expect a significant
number of longer sequences is zero, and, therefore, RLE is only performed
on zeroes. This is equivalent to storing only the hits and their positions. The
thresholding and hit-finding are lossy techniques, which could lead to a loss
of small clusters or tails of clusters, while run-length encoding is a lossless
technique.

3.1.1 Zero Suppression in the NA49 TPC

In the NA49 experiment, the detection of hits is done by digital signal proces-
sors. Any two successive time bins above a threshold of typically three times
the sigma of the noise are called a hit. The position of each cluster spread over
four time bins is found by center-of-gravity formation over the charge distri-
butions. A typical charge cluster is shown in Fig. 4. Applying this technique,
a compression factor of 10 is achieved in agreement with the occupancy of the
TPC.
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Fig. 4. Two-dimensional charge cluster after zero suppression.



3.1.2  Zero Suppression in the ALICE TPC

Zero suppression for ALICE TPC data is done by the ALTRO (ALice Tpc
ReadOut) ASIC. This custom CMOS chip contains the circuitry to perform
tail cancellation, pedestal subtraction, zero suppression, formatting and buffer-

ing [6]:

”The basic pulse detection scheme is based on the rejection of samples with
a value smaller than a constant decision level (threshold). When a sample is
found above the threshold, it is considered to be the start of a pulse. To reduce
the noise sensitivity, a glitch filter checks for a consecutive number of samples
above the threshold, confirming the existence of a real pulse. The minimum
sequence of samples above the threshold that defines a pulse can vary from one
to three. In order to keep enough information for further feature extraction,
the complete pulse shape must be recorded. Therefore, a sequence of samples
(pre-samples) before the signal overcoming the threshold and a sequence of
samples (post-samples) after the signal returning below the threshold can be
recorded. The number of pre- and post-samples can vary independently in the
range between zero and four.”[6]

3.2 Coding of Raw Data

In the remaining document, we will assume that the detection of hits consisting
of one-dimensional cluster sequences and the zero suppression has already been
performed and we will focus on how to represent sequences of hits. We use the
following abbreviations:

x; the position of hit i.

[; the length of hit i.

2 = ¢; — (xi—1 + l;—1) is the number of zeros immediately preceding hit i.
A;(0) ,..., A;(l; — 1) the ADC values of hit i.

p(A) the probability of ADC value A in the data stream.

These abbreviations will be used without the indices when discussing an ar-
bitrary hit.

3.2.1 NA49

Run-Length Encoding

The problem with the data format introduced in Section 3.1 is that single
zeroes must be encoded using two bytes in order to distinguish a single one



from a sequence of zeroes. Depending on the hit detection parameters, single
zeroes can be quite common within hit data. It is more efficient to use a
rare value, such as 254 (p(254) ~ 1/250000), as the tag to bypass this coding
weakness. If one encounters a 254 in the input data, it can either be changed
to 255 or represented by a special sequence as 254,0. A hit in this data format
looks like: 254,z — 1, A[0],..., A[l — 1]. This data format reduces the size
of a full multiplicity event to about 95% relative to the original NA49 data
format. !

Storage of Hit Position and Length

Another way to avoid the repeating of zeroes within hits is to do zero sup-
pression implicitly by storing the hit position and length followed by the hit
data. The hit can include all possible values, including zeroes. The hit position
can be given relatively to the previous hit to keep the numbers small. Hit dis-
tances and hit lengths in NA49 can be as large as 512 and need 2 bytes. But
as long zero sequences do not occur very often and long hits are extremely
rare, it is better to use only one byte for this information. Zero sequences
longer than 255 can be represented using a dummy hit of length 0 and long
hits can be represented by inserting 0 zeroes. A hit in this format looks like:
2,1, A[0], ..., A[l — 1]. This data format reduces the data size also to 95%.

If the compression is performed in hardware, it is easier and faster to store
the length of the hit after the hit data. In this case, the input data can be
processed exactly in the order of appearance and the output data is a linear
data stream too. To read data in this format, one has to start at the end and
proceed backwards. A hardware implementation of such a cluster finder has
been made for the STAR experiment [12].

3.2.2 ALICE

Before applying compression techniques to simulated TPC data, the format of
the stored data is adapted. A threshold of 10 ADC counts is applied to the 8 bit
data. This threshold is intentionally set rather high for the generation of the
reference data in order to avoid artificially high compression ratios. In addition
to the data above the threshold, a pre- and post-history of one time bin is saved
for each cluster. The position of such a one-dimensional cluster and its length
are saved using 9 and 4 bits, respectively. A 9-bit cluster length covers the
whole range of possible time bins for the start bin. Another approach could
be to store only the differences between the start bins of adjacent hits, but, as
mentioned below, separate Huffman trees for the data and header information

! Compression ratios given in this document are calculated as

Compressed Size
Original Size 100 [%]



are built and, thus, the difference in compression should be negligible. A 4-bit
cluster length would mean a tradeoff between the needed space for encoding
the length and the distribution of the length of one-dimensional clusters in
the sample data. This format necessitates the splitting of clusters longer than
15 time bins. If the prehistory of a hit directly follows the post-history of
the preceding hit, these two hits are merged to one cluster and the header
information is saved only once. Fig. 5 illustrates this approach. Due to the
threshold, this preparation reduces the data size to about 88% relative to the
zero suppressed run-length encoded 8 bit raw event size. This data format
corresponds to the storage of hit position and length as discussed already for
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Fig. 5. Illustration of the used data format. In general, hit information is stored
using the position of the prehistory bin and the length including the posthistory
bin, e.g. for the left hit in the figure. If the prehistory bin of a hit is the immediate
successor of the posthistory bin of the preceding hit, the two hits are regarded as
one large hit, e.g. the large hit in illustrated in the figure above. In that case the
header information is stored only once, although two successive bins are below the
threshold.



4 Lossless Data Compression

4.1  Entropy Coding by Variable Length Coding

The improvements of the aforementioned data formats primarily concern the
performance and complexity of the compression code, whereas the improve-
ment in data size is rather small.

One crucial observation is that the ADC values are not equally probable,
which can mean further reduction in data size. Small ADC values occur often
in the data stream but larger ones are rare (see Fig. 6). The distribution
is approximately exponential. The expected size of the data can be reduced
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Fig. 6. Left: Distribution of ADC values for a central NA49 Pb-Pb collision. Right:
Distribution of ADC values for a simulated ALICE Pb-Pb event. There are two
steps in the distribution: the first, at an ADC value of 10, is due to the applied
threshold; all other steps are due to the 10 to 8 bit conversion.

if short words are used for frequent values and longer ones for rare values.
Another advantage of this technique is that one is no longer restricted to 256
symbols, as one would be with bytes, or powers of two. One can choose as
many codes as necessary. This means if one enhances the ADC resolution to
9 bits, the size of the data is no longer doubled, but is increased by 1/8 in the
worst case scenario.

There is a theoretical lower limit on the average word size that can be achieved
with this strategy. This lower limit is called entropy of the data source and
can be computed as:
E=-73 p(A)logp(A),
AeQ
where 2 is the set of all possible words that are output by the data source.
It can be shown that this limit is tight for stochastic data sources [13]. The
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difference between the number of bits used to represent a single character
and its information entropy is the potential for entropy encoding techniques.
The entropy of the simulated ALICE TPC data for example is about 4.96
bits/character, promising compression ratios of 62% in the optimal case. There
exist compression techniques that approach this theoretical lower limit, for ex-
ample, Arithmetic Coding [14]. The idea of Arithmetic Coding is to assign to
every symbol in the input stream an interval between 0 and 1, with a size
according to the occurrence probability of this symbol. For the first symbol
in the input stream, the interval from 0 to 1 is shrunk to the range assigned
to this symbol. The new boundaries form a new interval which is shrunk by
the next input symbol and its corresponding interval. Thus, the interval gets
smaller and smaller and the input stream of symbols is replaced by a single
floating point number representing the encoded message. The major drawback
of Arithmetic Coding is the number of operations needed for encoding a sin-
gle symbol. Other algorithms achieve similar results without such intensive
computing.

4.1.1  Huffman Coding

An alternative to Arithmetic Encoding is applying Huffman Codes [15], which
are easy to implement and achieve good compression results without the need
for extensive processing power. The basic idea of assigning short codes to
frequent symbols and longer ones to rare symbols is realized by assigning each
input symbol to a leaf of a binary tree, the so-called Huffman Tree. Each
branch of this tree is either assigned the 0 or the 1 bit, and the path from
the root node to the leaf defines the code used for this symbol. To encode
data using Huffman Codes, one uses a table containing the bit sequences of
the codes for each symbol and their length. The encoder simply concatenates
the codes for the various symbols. Decoding a data stream requires more
intensive computing since the Huffman tree has to be traversed, but there are
sophisticated algorithms to expedite this task [16].

There is also a number of modifications, such as adaptive Huffman Coding,
that build and modify a code tree during run-time. For TPC data, this is
not necessary as the distribution of the ADC values is very well known in
advance. It is sufficient to measure the distribution from time to time, for
example when the experiment parameters have changed, and to create a new
static code table from that information.

It is important to note that the average size of an event will be reduced by
this approach, but there can be events that are larger than before compression.
This has to be considered when designing the readout system. Using Huffman
Coding on NA49 data, the relative event size can be reduced to 67% and 42%
for Pb-Pb and p-p collisions, respectively. For the simulated ALICE data,
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separate Huffman trees have been built for the ADC values and the header
information, i.e., position and length. This approach reduces the data size of
the sample to about 65%.

A TPC is obviously not a stochastic data source, as adjacent ADC values are
highly correlated. Therefore, it is possible to compress the data to a lower bit
rate than the entropy of the ADC values by using this sequence correlation.

4.1.2  Differentiation

This approach is common for lossless graphics compression. It exploits the
fact that, especially for graphics, adjacent symbols are similar. In this case,
the distribution of the derivative of the input has a lower entropy than the data
itself. This is not true for the TPC data of the NA49 or the ALICE experiment.
Here, the sampling rate is well matched to the bandwidth of the signal, and,
therefore, the slope of the hits is usually quite steep. A hit in this data format
looks like: z, 1, A[0], A[1]— A[0], ..., A[l — 1] — A[l —2]. The NA49 data size can
be reduced to 69% for Pb-Pb and to 54% for p-p events if the differentiated
data is subsequently entropy-encoded. For the simulated ALICE events, the
data was differentiated and the result encoded using Huffman Coding. Fig.
7 shows the distribution of the differentiated signal. With this approach, the
data volume could be reduced to 73%.
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Fig. 7. Distribution of the ADC values in the differentiated signal for ALICE TPC
data.

4.1.8  Code Table Coding

A more sophisticated approach, similar to differentiation, is predictive encod-
ing. The idea is to guess the next value of the data stream based on the values
previously sent and then send only the difference between this guess and the
actual value. The receiver uses the same function as the sender to calculate
the guess and to reconstruct the data. If the guess is often close to the actual
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value, the entropy of the difference is small. Differentiation is a special case
wherein the data is always guessed to stay constant.

The problem is to derive a function to guess the next value. One way is to
take sample data and build a table with the best guess for each combination of
preceding values. Obviously, this is only possible if a small number of preceding
bytes is considered (usually not more than two). But with this approach,
a different code table can be used depending on the preceding values. The
implementation is very fast and easy, but requires a lot of memory.

This approach is feasible because good results are achieved, even if the table
depends only on the previous value. In fact, the results did not get better if we
made the table dependent on the two preceding values. A hit in this format
looks like: z,1, f(A[0], A[1]), ..., f(A[l — 2], A[l — 1]). A reduction to 61% for
Pb-Pb and 40% for p-p has been measured for NA49 data. The simulated
ALICE TPC data could be reduced to about 71%.

4.1.4  Cluster Prototypes

The shapes of the hits before sampling are very similar and depend on only
a few parameters. To extract these parameters from the data and store only
those parameters and the deviation from what a hit with these parameters is
supposed to look like was proposed by H. Beker and M. Schindler in [17].

There are various characteristics for which the hits can be parametrized. Be-
sides the width, the maximum, the integral charge, the position of the maxi-
mum, or a combination of these, are possible choices.

These approaches suffer from two effects. The first one is that the hits are
usually very steep and short. They reach their maximum within one or two
time buckets and decrease at a similar slope. As the position of the hit relative
to the sampling clock is random, the same hit can produce quite different
data depending on its position. In particular this effect introduces a noise
proportional to the slope. This increases the entropy of the data. The second
effect is that the clusters are very short, typically two bytes for proton and six
bytes for lead data. This means that the overhead used to store the parameters
is a significant amount of data.

Cluster prototyping is not a suitable compression technique for NA49 or
ALICE TPC data, but it might get good results for experiments with larger
hits or higher sampling frequencies compared to the hit length. In particular,
the fact that the compression results get better with higher sampling frequen-
cies compensates part of the increased data rate and might therefore affect
the decision for a particular frequency.
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5 Lossy vs. Lossless Signal Processing in TPCs

Prior to discussion of possible lossy compression techniques, the sources of
distortion of the ideal signal shall be outlined first. The main tasks of TPC
subdetectors in heavy-ion experiments are reliable particle identification by
energy loss measurement and momentum determination, requiring track re-
construction in a high multiplicity environment. Several aspects complicate
the task of an exact event reconstruction.

Prior to entering the TPC’s sensitive volume interactions with the surrounding
material may change the original particle track by multiple scattering and sec-
ondary particle production. For this reason, the material budget of the TPC
has to be kept as low as possible. The energy loss by ionization inside the
volume is distributed statistically following approximately the Bethe-Bloch
formula. A more precise model for energy loss is given by W. W. Allison and
J. H. Cobb [18]. During the drift to the end-caps of the TPC, the produced
electron clouds are broadened by diffusion, which is determined by the trans-
verse diffusion constant D;. Although this effect is minimized by the magnetic
field in drift direction forcing the electrons on a helix around drift direction,
diffusion influences the position resolution of the reconstructed space points.
Exponential fluctuations in the gas amplification of single electrons at the
readout chambers enhance the delocalization caused by diffusion by a fac-
tor v/2 [6]. The image charge induced on the ALICE TPC readout pads is
processed by the front-end electronics, consisting of a charge sensitive pream-
plifier/shaper circuit, a 10-bit ADC, and a digital circuitry performing tail
cancellation, pedestal subtraction and zero suppression. At this stage, several
sources contribute to the distortion of the original signal, for example, the non-
linearity of the preamplifier, and the differential and integral non-linearities of
the ADC. Tail cancellation, pedestal subtraction and zero suppression are all
lossy techniques manipulating the original raw data, but not the physics infor-
mation. The conversion of the 10 bit data to 8 bit is a data volume reduction
with information loss, but as indicated in chapter 2.2, this conversion leads to
a constant relative accuracy for the single ADC values. The last component
in this data processing chain is the computer performing lossless or lossy data
compression to handle the data stream.

In order to discuss the question of whether to use lossy compression techniques
or not, the readout as a whole system should be regarded as outlined here.
Although attempts are made to keep all of the aforementioned effects at a
minimum, some loss of information during readout is inevitable. The answer
to the question of applicability of lossy techniques will be provided by the
impact that lossy compression schemes have on the physical observables, and
by weighing the tradeoff between these impacts and the costs for data storage.
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6 Lossy Data Compression

There is some gain in using lossless techniques, such as simple Huffman En-
coding. Better results can be achieved when very small noise-like changes of
the data are tolerated. This leads to the referenced lossy compression schemes.
One kind of lossy compression, the zero suppression together with a run-length
encoder, is already in use in the NA49 readout system and will also be used for
ALICE. The following sections focus on the further reduction of the remaining
data.

Quantization of the data can be seen as a method of lossy compression. One
quantization step takes place already at the input ADC, where the continuous
analogue waveform is sampled to produce digital values of limited resolution
(e.g., 8 bit in the NA49 experiment). However, given the adjustment of the
sampling frequency to the preamplifier’s cutoff frequency and the ADC res-
olution to the inherent noise (lossy analogue signal processing), these losses
are small. Scalar quantization is used, meaning that every single voltage is
rendered as one digital number and there is no dependency between a sample
and its neighbors. A very simple approach to lossy compression would be to
quantize the digital data further, say from 8 bit down to 7 bit, by discarding
the least significant bit from every data byte. Seen alone, this would merely
reduce the data to 87.5% of its size.

6.1 Vector Quantization

Vector Quantization [19] is another, but more sophisticated, type of quan-
tization. Here, statistical dependencies between successive data samples are
exploited. Instead of quantizing data samples independently, several samples
are grouped together to form a vector of data samples. This vector is then
compared to entries in a codebook of vectors and the index of the best match-
ing vector from this codebook is stored, wherein the optimum would be the
shortest distance using Euclidian metrics, or any other metric system that
is best suited for the application. To be optimal, the codebook has to be
trained on the statistical properties of typical input data. This is usually done
before the codebook is used with an algorithm known as the modified LBG-
Algorithm [20]. The adapted codebook then stays unmodified throughout the
actual quantization.

15



6.2 Residual Encoding

Though this approach offers very low bit rate, it is obvious that there is almost
no possibility for the vector quantizer to change behavior. Since the codebook
is preproduced, only the given vectors are available to represent the output
data. Even if the codebook was well adapted to the data, sometimes large
quantization errors could occur, see Fig. 8. To prevent this, we need to store
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Fig. 8. Error distribution of vector quantization for NA49 data. The error is mea-
sured as the sum of the differences of individual timebins betweeen data and code
vector. The curves are fitted to the corresponding histograms of errors for Pb-Pb
and p-p data, respectively.

the differences between the input data and the selected codebook entry, the
so-called residuals. These residuals are then quantized and entropy encoded to
achieve an even lower bit rate. A quantization of the residuals is especially ef-
fective since the distribution of errors between codebook entry and input data
is very steep. If the codebook is sufficiently trained, the vector quantizer will
find codevectors with small deviations from the data vectors, so the residual
encoder will mostly get values around zero. When these values are quantized,
even more values are mapped to zero. Here, arithmetic compression is the
method of choice. Huffman Coding would merely reduce the zero entries to
a single bit despite their high probability. The arithmetic coder has no such
restrictions; the zeroes are mapped to much less than a bit, normally less than
1/4 of a bit.

6.3 FEzperimental Results

6.9.1 NA49

The algorithms described were applied to a set of TPC events from the NA49
Pb-Pb collisions as well as to some p-p data. The compression results are
summarized in Table 1. Fig. 9 illustrates the contributions for lossless vector
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Type of Encoder Entropy [bit/sample] | Rel. Event Size in %
Zero Suppressed Raw Data 8 100
Huffman 5.8 73
Differentiation 5.5 69
Code Table Coding 4.9 61
RVQ3 Lossless 4.8 60
VQ3 Contribution 2.3

Residual Value Contribution 2.5

RVQ3 Lossy (error 1 ADC value) 3.8 48
VQ3 Contribution 2.3

Residual Value Contribution 1.5

VQ3 Lossy 2.3 29

Table 1: Compression performance of algorithms for NA49 Pb-Pb data. The
entropy is given as the average number of bits used to encode a sample.

quantization on NA49 Pb-Pb data. Compression factors for p-p data, which
have a much lower occupancy than heavy-ion data, are higher by 30%-40%.
In our experiments, we used a vector quantizer of length three (VQ3), so that
the majority of hits, which have a length of up to six time bins, are modeled
by two vectors. The size of the codebook is 256 entries. This leads to a data
rate of 2 bits/sample for the vector quantizer alone. The algorithm RVQ3
is a vector quantizer using vectors of length three with quantized residuals.
Allowing an absolute error of one in the residual quantization, the change in

. + VQ Entropy
61— % Residual Entropy
O Overall Entropy

Bits/Sample
T

M R I T S R
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Codebook Size

Fig. 9. Entropy contributions for lossless vector quantization on NA49 data.

the number of clusters was less than 10™*, and no change in the number of
tracks was observed.
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6.3.2 ALICE

For simulated ALICE TPC data, a slightly different approach has been chosen.
The sizes of accepted deviations between a data vector and its corresponding
codebook entry have to be adjusted to the effects these changes have on the
measured physical quantities.

Since changes of the ADC values directly affect the total charge and pulse
shape and thus the position of a one-dimensional cluster, the mapping function
reflects these two aspects. Therefore, for successful mapping, a pair of data
and codebook vectors must fulfill two conditions:

dim dim

E CQv; - E ‘DQi

=1 — =1 < thresh
m
Z DQi
=1

Co. — Do.
Vi M < thresh
D,

(2

In these relations, Cg, and Dg, denote the ADC values in a codebook vector
and a data vector, respectively, while thresh is the value of the threshold to
adjust. The first condition ensures the total relative charge difference, i.e., the
difference in the sums of the ADC values of data and code vector, to be under
the threshold. This condition is relevant for dE/dx. The second condition
ensures that the shape of a pulse, and its centroid, is not significantly affected.
Therefore, the relative differences between the components of the data and
code vectors have to be smaller than the specified threshold. For simplification,
the chosen threshold for both conditions is the same. Additionally, choosing
different values can either affect the centroid of a cluster (one ADC value
holds all of the total charge difference) or the maximum tolerated charge
difference can never be reached. The higher the allowed threshold, the better
the mapping probability and subsequent compression, but, simultaneously, the
data may become more impaired.

The cost for encoding data using vector quantization is higher than for Huff-
man due to the more complicated mapping, but it can be significantly reduced
using sophisticated search algorithms. Decoding is done by a simple lookup,
which is considerably faster than Huffman decoding.
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Compression Results and Effects on the Physical Observables

In order to find a suitable set of the parameters, vector dimension, and code-
book size, these parameters have been tested in several combinations as shown
in Table 2. For all parameter sets, the threshold has been varied from 0% to
60%. Fig. 10 illustrates how the compression depends on the tolerated devia-
tion for a subset of the combinations in Table 2.

Vector Dimension \ Code Book Size | 32 | 64 | 128 | 256 | 512 | 1024

2 X X X X
3 X e X X
4 X X X X

Table 2: Parameter Sets tested for Vector quantization on simulated ALICE data.

66.

T
a

64
62
60
58
56
54
52
50

48

P P S U T R R R B
20 30 40 50 60

Compression in % of Raw Event Size

o
=
o

Maximum Accepted Deviation in %

Fig. 10. Compression ratio versus maximum accepted charge difference for a code-
book of dimension 2 and with 64 (x) and 128 (o) entries.

With small deviations, the larger codebook achieves better compression. This
is due to the better probability of finding a matching entry from the larger set
of vectors. The larger the accepted difference, the better the compression with
the smaller codebook. This is because a smaller codebook requires less bits for
storing the index of an entry and, with an increasing threshold, more samples
are actually mapped to vectors. The achievable compression ratio with this
technique is about 50%.

Fig. 11 shows the effects on momentum resolution and dE/dx resolution in the
sample data. The achieved value for relative momentum resolution of 2.65%
is slightly above the value for o, /p; expected in [6], but this is due to the fact
that instead of a Gaussian fit, the RMS is used here. This is done as the data
does not have a pure Gaussian distribution. Using a Gaussian fit, values for
0p, /Pt comparable with the ones in [6] are achieved. In the error range, the
momentum resolution coincides with the one of the untreated data.
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Fig. 11. Left: Effects on momentum resolution. Relative width of p; resolution aver-
aged over all tracks in a high multiplicity event. Right: Effects on dE/dx resolution:
Relative width of the specific ionization. Both plots are for a codebook with 64 en-
tries and a vector dimension of 2. The values for the reference data with the applied
threshold (- - -) (see Section 3.2.2), original data (—) and its error (grey area) are
also shown.

Also shown in Fig. 11 is the influence of the lossy compression on the rela-
tive width of the specific ionization dE/dx. The resolution of about 11% is
compatible with the one in [6]. The resolution of the data with the threshold
applied is compatible with the resolution of the original data. The resolution
of the data with the threshold applied is slightly better due to the fact that the
analysis software drops clusters with more than 30 maxima. The used data
format tends to split larger clusters in smaller ones and the corresponding
space points are thus not lost. This plot also shows no significant influence of
the vector quantization.
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Fig. 12. Distribution of residuals for an inner (left) and an outer (right) sector of
the original data.

Another quite sensitive physical variable should be the space point resolution
since, by changing the ADC values, the centroid of the corresponding cluster
is changed directly. In order to evaluate effects on the space point resolution,
transverse and longitudinal residuals, i.e., the distances of space points from
the assigned track are measured.

Fig. 12 shows the distribution of the transverse residuals for an inner and
outer chamber in the original data. Since the impact of multiple scattering
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Fig. 13. R-¢-resolution versus accepted charge difference. Left: inner chamber. Right:
outer chamber. The upper plots show absolute resolution whereas the lower ones
shows relative deviation from the resolution in the original data. The straight line
denotes the value of the original data, the dotted one the data with the threshold.

on position resolution is smaller for tracks with high momentum, only tracks
with a momentum greater than 1 GeV/c are taken into account here. Due
to different pad sizes in the outer chamber, the distribution is not normal.
On this account, RMS is used again instead of a Gaussian fit. The resolution
gained from Fig. 12 is about 1225 pym for an inner and 1055 pym for an outer
sector. After applying the threshold mentioned above, the vector quantizer
space resolution deteriorates by 30 um (inner sector) and 40 ym (outer sector),
see Fig. 13. For the inner chamber, the deterioration of resolution is mainly
due to the applied threshold and not to the vector quantizer, whereas in the
outer chamber, starting at a charge deviation of 20%, the influence of the lossy
compression is clear to see, although this effect is quite small. So space point
resolution is a physical variable sensitive to small changes of ADC values.
Resolution in drift direction is not shown here because it is not significantly
affected by the threshold, and the effects of vector quantization are comparable
to the ones in pad direction. The reason that all impacts on the physical
observables are small is shown in Fig. 14; the average accepted error is much
smaller than the maximum tolerated error.

Table 3 summarizes the compression performance of the algorithms applied
on simulated ALICE TPC data. These compression ratios imply that hit level
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Fig. 14. Average charge difference for different codebook sizes (64(x), 128(c), 256(A)
and 512(¢) entries) and a vector dimension of three. For clarity, the dispersion is
not shown for every data point, but only at 0%, 20% and 60%, and the errorbars
have been displaced against each other. The reason for an average error of =~ 4%
at a maximum accepted error of 0% is due to the fact that one ADC value as the
deviation is always accepted since the noise of the front-end electronics is that size.

compression of high occupancy ALICE TPC data is limited to about 50%.

22



Type of Encoder Entropy [bit/sample| | Rel. Event Size in %

Zero Suppressed Raw Event Size 8 100
Used Data Format 7 88
UNIX gzip (LZ77) 6.4 80
UNIX compress (LZW) 7.4 92
UNIX pack 6.4 80

(static Huffman Coding)

UNIX compact 6.4 80

(adaptive Huffman Coding)

Arithmetic Encoding 6.4 80
Huffman Coding (differentiated 5.8 73
data, multiple code trees)

Code Table Coding 5.7 71
Huffman Coding (ADC values,

multiple code trees) 5.2 65
Vector Quantization 5.1-3.8 64-48

Table 3: Compression performance of algorithms on ALICE simulated data. The
entropy is given as the average number of bits used to encode a sample.
For the test of Arithmetic Coding an implementation from [14] has been used.
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7 Hardware Realization

The application of bandwidth reduction techniques in a readout system re-
duces the needed average bandwidth for the following stages in the system,
including interconnect, by a factor roughly proportional to the compression
ratio. Therefore, it is beneficial to implement at least the zero suppression
and run-length encoding very close to the ADCs on the detector. For the
most commonly used algorithms, such as run-length encoding and Huffman
Coding, the hardware implementation is greatly simplified by the fact that
there is a fixed number of operations that is applied to each data element and
the operations are simple, such as table lookups and shifts.

7.1 Zero Suppression and Run-Length Encoding

For this task, several hardware implementations already exist. Most of them
provide additional functionality, such as pedestal subtraction, non-linear gain
adjustment and possibly digital filters for tail cancellation. For small-scale
experiments, the implementation is mostly FPGA-based because of the initial
cost that is involved in the development and verification of an ASIC. However,
for experiments with several thousand channels, a decision must be made as to
the more expensive but flexible FPGA, and the cheaper, lower power ASIC.
The STAR cluster-finder ASIC [12] and the ALTRO chip for ALICE [21]
are realized as ASICs. One of the authors, Kolja Sulimma, has implemented
similar functionality in several types of Xilinx-based FPGAs performing at
rates sufficient for the discussed experiments.

7.2 Huffman Encoding

Huffman Coding and decoding in hardware is used in most of the current high-
speed tape drives. The process of using a Huffman coder with a static code
table is straight forward. It consists of a table lookup, a shift, and a subsequent
logical OR that produces a window of the codestream in a register. The register
has to be fragmented into words of the size needed by the following transport
or processing steps.

We have produced a VHDL-based implementation that has been verified and
benchmarked using various Xilinx FPGAs [22]. The achieved rates vary be-
tween 115 and 205 MSamples/sec depending on the chosen device. The im-
plementation requires about 10.000 equivalent gates.
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7.8 Vector Quantization

The hardware implementation of vector quantization is more complicated due
to the search algorithms that have to be performed. This has been an active
field of research for the last ten years, especially in the video compression
community. These efforts have resulted in hardware implementations, such as
the VAMPIRE chip [23].
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8 Summary and Outlook

In current heavy-ion physics experiments, the TPC subdetectors produce by
far the largest amount of data. The NA49 experiment at the CERN SPS has
a typical compressed TPC event size of 10 MBytes, STAR at RHIC has to
handle events between 15 and 20 MBytes. The future heavy-ion experiment
ALICE, at the planned CERN LHC, will produce typical event sizes of about
65 MBytes. To realize the amount of data to be handled, these event sizes have
to be combined with the trigger rates and the duration of the active period of
the experiments. The event rate at NA49 is approximately 10 Hertz, STAR
runs at 50 to 100 Hertz, and ALICE will record events with rates up to 200
Hertz. The duration of these experiments spans several months each year. For
ALICE, the data collected in one year will be approximately 2.7 PByte.

We have investigated commonly used methods of data compression above the
canonical baseline methods, such as zero suppression, in order to reduce the
amount of TPC data that has to be written to permanent storage: lossless
algorithms, such as Huffman Coding, Differentiation or Code Table Coding, as
well as lossy Vector Quantization. For the lossy Vector Quantization a detailed
study of the impact on the physical data has been made using simulated
data of the ALICE TPC. It has been shown that the impact on the physical
observables is measurable, but small. The spacepoint resolution emerged to
be the most sensitive quantity. For some of the algorithms hardware based
implementations have been realized and tested. As shown, all these traditional
methods can compress zero suppressed TPC raw data only by factors up to 3.

The techniques investigated in this paper are all based on local modeling of the
data since they work on the scale of ADC samples and clusters. However, the
parameters that enter the physics analysis have a more global nature. These
are especially the track parameters and the particles’ integrated charge deposi-
tions. Thus, compression methods that exploit models of a higher abstraction
level are expected to yield better results. The most promising strategy so far
is the online track reconstruction. This technique has been experimentally ap-
plied at NA49 and the first results indicate that compression rates in the order
of a factor of 10, with only a small impact on data quality, can be achieved
[24].

This kind of compression must allow for a subsequent second pass of calibra-
tion and distortion corrections, track and vertex finding, fitting and dE/dx
analysis. Since the aim of track finding is not to extract physics information,
but merely to build a data model that will be used to collect clusters and to
code cluster information efficiently, any inefficiencies in track finding, e.g., due
to an unprecise track model, will result in an inefficient compression, but not
in a loss of clusters. No relevant data are lost.
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Summarizing we can state that hit-level data compression schemes can com-
press TPC raw data by a factor 2 to 3 depending on the inherent structure of
the data and the ability of the various techniques to exploit these data charac-
teristics. In order to improve the compression ratios substantially, higher level
data abstractions, e.g. cluster and track modeling, have to be considered. On-
line tracking seems to be a promising option that we will address in future
research.

27



References

[1] D. R. Nygren, LBL Int. Report, Feb. 1974.
[2] D. R. Nygren, Phys. Scripta 23 (1981): 584.

[3] G. Rai et al., IEEE Trans. Nucl. Sci. 37 (1990): 56.

[4] S. Afanasiev et al. (NA49 Collaboration), The NA49 Large Acceptance Hadron
Detector, Nucl. Instrum. Meth. A430 (1999): 21.

[6] K. H. Ackermann et al. (STAR Collaboration), The STAR Time Projection
Chamber, Nucl. Phys. A661 (1999): 681c-685c.

[6] The ALICE Collaboration, Technical Design Report for the Time Projection
Chamber (TPC), CERN/LHCC 2000-001 (2000).

[7] W. Rauch, IEEE Trans. Nucl. Sci. 41, No. 1 (1994).

[8] The ALICE Collaboration, Technical Proposal for a Large Ion Collider
Ezperiment at the CERN LHC, CERN/LHCC 95-71 (1995).

[9] S. Bethke et. al., Report of the Steering Group of the LHC Computing Review,
CERN/RRB-D 2001-3.

[10] B. Buchanan, Handbook of Data Communications and Network, Boston/
Dordrecht/London: Kluwer Academic Publishers, 1999.

[11] M. Ivanov, GSI Darmstadt. Private Communication.

[12] M. Botlo, M. J. LeVine, R. A. Scheetz, M. W. Schulz, P. Short, J. Woods
and D. Crosetto, The STAR Cluster-Finder ASIC, IEEE Trans. Nucl. Sci. 45
(1998): 1809.

[13] C. E. Shannon, Bell System Technical Journal, 27 (1948): 379-423.

[14] M. Nelson and J. L. Gailly, The Data Compression Book, New York: M&T
Books, 1996.

[15] D. A. Huffman, A Method for the Construction of Minimum Redundancy Codes,
Proceedings of the IRE, Vol. 40 (9) (1952): 1098-1001, 1952.

[16] B. Hoff, A High-Speed Static Huffman Decoder, Dr. Dobb’s Journal, No. 271,
(Nov. 1997): 56

[17] H. Beker and M. Schindler, Data Compression on Zero Suppressed High Energy
Physics Data, Alice Internal Note, INT-1996-03.

[18] W. W. Allison and J. H. Cobb, Relativistic Charged Particle Identification by
Energy Loss, Ann. Rev. Nucl. Part. Sci., 30 (1980): 253.

[19] R. M. Gray, Vector Quantization, IEEE ASSP Magazine (Apr. 1984): 4ff.

28



[20] Y. Linde, A. Buzo and R. M. Gray, An Algorithm for Vector Quantizer Design,
IEEE Transactions on Communications, Vol.28 (Jan. 1980): 84ff.

[21] L. Musa, ALICE Internal Note, INT-ALICE 99-50.

[22] S. Schossler and T. Jahnke, Project Work ”Huffman Coder” for ”Hardware
Design using FPGAs”, Department of Computer Science, University of
Frankfurt,http://www.sulimma.de/prak/ss00/projekte/huffman/Huffman.html,
2000.

[23] J. E. Fowler, K. C. Adkins, S. B. Bibyk, and S. C. Ahalt,
Real-Time Video Compression Using Differential Vector Quantization,,
IEEE Transactions on Circuits and Systems for Video Technology, (Feb.
1995).

[24] J. Berger, Messung wvon Lepton-Paaren aus Meson-Zerfillen in den
Hadronexperimenten NA49 und STAR, Diploma Thesis, University of Frankfurt
1998.

[25] J. S. Lange et al., The STAR Level-8 Trigger System, Nucl. Instrum. Meth. A,
453 (2000): 397.

29



List of Figures

10

Event display of a full event, generated with the

ALICE fast simulator using the HIJING parametrization
(dN./dy = 8000). Only the projection of the tracks in the
n-range from 0 to 0.1 is shown.

Time response of the NA49 electronics.
Plot of the 10-to-8 bit conversion table.
Two-dimensional charge cluster after zero suppression.

[lustration of the used data format. In general, hit information
is stored using the position of the prehistory bin and the
length including the posthistory bin, e.g. for the left hit in the
figure. If the prehistory bin of a hit is the immediate successor
of the posthistory bin of the preceding hit, the two hits are
regarded as one large hit, e.g. the large hit in illustrated in the
figure above. In that case the header information is stored only
once, although two successive bins are below the threshold.

Left: Distribution of ADC values for a central NA49 Pb-Pb
collision. Right: Distribution of ADC values for a simulated
ALICE Pb-Pb event. There are two steps in the distribution:
the first, at an ADC value of 10, is due to the applied
threshold; all other steps are due to the 10 to 8 bit conversion.

Distribution of the ADC values in the differentiated signal for
ALICE TPC data.

Error distribution of vector quantization for NA49 data. The
error is measured as the sum of the differences of individual
timebins betweeen data and code vector. The curves are fitted
to the corresponding histograms of errors for Pb-Pb and p-p
data, respectively.

Entropy contributions for lossless vector quantization on NA49
data.

Compression ratio versus maximum accepted charge difference
for a codebook of dimension 2 and with 64 (x) and 128 ()
entries.

30

10

12

16

17

19



11

12

13

14

Left: Effects on momentum resolution. Relative width of

p: resolution averaged over all tracks in a high multiplicity

event. Right: Effects on dE/dx resolution: Relative width of

the specific ionization. Both plots are for a codebook with

64 entries and a vector dimension of 2. The values for the
reference data with the applied threshold (- - -) (see Section

3.2.2), original data (—) and its error (grey area) are also

shown. 20

Distribution of residuals for an inner (left) and an outer (right)
sector of the original data. 20

R-¢-resolution versus accepted charge difference. Left: inner
chamber. Right: outer chamber. The upper plots show absolute
resolution whereas the lower ones shows relative deviation

from the resolution in the original data. The straight line

denotes the value of the original data, the dotted one the data

with the threshold. 21

Average charge difference for different codebook sizes (64 (%),
128(0), 256(A) and 512(¢) entries) and a vector dimension of
three. For clarity, the dispersion is not shown for every data

point, but only at 0%, 20% and 60%, and the errorbars have

been displaced against each other. The reason for an average

error of ~ 4% at a maximum accepted error of 0% is due to the

fact that one ADC value as the deviation is always accepted

since the noise of the front-end electronics is that size. 22

31



List of Tables

Type of Encoder Entropy [bit/sample] | Rel. Event Size in %
Zero Suppressed Raw Data 8 100
Huffman 5.8 73
Differentiation 5.5 69
Code Table Coding 4.9 61
RVQ3 Lossless 4.8 60
VQ3 Contribution 2.3

Residual Value Contribution 2.5

RVQ3 Lossy (error 1 ADC value) 3.8 48
VQ3 Contribution 2.3

Residual Value Contribution 1.5

VQ3 Lossy 2.3 29

Table 1: Compression performance of algorithms for NA49 Pb-Pb data. The
entropy is given as the average number of bits used to encode a sample.
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Vector Dimension “ Code Book Size | 32 | 64 | 128 | 256 | 512 | 1024

2 X | x X X
3 X b'e X X
4 X X X X

Table 2: Parameter Sets tested for Vector quantization on simulated ALICE data.
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Type of Encoder Entropy [bit/sample| | Rel. Event Size in %

Zero Suppressed Raw Event Size 8 100
Used Data Format 7 88
UNIX gzip (LZ77) 6.4 80
UNIX compress (LZW) 7.4 92
UNIX pack 6.4 80

(static Huffman Coding)

UNIX compact 6.4 80

(adaptive Huffman Coding)

Arithmetic Encoding 6.4 80
Huffman Coding (differentiated 5.8 73
data, multiple code trees)

Code Table Coding 5.7 71
Huffman Coding (ADC values,

multiple code trees) 5.2 65
Vector Quantization 5.1-3.8 64-48

Table 3: Compression performance of algorithms on ALICE simulated data. The
entropy is given as the average number of bits used to encode a sample.
For the test of Arithmetic Coding an implementation from [14] has been used.
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