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What:
e Motivation
e Data and future directions
e Conclusions
How:
e Focus on recent developments (2005 —)

e Place them in historical and conceptual
context
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3 Au—+Au collisions at RHIC...

...look beautiful but messy — why make this mess? are they complex or
simple? can we apply a perfect theory? what do we learn from them?
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5 Coming to QCD...

=

Hard to get matrix elements:

e With ag ~ 1, comparable contributions in all orders, series converge slowly
(if at all)



6 E.Fermi — an extreme view: forget about matrix

elements!

E.Fermi, " High
Energy Nuclear
Events”, Progr.
Theor. Phys. 5,
No.4, 1950

(Yukawa theory,

"When two nucleons collide with
very great energy in their center of
mass system this energy will be
suddenly released in a small volume
surrounding the two nucleons. (...)
Since the interactions of the pion
field are strong we may expect that
rapidly this energy will be distributed
among the various degrees of
freedom (...) according to statistical
laws. (...) It is realized that this
description of the phenomenon is
probably as extreme, although in the
opposite direction, as is the

perturbation theory approach.”
4



7 I.Ya.Pomeranchuk (1951), L.D.Landau (1953) — forget
about " individual” particles!

Time evolution of non-viscous hydro with
freeze-out.

e "Hot and dense” phase — no " particles’,

mean free path A < L = relativistic
hydrodynamics of an ideal (non-viscous
and non-heat-conducting) liquid is
applicable.

Free separation at temperature 7' ~ m
and A\ ~ L, particles reappear.
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8 QCD running coupling: ifrared slavery and asymptotic
freedom
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Gross, Politzer, Wilczek

Remember Ap, Az ~ h! Asymptotic freedom as seen in particle physics
experiments (F.Wilczek's Nobel Lecture 2004)



9 Deconfinement
Kaczmarek, Karsch, Zantow Petreczky PRD70(074505) 2004

0.6 - Ogq (r,T) lattice (T 0) .

o
0.5 r 1.05-
0.4 r lattice, T/Tc= _

O | | 11 | | | | | | | 11 | | | I| | |
0.01 0.1 0.5

QCD running coupling at 7" > T,., showing screening of strong force, albeit at
relatively large distances.
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10 A more intuitive picture...
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Screening leads to deconfinement at high density or temperature. Analogous to
Debye screening in ordinary plasma, there is rp.
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11 Phase transition = increase in the number of degrees of
freedom, EOS change

16.0 | s
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0.0 °
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F. Karsch Lect. Notes Phys. 583 (2002) 209 Pressure becomes excessive after
phase transition back to ordinary matter = fireball may " explode’.
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o "Freedom”: test the nature of the medium by falsifying
perturbative predictions. High p, " jet tomography’,
photons, leptons. Work with a subset of specific particles or
even expect QGP itself to be "asymptotically free” =
perturbative.

e ""Collectivism’: test the nature of the medium by falsifying
quasi-classical predictions. Bulk p;, collective excitation
modes (flows), correlations, hydrodynamics. Expect QGP to
be a highly-excited quasi-macroscopic system.

e Lattice QCD is not considered a " paradigm’’, it's heavy
artillery, ultima ratio regum
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13 Coming next...

e EXperimental strategies
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13 Coming next...
e EXperimental strategies

e Perturbative diagnostics
— high p; spectra (hadrons, ~)
— charm
e Quasi-classical diagnhostics
— flow (hydro)
— mini-jets in the medium (dissipation ?!)

— hadro-chemistry

14
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15 STAR — subsystems

Silicon Vertex
Coils Magnet —~Tracker

E-M
Calorimeter

Time Projection
— Chamber

h._— Time Of
e Flight

N
u

e

Electronics
Platforms

Forward Time Projection Chamber

recent Kent contributions: EEMC, ZDC SMD, computing infrastructure

16



16 STAR — strategy

17



16 STAR — strategy

want

large
acceptance
to study
collective
effects

and
correlations

identify many particle IDs

including leptons and gamma

PHOBOS

BRAHMS

physics is in hadrons,

17

rare = irrelevant

can

sacrifice
acceptance

to improve
quality of
particle ID
and
tracking



16 STAR — strategy

identify many particle IDs including leptons and gamma

want can -
large sacrifice
acceptance acceptance
to study STAR to improve
collective qual_lty of
particle ID
effects
and
and

: tracking
correlations

PHOBOS BRAHMS

physics is in hadrons, rare = irrelevant

TPC is the key; relatively infrequent large events

17



17 STAR — growth
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17 STAR — growth
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17 STAR — growth

Sealing Praperties of Hyperon Production in Au+Au Callisions at /Sy = 200 GeV.
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18 STAR — computing challenges
e high volume of data — 10 events next year
e distributed resources and users
Solution: distributed computing (grid).
Projects with Kent contribution:
e grid collector (event catalog) — Wei-Ming Zhang
e database API, |load-balancer — Mikhail Kopytine

10



19 STAR — Particle identification — by dF/dx
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20 STAR — Particle identification — by topology

K’ —» ntn™ (1)
A — pr— (2)
A — prt (3)

X7 — An™ (4)
Q7 — AK™ (5)
K* — utv (6)
K* — g*qd (7)

About 10% of a central event.
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21 PHENIX — subsystems
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22 PHENIX — photograph

Accepts 6 = (90 & 20)°, highly inhomogeneous B-field up to 0.8T.
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24



23 PHENIX — strategy

want

large
acceptance
to study
collective
effects

and
correlations

identify many particle IDs including leptons and gamma

STAR

PHOBOS BRAHMS

physics is in hadrons, rare = irrelevant

24
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23 PHENIX — strategy

identify many particle IDs including leptons and gamma

PHENIX
want can -
large sacrifice
acceptance acceptance
to study STAR to improve
collective qual_lty of
effects particle 1D
and and
' tracking
correlations
PROBOS BRAHMS
physics is in hadrons, rare = irrelevant

Technologically heterogeneous, high rate, limited acceptance, +
leptons and ~
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24 Stopping — Longitudinal expansion — Energy density
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1n<1+”> — v+ O (8)
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24 Stopping — Longitudinal expansion — Energy density
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24 Stopping — Longitudinal expansion — Energy density

— = V+AV
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25 Energy density
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25 Energy density

N, is number of participants. Energy density
> 1GeV/fm? is believed to be adequate for the
phase transition.
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25 Energy density

PHENIX PRC71(2005) 034908, STARnucl-ex/0311017
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N, is number of participants. Energy density
> 1GeV/fm? is believed to be adequate for the
phase transition.
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25 Energy density
PHENIX PRC71(2005) 034908, STARnucl-ex/0311017
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N, is number of participants. Energy density
> 1GeV/fm? is believed to be adequate for the
phase transition.




26 High p; suppression — hadrons
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27 High p; suppression — alternatives

Initial Final

state? gluon state? ¢ partonic
saturation energy loss

) -

How to discriminate? Turn off final state =
d+Au collisions! -Ql

Carl Gagliardi — d+A at RHIC 7

1 d?Nyaq

Nevt dpt d
Raalpr) = 5", (12)

J;)r]gel dp¢ dy
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28 High p; suppression — hadrons — STAR and PHENIX
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28 High p; suppression — hadrons — STAR and PHENIX
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28 High p; suppression — hadrons — STAR and PHENIX
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29 High p; suppression — photons — spectra

20
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Binary-collision scaled pQCD gets it
right

PHENIX PRL 94, 232301 (2005)
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Photons are produced in participant
NN collisions with no initial state
modification. The high p;
suppression in hadronic sector is not
an initial state effect.
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30 Charm
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30 Charm
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Matsui, Satz
mechanism of J/W
suppression. PLB
178:416, 1986.
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30 Charm
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Matsui, Satz
mechanism of J/W
suppression. PLB
178:416, 1986.

Karsch Ericeira 2005
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Open/closed SU(3)/SU(2); for r > rn.qa the gg force
is strongly modified by the colored medium; rp is
the Debye screening radius. Horizontal lines are

rgq for charmonium states.
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31 PHENIX — sources of electrons
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31 PHENIX — sources of electrons

photonic (calibrated out using ~+ converter of known thickness):

7’ — ~vete™ — ~ — conversion (13)

0

7, 77/7 Py W, (b — T ’}/6—'_6_ — Y — conversion (]_4)
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31 PHENIX — sources of electrons

photonic (calibrated out using ~+ converter of known thickness):

7’ — ~vete™ — ~ — conversion (13)
n,n,p,w,d — 1 — veTe~ — ~ — conversion (14)

non-photonic (wanted):
DT —wetX (15)
DY — et X (16)
B — (17)

non-photonic (unwanted):
K — mev (18)

(GEANT)

p,w,p —ete” (19)

m,; scaling of measured 7° spectra
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32 PHENIX — non-photonic single electrons
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32 PHENIX — non-photonic single electrons

PHENIX PRL94, 082301 (2005)
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32 PHENIX — non-photonic single electrons

i
o o

(1/2mp;)dN/dp dy [(c/GeV) ]

PHENIX PRL94, 082301 (2005)
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& 06 A T T Zo p+patls=200GeV  10.25
5 FY @ .
S 05— % 4 n n 0.2
S =il - | | ]
S
© E L] VY-
0.3 - = .
CLJ .
02 E0.1
0.1 —0.05
0 :l l L L L ‘ L L L ‘ L L L ‘ L L L ‘ L L L ‘ L L L :8
0 200 400 600 800 1000 1200

N

coll

Believed to come from open heavy
flavor decays, non-photonic electrons
do not show high p; suppression: the
spectra scale with binary collisions.
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33 Future of charm: STAR Heavy Flavor Tracker
e charm production for J/W signature
e cClarify charm Raa Sstory

e clliptic flow of D mesons — is flow partonic 7 is ¢ part of it 7

D Decay
Detail

o* CM Frame
, Detail
I

ct < 100 — 300um. Reduce combinatorics by vertex-finding. 10 pum resolution.
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34 Azimuthal asymmetry — flow

(z,y) anisotropy — rescattering —
(pz, py) a@nisotropy
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34 Azimuthal asymmetry — flow

(z,y) anisotropy — rescattering —
(pz, py) a@nisotropy

d>N 1 d?N

d3p 27 pi dp: dy v mzl 20 cos[m(¢ — Wr)l} (20)

e flow starts early — perhaps before hydro is applicable (stopping stage)
e testifies to equilibration

e sensitive to pressure and density gradients

e flow is a multiparticle effect; there is “non-flow”
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35 Directed flow — Importance of impact vector
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35 Directed flow — Importance of impact vector

d3N 1 d* N
d3p C2m pt dpt dy

{1+ Z 20 cos[m(¢p — U,)]} (21)

for vy, need to know 0 < V,. < 27
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35 Directed flow — Importance of impact vector

d#*N 1 d*N
d3p 2w p; dp: dy

{1+ 2vm, coslm(p — U,)]} (21)

for v1, need to know 0 < VU, < 27
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35 Directed flow — Importance of impact vector

BN 1 d®N
d3p 2 e dpy dy

{1+ 2vm, coslm(p — U,)]} (21)

for v1, need to know 0 < VU, < 27

AT oW

need to be able to distinguish the two !

336



36 Directed flow — STAR ZDC SMD

37



36 Directed flow — STAR ZDC SMD
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36 Directed flow — STAR ZDC SMD

Aluminum box to support the
phototube and cable
interconnects. Side and end
/ views are shown.

1
o a
PMT "M18"

SMD WLS fibers

SMD scintillator

544, 5

EDC

230 %

F11.0

7 vertical and 8 horizontal SMD slats at 1/3 of ZDC depth measure transverse
asymmetry of spectator neutrons
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36 Directed flow — STAR ZDC SMD

To be added §

L L]
-------------
'

16 clear fibers (PMT to LED)

™
-"‘--

7 bundles (x3 WLS fibers)

!'-.

21 WLS fibers (BCF-91)

*
-"‘
ot

21 scintillator strips
(180x5x5mm™**3 ea)

-
-"'
-®

e ecffort spearheaded by Kent people

e besides flow, contributes to strangelet search, UPC and spin physics
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37 Directed flow
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37 Directed flow

TR e er

ZDC
SMD
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37 Directed flow

’a t T | T T T T | T T T T | T T T T | T T T T | T T T T :
e\/ 2 = { beam fragments |
- _F | (ZDC SMD) m
> 1 s E antiflow
0 m S S 2 ; L“ TJJ .
E L R ﬁ% ? LT 5
_1:_ e - i|—’—| _:
_2;_ TJF _;
_a- STAR PRC 73 (2006) 034903 | E
m Yr STAR:\sy, =62 GeV P"g? g
_4:_ STAR: s, = 200 GeV wﬁ%
-5 o  NA49:\s,,=17.2 GeV — __p.n N oo
- | | | | | ] A= |PX |/ |swp
in -

|
m -

4 -3 2 1 o +S§h+

r] (Or y) - ybeam
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37 Directed flow

v, (%)

Charged-particles v; from 3-particle cumulants in the projectile frame.

STAR PRC 73 (2006) 034903 .

i T | T T T T | T T T T | T T T T | T T T T | T T T T :

2 - } beam fragments |
1F ) (ZDC SMD) E
- T =

O <A ‘ T * oS L Sy

R ey eI :
-1 2y sl F iﬂ L =
2 zi E

- Yr STAR:\sy, =62 GeV "'”P;q
~4F- $rc
- STAR: s, = 200 GeV P;A&; =
-5 o NA49: s, =17.2GeV =
— :I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 :
6 | | | | |
-5 -4 -3 -2 -1 0

r] (Or y) - ybeam

e monotonic around midrapidity
e Supports limiting fragmentation

e Antiflow !
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38 Elliptic flow and hydro fluidity
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38 Elliptic flow and hydro fluidity

w TTTT | TTTT | TTTT TTTT TTTT TTTT T
W .25+ -
N - -

>
0.2

0.15r

0.1~

0.051- ] E877 i
i NA49 i

H H

* STAR

_0.05_IlllllllllIIII|IIII|IIII'|’IIII|I_

O 5 10 15 20 25 30
dN/dy 1/S (fm ™)

STAR PRC66 (2002) 034904
(cumulant v3). Hydro limits by
Kolb, Sollfrank, Heinz, PRC62

(2000) 054909.
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38 Elliptic flow and hydro fluidity

@ 0.25_— 7
0.2
0.15r

0.1~

0.051- ] E877 i
i NA49 i

H H

* STAR

_0.0S_IIII|IIII|IIII|IIII|IIII'|’IIII|I_
O 5 10 15 20 25 30

dN/dy 1/S (fm ™)

STAR PRC66 (2002) 034904
(cumulant v3). Hydro limits by
Kolb, Sollfrank, Heinz, PRC62
(2000) 0549009.

vy 1S a response to excentricity
e = (y* —z?)/(y? + z?)

i o e e — el —
_h- p—

| e e
%o
-‘
I

L/

low viscosity <= high
cross-sections | "sQGP”.
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39 Elliptic flow and quark coalescence

Po‘lynomlaI‘Flt |
STAR fp;,ﬁ% # + + .+
< 0.05 |— $. —
> é’ O T+ O p+p
%3. AK° ® N+A\
A‘% S
‘@ A KH+K™
ol AT K :
| > 1 |
% STAR PRC 72 (2005) 014904
E 15— 0 -
3 O E \
+— | ””A DA ‘ 77777777777 A ]
CDG 1 ‘@P\ {.).QNXO‘. % + \ + (
05— +¢ —
0 | 1 2

p,/n (GeVic)

C;_]; x 1+ 2vs cos(2¢)  (22)

ch;;m,n (p0) o ( de <¢%>>
(23)

(1 4+ 2v2 cos(2¢))" = (24)
1 + 2van cos(2¢) + O(v3)

STAR AuAu 200 GeV minbas; n is number of constituent quarks. Expect
universality if quark coalescence dominates hadronization after the universal
flow sets in. Valid at p:/n > 0.6 GeV/c for K% K* p,p,A,A.
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40 Local hadron density fluctuations and Discrete Wavelet
Transform (DWT)
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40 Local hadron density fluctuations and Discrete Wavelet
Transform (DWT)

Fvi\z,l,k
directional modes of sensitivity (\), track density p(n, ¢, p:), locations in
2D (I,k). DWT iIs an expansion in this basis.

N e P S B
- p A

(¢,m)—Haar wavelet orthonormal basis in (¢,7). scale fineness (m),
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40 Local hadron density fluctuations and Discrete Wavelet
Transform (DWT)

N 5
0 A9
A AA

,n)—Haar wavelet orthonormal basis in (¢,n). scale fineness (m),

(¢

directional modes of sensitivity (\), track density p(n, ¢, p:), locations in

2D (I,k). DWT iIs an expansion in this basis.
Power of local fluctuations, mode A:

N

A
Fm,l,k

P*(m) = 27" Z(Pa Fr/,\@,l,k>2 (25)
Lk
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40 Local hadron density fluctuations and Discrete Wavelet
Transform (DWT)

N 5
0 A9
A AA

,n)—Haar wavelet orthonormal basis in (¢,n). scale fineness (m),

(¢

directional modes of sensitivity (\), track density p(n, ¢, p:), locations in

2D (I,k). DWT iIs an expansion in this basis.
Power of local fluctuations, mode A:

N

A
Fm,l,k

P*(m) = 27" Z(Pa Fr/,\@,l,k>2 (25)
l,k
“dynamic texture' :

P(i\yn (m) = Ptiue (m) o Pri\nx(m) (26)
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40 Local hadron density fluctuations and Discrete Wavelet
Transform (DWT)

E2 k(qb 77) Haar wavelet orthonormal basis in (¢,7n). scale fineness (m),
directional modes of sensitivity (\), track density p(n, ¢, p:), locations in

2D (I,k). DWT iIs an expansion in this basis.
Power of local fluctuations, mode A:

P*(m) = 27" Z(Pa Fr/,\@,l,k>2 (25)
“dynamic texture’: |
P(;\yn( ) Pt?ue( ) Pri\nx( ) (26)
Normalized:
dyn( )/ mlx( )/n(pt) (27)
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41 Longitudinal minijet broadening — wavelet-based
technique

_,  STARPRC71 (2005) 031901 (R)

X lo T T TTT ‘ T T T T TTI ‘ l T T T T TTT
0.1 ne mode “|ih @ mode ;'t | n mode B
- - on=1 rl] dn=1/2 C ] don=1 |
5 - O¢ETT C |l d@=TY2 r|ll o=t |
£ i o Il
o
-% {
o : / l
/I 0 //
| | | 1 11 H‘ | | \’#
1 1

10 1 1

1
p, (GeVic)

Central events: normalized dynamic texture for fineness scales m = 0,1,0 from
left to right panels, respectively, as a function of p;. ® STAR data; solid line —
Hijing without jet quenching; dashed line — Hijing with quenching; O peripheral
STAR data renormalized to compare.
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42 Longitudinal minijet broadening — traditional technique

r(P1,P2) = psiv(P1, D2)/ Pmiz (D1, D2)- (28)
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42

’r(ﬁlaﬁQ) —

— 5 — 5
B B
=2 =2
pd % : Z (1)
1= -1=,
-2-5. 2.
-3 -3
-4 -4
\% \Y4
2 -2 < 2 -2 <
gDA 0 % 0

—~ 6 VE - Y \\\\\\\\\ —~ 6
— 5 AN adiS =5
X U <E
=3 /) \\‘:‘v‘\\\\\ :p\, =3
=5 zi

x| Aa =

-3 5

-4 4

Qv
2 -2 2 -2
o, 0 @, 0

Longitudinal minijet broadening — traditional technique

= psib(D1, P2)/ Pmix (D1, D2)-

Two-particle charge-idependent joint
correlations N(# —1) on (na = n1 — 12,
Oa = ¢1 — ¢o) for central (a) to
peripheral (d) collisions.
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43 Connecting DWT and two-point correlation measures
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43 Connecting DWT and two-point correlation measures

autocorrelation

X(t)

Atp) = XOX(t *tp)

t t+tA
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43 Connecting DWT and two-point correlation measures

autocorrelation

X (t)

A(tA) = X(t)X(t +tA)

t t+tA
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43 Connecting DWT and two-point correlation measures

autocorrelation

X (t)

A(tA) = X(t)X(t +tA)

t t+tA

P(m) = /OO X(ta/2) X (—ta/2)W (ta, m) dta, (29)
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43 Connecting DWT and two-point correlation measures

autocorrelation

X (t)

A(tA) = X(t)X(t +tA)

o

t t+tA

P(m) differentiates correlation on
scale m. Minijet elongation =
correlation broadening < reduced
correlation gradient < reduced
“texture”

P(m) — /OO X(tA/2)X(—tA/2)W(tA,m) dta, (29)
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44 Future of wavelet correlations: Kent — P.N.Lebedev —
MEPhAI project

prevre Dremin et al.,
Phys.Lett.B499:97-103,2001.
Emulsion plates exposed at
SPS.

;,, ; Top image — DW'T —

\ . ',j; suppress certain scales —
inverse DWT — bottom
image.

Rings of Cherenkov gluons ?
Could determine " dielectric
permeability” of QCD matter
at RHIC.
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45 Resonances in hadronic matter

Markert, Torrieri, Rafelski, Campos do Jordao 2002
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45 Resonances in hadronic matter

Detector

K*(892) — nt + K~
T (30)
Gas K*°(892) -~ + K™
(31)
A(1520) — p+ K~ (32)

Pre—Hadronic state

Markert, Torrieri, Rafelski, Campos do Jordao 2002
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45 Resonances in hadronic matter

Detector

K*(892) — nt + K~
T (30)
Gas K*°(892) -~ + K™
(31)
A(1520) — p+ K~ (32)

Pre—Hadronic state

| m=3E*-(=p)°
Markert, Torrieri, Rafelski, Campos do Jordao 2002
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45 Resonances in

Detector

hadronic matter

Detector

K*(892) — " + K~

Interacting
Hadron
Gas

I . In-medim (3 O)

nteracting rescattering

g::ron \K K*O(892> — 1T + K+
(31)

Pre—Hadronic state

m=3E*-(=p)°

Pre—Hadronic state

A(1520) — p+ K~ (32)

Markert, Torrieri, Rafelski, Campos do Jordao 2002
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45 Resonances in

Detector

hadronic matter

Detector

K*(892) — " + K~

Interacting
Hadron
Gas

I . In-medim (3 O)

nteracting rescattering

g::ron \K K*0(892> — 1T + K+
(31)

Pre—Hadronic state

m=3E*~(=p)°

Pre—Hadronic state

A(1520) — p+ K~ (32)

S SR

m=3E’~(Zp)’

Markert, Torrieri, Rafelski, Campos do Jordao 2002
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46 Resonances in hadronic matter

o 24r¢
S 5o \Syy =200 GeV ® K*K x2.9 [0 %
S 2 *x ¥\ x3.5 21 o
2 180 B AYA x108 || g | O
= 1.65 Au+Au ®/K x8.1 G§)
S . F p+ | e
E 1.4 PTP [ X { [ [ —
@ -
e Y2 Ll | | I
g 1:— J ............................................ [ ......
2 08F $ +. ‘ ==
L o6 +

0.4 +

— .....
0.2F
O: Lol | | | L | |

~0 100 200 300 400 500 600 700
dN,, /dy

STAR PRL 97, 132301 (2006): a thermal model with rescattering. Can use
models to put limits on the system evolution time.
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47 QGP: physical reality or a justifiable ansatz?
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47 QGP: physical reality or a justifiable ansatz?
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47 QGP: physical reality or a justifiable ansatz?

want

large
acceptance
to study
collective
effects

and
correlations

identify many particle IDs

including leptons and gamma
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jets

photonic HBT

dileptons | direct photons
high pt
syppression
HBT puzzle
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asymmetry

physics is in hadrons,
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48 So what happened at RHIC 7?7 Conclusions so far:

identify many particle IDs including leptons and gamma

| photonic HBT \'
want dileptons | direct photons | /| can
large sacrifice
acceptance acceptance
to study to ierro¥e
i - quality o
gg‘gifs“ve high pt particle ID
: and

and — syppression [ 770
correlations mini- -

. . HBT puzzle

jets azimuthal

asymmetry

physics is in hadrons, rare =irrelevant
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identify many particle IDs including leptons and gamma

| photonic HBT \'
want dileptons | direct photons | /| can
large sacrifice
acceptance acceptance
to study to ir:jprO\f/e
i - quality o
gg‘gifs“ve high pt particle ID
: and

and — syppression [ 770
correlations mini- -

. . HBT puzzle

jets azimuthal

asymmetry

physics is in hadrons, rare =irrelevant

e first phase of the campaign: unexpectedly, a lot of action is taking place
on the South-Western front!
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identify many particle IDs including leptons and gamma

| photonic HBT \'
want dileptons | direct photons | /| can
large sacrifice
acceptance acceptance
to study to ir:jprO\f/e
i - quality o
gg‘gifs“ve high pt particle ID
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and — syppression [ 770
correlations mini- -

. . HBT puzzle

jets azimuthal

asymmetry

physics is in hadrons, rare =irrelevant

e first phase of the campaign: unexpectedly, a lot of action is taking place
on the South-Western front! (of minimum-bias hadronic correlations)
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48 So what happened at RHIC 7?7 Conclusions so far:

identify many particle IDs including leptons and gamma

| photonic HBT \'
want dileptons | direct photons | /| can
large sacrifice
acceptance acceptance
to study to ir:jprO\f/e
i - quality o
gg‘gifs“ve high pt particle ID
: and

and — syppression [ 770
correlations mini- -

. ] BT puzzle

jets azimuthal

asymmetry

physics is in hadrons, rare =irrelevant

e first phase of the campaign: unexpectedly, a lot of action is taking place
on the South-Western front! (of minimum-bias hadronic correlations)

e QGP as a theory ansatz may have been justified by the data

490



48 So what happened at RHIC 7?7 Conclusions so far:

want
large
accept

to study

collect
effects
and

correlations

identify many particle IDs including leptons and gamma

ance

ive

mini-
jets

| photonic HBT

dileptons

direct photons

Sl
o

high pt
ppression

’LI

D
D

puzzle

azimuthal
asymmetry

can

sacrifice
acceptance

to improve
quality of
particle ID
and
tracking

physics is in hadrons, rare =irrelevant

e first phase of the campaign: unexpectedly, a lot of action is taking place

on the South-Western front!

(of minimum-bias hadronic correlations)

e QGP as a theory ansatz may have been justified by the data

e to elevate QGP to the status of a discovered physical reality, need to
demonstrate uniqueness of the interpretations, embrace full gamut of the
phenomena, avoid " confirmation bias” .
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