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What:

• Motivation

• Data and future directions

• Conclusions

How:

• Focus on recent developments (2005 →)

• Place them in historical and conceptual

context
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3 Au+Au collisions at RHIC...

...look beautiful but messy – why make this mess? are they complex or

simple? can we apply a perfect theory? what do we learn from them?
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4 A perfect theory approach may work in

QED/electro-weak realm...

Expansion in powers of α ≈ 1/137, higher orders matter less...
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5 Coming to QCD...

Hard to get matrix elements:

• with αS ∼ 1, comparable contributions in all orders, series converge slowly

(if at all)
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6 E.Fermi – an extreme view: forget about matrix

elements!

E.Fermi, ”High

Energy Nuclear

Events”, Progr.

Theor. Phys. 5,

No.4, 1950

(Yukawa theory,

no QCD!)

”When two nucleons collide with

very great energy in their center of

mass system this energy will be

suddenly released in a small volume

surrounding the two nucleons. 〈...〉

Since the interactions of the pion

field are strong we may expect that

rapidly this energy will be distributed

among the various degrees of

freedom 〈...〉 according to statistical

laws. 〈...〉 It is realized that this

description of the phenomenon is

probably as extreme, although in the

opposite direction, as is the

perturbation theory approach.”
7



7 I.Ya.Pomeranchuk (1951), L.D.Landau (1953) – forget

about ”individual” particles!

Time evolution of non-viscous hydro with

freeze-out.

• ”Hot and dense” phase – no ”particles”,

mean free path λ ≪ L ⇒ relativistic

hydrodynamics of an ideal (non-viscous

and non-heat-conducting) liquid is

applicable.

• Free separation at temperature T ∼ mπ

and λ ∼ L, particles reappear.
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8 QCD running coupling: ifrared slavery and asymptotic

freedom

Gross, Politzer, Wilczek

Remember ∆px∆x ≈ h̄! Asymptotic freedom as seen in particle physics

experiments (F.Wilczek’s Nobel Lecture 2004)
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9 Deconfinement
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10 A more intuitive picture...
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10 A more intuitive picture...

Screening leads to deconfinement at high density or temperature. Analogous to

Debye screening in ordinary plasma, there is rD.
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11 Phase transition ⇒ increase in the number of degrees of

freedom, EOS change
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F. Karsch Lect. Notes Phys. 583 (2002) 209 Pressure becomes excessive after

phase transition back to ordinary matter ⇒ fireball may ”explode”.
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• ”Freedom”: test the nature of the medium by falsifying

perturbative predictions. High pt, ”jet tomography”,

photons, leptons. Work with a subset of specific particles or

even expect QGP itself to be ”asymptotically free” ⇒

perturbative.
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12 Approaches in theory

• ”Freedom”: test the nature of the medium by falsifying

perturbative predictions. High pt, ”jet tomography”,

photons, leptons. Work with a subset of specific particles or

even expect QGP itself to be ”asymptotically free” ⇒

perturbative.

• ”Collectivism”: test the nature of the medium by falsifying

quasi-classical predictions. Bulk pt, collective excitation

modes (flows), correlations, hydrodynamics. Expect QGP to

be a highly-excited quasi-macroscopic system.

• Lattice QCD is not considered a ”paradigm”, it’s heavy

artillery, ultima ratio regum
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13 Coming next...

• Experimental strategies
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• Perturbative diagnostics

– high pt spectra (hadrons, γ)
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13 Coming next...

• Experimental strategies

• Perturbative diagnostics

– high pt spectra (hadrons, γ)

– charm

• Quasi-classical diagnostics

– flow (hydro)

– mini-jets in the medium (dissipation ?!)

– hadro-chemistry
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14 Strategy dilemmas in experiment

sacrifice

including leptons and gamma

rare = irrelevantphysics is in hadrons,

want
large
acceptance
to study
collective
effects
and
correlations

can

acceptance
to improve
quality of
particle ID
and
tracking

identify many particle IDs
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15 STAR — subsystems

recent Kent contributions: EEMC, ZDC SMD, computing infrastructure
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16 STAR — strategy

STAR

including leptons and gamma

rare = irrelevantphysics is in hadrons,

want
large
acceptance
to study
collective
effects
and
correlations

can

acceptance
to improve
quality of
particle ID
and
tracking

sacrifice

BRAHMSPHOBOS

identify many particle IDs

TPC is the key; relatively infrequent large events
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17 STAR — growth
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18 STAR — computing challenges

• high volume of data → 109 events next year

• distributed resources and users

Solution: distributed computing (grid).

Projects with Kent contribution:

• grid collector (event catalog) – Wei-Ming Zhang

• database API, load-balancer – Mikhail Kopytine
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19 STAR — Particle identification — by dE/ dx
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20 STAR — Particle identification — by topology

About 10% of a central event.

V 0:

K0 → π+π− (1)

Λ → pπ− (2)

Λ̄ → p̄π+ (3)

and by extension:

Σ− → Λπ− (4)

Ω− → ΛK− (5)

Kinks:

K± → µ±ν (6)

K± → π±π0 (7)
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21 PHENIX — subsystems
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22 PHENIX — photograph

Accepts θ = (90 ± 20)◦, highly inhomogeneous ~B-field up to 0.8T.
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23 PHENIX — strategy
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STAR
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23 PHENIX — strategy

STAR

including leptons and gamma

rare = irrelevantphysics is in hadrons,

want
large
acceptance
to study
collective
effects
and
correlations

can

acceptance
to improve
quality of
particle ID
and
tracking

sacrifice

PHENIX

BRAHMSPHOBOS

identify many particle IDs

Technologically heterogeneous, high rate, limited acceptance, +

leptons and γ
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24 Stopping — Longitudinal expansion — Energy density
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dN/dy

y

y =
1

2
ln

„

1 + v

1 − v

«

= v + O(v3) (8)
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dN/dy
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24 Stopping — Longitudinal expansion — Energy density

dN/dy
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Bjorken:

∆y ≈ ∆v =
∆z

t
(9)

E = N
d〈E〉

dy
∆y = N

d〈E〉

dy

∆z

t
(10)

ǫ(t = tform) =
E

S∆z
=

N

Stform

d〈E〉

dy
≈

dN

dy

〈mt〉

Stform
(11)
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25 Energy density
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25 Energy density

Np is number of participants. Energy density

> 1GeV/fm3 is believed to be adequate for the

phase transition.
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25 Energy density
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26 High pt suppression — hadrons
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27 High pt suppression — alternatives

RAA(pt) =

1

nevt

d2NAA

dpt dy

〈Ncoll〉

σinel
pp

d2σpp

dpt dy

(12)
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28 High pt suppression — hadrons — STAR and PHENIX
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28 High pt suppression — hadrons — STAR and PHENIX
R
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29 High pt suppression — photons — spectra
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Photons are produced in participant

NN collisions with no initial state

modification. The high pt

suppression in hadronic sector is not

an initial state effect.
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30 Charm
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30 Charm

Matsui, Satz

mechanism of J/Ψ

suppression. PLB

178:416, 1986.
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30 Charm

Matsui, Satz

mechanism of J/Ψ

suppression. PLB

178:416, 1986.
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31 PHENIX — sources of electrons
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31 PHENIX — sources of electrons

photonic (calibrated out using γ converter of known thickness):

π0 → γe+e− → γ − conversion (13)

η, η′, ρ, ω, φ → π0 → γe+e− → γ − conversion (14)
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31 PHENIX — sources of electrons

photonic (calibrated out using γ converter of known thickness):

π0 → γe+e− → γ − conversion (13)

η, η′, ρ, ω, φ → π0 → γe+e− → γ − conversion (14)

non-photonic (wanted):

D+ → e+X (15)

D0 → e+X (16)

B → (17)

non-photonic (unwanted):

K → πeν (18)

(GEANT)

ρ, ω, φ → e+e− (19)

mt scaling of measured π0 spectra
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32 PHENIX — non-photonic single electrons
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32 PHENIX — non-photonic single electrons
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32 PHENIX — non-photonic single electrons
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Believed to come from open heavy

flavor decays, non-photonic electrons

do not show high pt suppression: the

spectra scale with binary collisions.
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33 Future of charm: STAR Heavy Flavor Tracker

• charm production for J/Ψ signature

• clarify charm RAA story

• elliptic flow of D mesons – is flow partonic ? is c part of it ?

cτ ∝ 100 − 300µm. Reduce combinatorics by vertex-finding. 10 µm resolution.
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34 Azimuthal asymmetry — flow

(x, y) anisotropy → rescattering →

(px, py) anisotropy
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34 Azimuthal asymmetry — flow

(x, y) anisotropy → rescattering →

(px, py) anisotropy

E
d3N

d3p
=

1

2π

d2N

pt dpt dy
{1 +

∞
X

m=1

2vm cos[m(φ − Ψr)]} (20)

• flow starts early – perhaps before hydro is applicable (stopping stage)

• testifies to equilibration

• sensitive to pressure and density gradients

• flow is a multiparticle effect; there is “non-flow”
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35 Directed flow — Importance of impact vector
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35 Directed flow — Importance of impact vector

E
d3N

d3p
=

1

2π

d2N

pt dpt dy
{1 +

∞
X

m=1

2vm cos[m(φ − Ψr)]} (21)

for v1, need to know 0 ≤ Ψr < 2π:
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35 Directed flow — Importance of impact vector

E
d3N
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pt dpt dy
{1 +

∞
X

m=1

2vm cos[m(φ − Ψr)]} (21)

for v1, need to know 0 ≤ Ψr < 2π:

36



35 Directed flow — Importance of impact vector

E
d3N

d3p
=

1

2π

d2N

pt dpt dy
{1 +

∞
X

m=1

2vm cos[m(φ − Ψr)]} (21)

for v1, need to know 0 ≤ Ψr < 2π:

need to be able to distinguish the two !
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36 Directed flow — STAR ZDC SMD
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36 Directed flow — STAR ZDC SMD

n
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36 Directed flow — STAR ZDC SMD

7 vertical and 8 horizontal SMD slats at 1/3 of ZDC depth measure transverse

asymmetry of spectator neutrons
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36 Directed flow — STAR ZDC SMD

• effort spearheaded by Kent people

• besides flow, contributes to strangelet search, UPC and spin physics
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37 Directed flow
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37 Directed flow
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37 Directed flow

beam (or y) − yη
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37 Directed flow

beam (or y) − yη
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 = 17.2 GeVNNsNA49: 

beam fragments

(ZDC SMD)

STAR PRC 73 (2006) 034903

n

+−

DX
ZDC
SMD

p,n

h

Charged-particles v1 from 3-particle cumulants in the projectile frame.

• monotonic around midrapidity

• Supports limiting fragmentation

• Antiflow !
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38 Elliptic flow and hydro fluidity
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38 Elliptic flow and hydro fluidity

 )
-2

dN/dy 1/S ( fm

0 5 10 15 20 25 30

ε/ 2v

-0.05

0

0.05

0.1

0.15

0.2

0.25

HYDRO  limits

 = 130 GeVNN S√

 = 17 GeVNN S√

E877

NA49

STAR

STAR PRC66 (2002) 034904

(cumulant v2). Hydro limits by

Kolb, Sollfrank, Heinz, PRC62

(2000) 054909.

39



38 Elliptic flow and hydro fluidity

 )
-2

dN/dy 1/S ( fm
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STAR PRC66 (2002) 034904

(cumulant v2). Hydro limits by

Kolb, Sollfrank, Heinz, PRC62

(2000) 054909.

• v2 is a response to excentricity

ε = (y2 − x2)/(y2 + x2)

• low viscosity ⇐⇒ high

cross-sections ! ”sQGP”.
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39 Elliptic flow and quark coalescence
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STAR PRC 72 (2005) 014904

dN

dφ
∝ 1 + 2v2 cos(2φ) (22)

dNclscnc,n

dφ
(pt) ∝

„

dN( pt

n
)

dφ

«n

(23)

(1 + 2v2 cos(2φ))n = (24)

1 + 2v2n cos(2φ) + O(v2
2)

STAR AuAu 200 GeV minbas; n is number of constituent quarks. Expect

universality if quark coalescence dominates hadronization after the universal

flow sets in. Valid at pt/n > 0.6 GeV/c for K0
S,K±,p,p̄,Λ,Λ̄.
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Transform (DWT)

F λ
m,l,k(φ, η)–Haar wavelet orthonormal basis in (φ, η). scale fineness (m),

directional modes of sensitivity (λ), track density ρ(η, φ, pt), locations in

2D (l, k). DWT is an expansion in this basis.
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F λ
m,l,k(φ, η)–Haar wavelet orthonormal basis in (φ, η). scale fineness (m),

directional modes of sensitivity (λ), track density ρ(η, φ, pt), locations in

2D (l, k). DWT is an expansion in this basis.
Power of local fluctuations, mode λ:

P λ(m) = 2−2m
X

l,k

〈ρ, F λ
m,l,k〉

2 (25)
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dyn(m) ≡ P λ
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mix(m) (26)
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40 Local hadron density fluctuations and Discrete Wavelet

Transform (DWT)

F λ
m,l,k(φ, η)–Haar wavelet orthonormal basis in (φ, η). scale fineness (m),

directional modes of sensitivity (λ), track density ρ(η, φ, pt), locations in

2D (l, k). DWT is an expansion in this basis.
Power of local fluctuations, mode λ:

P λ(m) = 2−2m
X

l,k

〈ρ, F λ
m,l,k〉

2 (25)

“dynamic texture”:

P λ
dyn(m) ≡ P λ

true(m) − P λ
mix(m) (26)

Normalized:

P λ
dyn(m)/P λ

mix(m)/n(pt) (27)

41



41 Longitudinal minijet broadening – wavelet-based

technique
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STAR PRC71 (2005) 031901 (R)

Central events: normalized dynamic texture for fineness scales m = 0, 1, 0 from

left to right panels, respectively, as a function of pt. ������
���
���

���
���
���
��� STAR data; solid line –

Hijing without jet quenching; dashed line – Hijing with quenching; peripheral

STAR data renormalized to compare.
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42 Longitudinal minijet broadening – traditional technique

r(~p1, ~p2) ≡ ρsib(~p1, ~p2)/ρmix(~p1, ~p2). (28)
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Two-particle charge-idependent joint

correlations N̄(r̂ − 1) on (η∆ ≡ η1 − η2,

φ∆ ≡ φ1 − φ2) for central (a) to

peripheral (d) collisions.
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∆

P (m) =

Z ∞

−∞

X(t∆/2)X(−t∆/2)W (t∆, m) dt∆, (29)
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43 Connecting DWT and two-point correlation measures
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)∆t
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P (m) differentiates correlation on

scale m. Minijet elongation ⇒

correlation broadening ⇔ reduced

correlation gradient ⇔ reduced

“texture”

P (m) =

Z ∞

−∞

X(t∆/2)X(−t∆/2)W (t∆, m) dt∆, (29)
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44 Future of wavelet correlations: Kent — P.N.Lebedev —

MEPhI project

Dremin et al.,

Phys.Lett.B499:97-103,2001.

Emulsion plates exposed at

SPS.

Top image → DWT →

suppress certain scales →

inverse DWT → bottom

image.

Rings of Cherenkov gluons ?

Could determine ”dielectric

permeability” of QCD matter

at RHIC.
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45 Resonances in hadronic matter

Markert, Torrieri, Rafelski, Campos do Jordao 2002
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K̄∗0(892) → π+ + K−

(30)

K∗0(892) → π− + K+

(31)

Λ(1520) → p + K− (32)

Markert, Torrieri, Rafelski, Campos do Jordao 2002
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46 Resonances in hadronic matter
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STAR PRL 97, 132301 (2006): a thermal model with rescattering. Can use

models to put limits on the system evolution time.
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47 QGP: physical reality or a justifiable ansatz?
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photonic HBT

including leptons and gamma

rare = irrelevantphysics is in hadrons,

QGP

sQGP

want
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acceptance
to study
collective
effects
and
correlations
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acceptance
to improve
quality of
particle ID
and
tracking

sacrifice

high pt
suppression

direct photons

HBT puzzle

asymmetry
azimuthal

mini−
jets

dileptons

identify many particle IDs

• first phase of the campaign: unexpectedly, a lot of action is taking place

on the South-Western front! (of minimum-bias hadronic correlations)

• QGP as a theory ansatz may have been justified by the data

• to elevate QGP to the status of a discovered physical reality, need to

demonstrate uniqueness of the interpretations, embrace full gamut of the

phenomena, avoid ”confirmation bias”.
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