INSTR 99, 7th International Conference on Instrumentation for Colliding Beam Physics Hamamatsu, November 15-19, 1999

The STAR Level-3 Trigger System

C. Adler ^a, J. Berger ^a, M. DeMello ^b, D. Flierl ^a, J. Landgraf ^c, J. S. Lange ^{a,1}, M. J. LeVine ^c, A. Ljubicic,Jr. ^c, J. Nelson ^d, D. Roehrich ^e, J. J. Schambach ^f, D. Schmischke ^a, M. W. Schulz ^c, R. Stock ^a, C. Struck ^a, P. Yepes ^b

^aUniversity of Frankfurt, August-Euler-Straße 6, D-60486 Frankfurt, Germany
^bRice University, Houston, Texas 77251, USA
^cBrookhaven National Laboratory, Upton, New York 11973, USA
^dUniversity of Birmingham, Birmingham B15 2TT, United Kingdom
^eUniversity of Bergen, Allegaten 55, 5007 Bergen, Norway
^fUniversity of Texas, Austin, Texas 78712, USA

The RHIC accelerator at Brookhaven National Laboratory, USA, will investigate Au+Au collisions with $\sqrt{s} \le 200$ A·GeV and p+p collisions with $\sqrt{s} \le 500$ GeV. The STAR experiment is a large scale, cylindrical, symmetric 4π -detector. Data taking will start in 1999 with a full size TPC (Time Projection Chamber, $R_{in}=0.6$ m, $R_{out}=2$ m) with 24 TPC sectors, 6912 pads each. TPCs are specifically suitable for detecting high density charged particle fluxes in high multiplicity nucleus-nucleus events.

The level-3 trigger system of the STAR experiment will in the final stage consist of a farm of at least one ALPHA/Linux processor per TPC sector, interconnected by high bandwidth networks (MYRINET and SCI). The system will perform online tracking of $N_{track} \ge 8000$ tracks per event ($N_{point} \le 45$ per track). The track data will be transfered to a global level-3 CPU (expected data transfer rate $\simeq 48$ MB/s), performing online event analysis tasks (e.g. invariant mass reconstruction) with a design trigger input rate of R=100 Hz. A large scale prototype system (1/3 of the final design, R=20 Hz) is envisaged for data taking in 11/99; first results will be presented.

¹Corresponding Author, Email soeren@bnl.gov