Correlation structure of STAR events

CINPP, Kolkata, India.

Mikhail Kopytine for the STAR Collaboration

Kent State University
http://www.star.bnl.gov/~kopytin/

February 4, 2005

STAR Detector

1 Content of the talk

- Equilibration

Arguably the central issue of RHIC hadronic physics. Is it taking place ? What is the mechanism ? And what is equilibrating ?

- Methods

Initial state: a "calibrated" source of correlations. Watch their evolution into final state in time $=$ system size.

- Direct construction of a correlation function.
- Inversion of scale-dependent variance
- Discrete Wavelet Transform
- Observations
- Conclusions

2 Autocorrelation

$$
\binom{x_{1}}{x_{2}} \rightarrow\binom{x_{\Sigma} \equiv x_{1}+x_{2}}{x_{\Delta} \equiv x_{1}-x_{2}}
$$

always a lossless transformation of data. Autocorrelation A is a projection of a two-point distribution onto difference variable(s) x_{Δ}, lossless for x_{Σ}-invariant (homogenous, stationary) problems.

$$
\Delta R\left(x_{1}, x_{2}\right)=\frac{\rho\left(x_{1}, x_{2}\right)}{\rho_{\mathrm{ref}}\left(x_{1}, x_{2}\right)}-1
$$

3 Uncorrelated event reference for DWT

mixed events: no pixel used twice; ≤ 1 pixel from any event in the same mixed event; no mixing of events with largely different multiplicity and vertex.

true

mixed

4 Local hadron density fluctuations and Discrete Wavelet Transform (DWT)

$F_{m, l, k}^{\lambda}(\phi, \eta)$-Haar wavelet orthonormal basis in (ϕ, η). scale fineness (m), directional modes of sensitivity (λ), track density $\rho\left(\eta, \phi, p_{t}\right)$, locations in 2D (l, k). DWT is an expansion in this basis.
Power of local fluctuations, mode λ :

$$
\begin{equation*}
P^{\lambda}(m)=2^{-2 m} \sum_{l, k}\left\langle\rho, F_{m, l, k}^{\lambda}\right\rangle^{2} \tag{1}
\end{equation*}
$$

"dynamic texture":

Normalized:

$$
\begin{equation*}
P_{\mathrm{dyn}}^{\lambda}(m) \equiv P_{\mathrm{true}}^{\lambda}(m)-P_{\mathrm{mix}}^{\lambda}(m) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
P_{\mathrm{dyn}}^{\lambda}(m) / P_{\text {mix }}^{\lambda}(m) / n\left(p_{t}\right) \tag{3}
\end{equation*}
$$

5 A flow-like example

Elliptic flow-inspired example: x axis - an angle in "natural units" $(2 \pi=1), y$ axis multiplicity. The multiresolution theorem: a4
$=\mathrm{a} 0+\mathrm{b} 0+\mathrm{b} 1+\mathrm{b} 2+\mathrm{b} 3$, can have better fineness.

6 Example of a DWT power spectrum

Power spectrum of that flow event as a function of "fineness" m. The dominant contrubution is $m=1$ (the " v_{2} " harmonic, b1). Statistical fluctuations also contribute.
$P(m)=2^{-m} \sum_{i}\left\langle\rho, F_{m, i}\right\rangle^{2}$.
Computational complexity $O(N)$!

7 "Dynamic texture" as a nonparametric measure of the correlation shape

8 "Dynamic texture" p_{t} dependence: peripheral events, $\sqrt{s_{N N}}=200 \mathbf{G e V}$

Peripheral (60-84\%) events: normalized dynamic texture for fineness scales $m=0,1,0$ from left to right panels, respectively, as a function of p_{t}. - - STAR data; solid line standard HIJING, dash-dotted line - HIJING without jets.
Qualitative trends in peripheral data are as expected. What signal to expect in the central data, if correlation does not change ?

$$
\begin{equation*}
\left.\left(\frac{P_{\text {true }}}{P_{\text {mix }}}-1\right) \frac{1}{N}\right|_{\text {centr }}=\left.\left(\frac{P_{\text {true }}}{P_{\text {mix }}}-1\right)\right|_{\text {periph }} \frac{1}{N_{\text {centr }}} \tag{4}
\end{equation*}
$$

9 Longitudinal minijet broadening: DWT data

Central (top 4\%) events: normalized dynamic texture for fineness scales $m=0,1,0$ from left to right panels, respectively, as a function of p_{t}.

- STAR data; solid line - Hijing without jet quenching; dashed line Hijing with quenching; \square peripheral STAR data renormalized to compare. Minijet elongation \Rightarrow correlation broadening \Leftrightarrow reduced correlation gradient \Leftrightarrow reduced "texture"

10 "Dynamic texture" response

Dynamic texture response in various idealized situations (showing only one scale):
(a) events of random (uncorrelated) particles
(b) p_{t}-independent elliptic flow
(c) Correlations at Iow $Q_{\text {inv }}$ (Bose-Einstein correlations and Coulomb effect)
(d) HIJING jets

11 Longitudinal minijet broadening: correlation data

 Projections of $\left.\bar{N}\left[\rho\left(\eta_{\Delta}, \phi_{\Delta}\right) / \rho\left(\eta_{\Delta}, \phi_{\Delta}\right)_{\text {ref }}-1\right]\right|_{C I}$ on x_{Δ} which is ϕ_{Δ} (Δ) or η_{Δ} () . v_{1} and v_{2} are subtracted.

12 Longitudinal minijet broadening: centrality dependence

13 Charge-dependent correlations $=$ Like sign - Unlike sign

The driving physics: charge conservation in hadronization. Suppress short range correlations - BEC and conversion $e^{+} e^{-}$- by a kinematic pair cut. The $\bar{N} \times$ is good when number of correlation sources $\propto N$.

14 Modified hadronization geometry ?

(d)

(c)

(b)

Projections of $\left.\bar{N}\left(\rho\left(\eta_{\Delta}, \phi_{\Delta}\right) / \rho\left(\eta_{\Delta}, \phi_{\Delta}\right)_{\text {ref }}-1\right)\right|_{C D}$ on x_{Δ} which is $\phi_{\Delta}(\Delta)$ or $\eta_{\Delta}(\bullet) . \eta-\phi$ width disparity (d, peripheral) is gone in (a) \Rightarrow transition from (string) 1D to bulk (>2D) fragmentation symmetrizes η and ϕ.

15 Number and p_{t} correlations

This p_{t} field may have elliptic flow (number effect). Abounds at RHIC.

Also elliptic... flow (p_{t} effect) ! Pro: blast wave fits. Is there a direct measurement?

16 Towards p_{t} correlation/fluctuation analysis

Problem: need to tell apart $p_{t, i}$ and number contributions to the $p_{t} \equiv \sum_{i \in(\eta, \phi) \text { bin }} p_{t, i} \Rightarrow$ can extract the p_{t} correlation alone.

Solution: use $p_{t}-n \hat{p_{t}}$
$\mathrm{Q}:$ When is the n-contribution into $\operatorname{Var}\left[p_{t}-n \hat{p_{t}}\right]$ canceled ?

$$
\begin{equation*}
\sigma^{2}\left(p_{t}: n\right) \equiv \operatorname{Var}\left[p_{t}-n \hat{p_{t}}\right]=\operatorname{Var}\left[p_{t}\right]+{\hat{p_{t}}}^{2} \operatorname{Var}[n]-2 \hat{p_{t}} \operatorname{Cov}\left[n, p_{t}\right] \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Var}\left[p_{t}\right]=\operatorname{Var}\left[\sum_{i}^{n} p_{t, i}\right]=\operatorname{Var}\left[\sum_{i}^{n}\left(\hat{p_{t}}+u_{i}\right)\right]={\hat{p_{t}}}^{2} \operatorname{Var}[n]+\operatorname{Var}[u]+2 \hat{p_{t}} \operatorname{Cov}[n, u] \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Cov}\left[n, p_{t}\right]=\overline{n p_{t}}-\bar{n} \overline{p_{t}}=\hat{p_{t}} \operatorname{Var}[n] \tag{7}
\end{equation*}
$$

A:For independent p_{t} and n production, when $\operatorname{Cov}[n, u] \equiv \overline{n u}=0$, where $u \equiv \sum_{i}^{n} u_{i}, u_{i}=p_{t, i}-\hat{p_{t}}$.

17 Get correlations from fluctuations

Extract correlation structure of random field X from the scale dependence of variance (van Marcke "Random Fields" MIT 1983;
Trainor,Porter,Prindle hep-ph/0410180)

$$
\begin{align*}
\operatorname{Var}[X ; \delta \eta, \delta \phi]= & \int_{-\delta \eta / 2}^{\delta \eta / 2} d \eta_{1} \int_{-\delta \phi / 2}^{\delta \phi / 2} d \phi_{1} \int_{-\delta \eta / 2}^{\delta \eta / 2} d \eta_{2} \int_{-\delta \phi / 2}^{\delta \phi / 2} d \phi_{2} \tag{8}\\
& \times\left[\overline{X\left(\eta_{1}, \phi_{1}\right) X\left(\eta_{2}, \phi_{2}\right)}-\overline{X\left(\eta_{1}, \phi_{1}\right)} \times \overline{X\left(\eta_{2}, \phi_{2}\right)}\right]
\end{align*}
$$

Compare with uncorrelated reference; recognize autocorrelation $\rho\left(X, t_{\Delta}\right) \equiv \overline{X(t) X\left(t+t_{\Delta}\right)}$ (t-average).

$$
\begin{equation*}
\Delta \sigma^{2}(X, \delta \eta, \delta \phi)= \tag{9}
\end{equation*}
$$

$$
\begin{array}{r}
\int_{-\delta \eta / 2}^{\delta \eta / 2} d \eta_{1} \int_{-\delta \phi / 2}^{\delta \phi / 2} d \phi_{1} \int_{-\delta \eta / 2}^{\delta \eta / 2} d \eta_{2} \int_{-\delta \phi / 2}^{\delta \phi / 2} d \phi_{2} \Delta \rho\left(X, \eta_{1}-\eta_{2}, \phi_{1}-\phi_{2}\right) \\
\quad=2 \int_{0}^{\delta \eta} d \eta_{\Delta} 2 \int_{0}^{\delta \phi} d \phi_{\Delta}\left(\delta \eta-\eta_{\Delta}\right)\left(\delta \phi-\phi_{\Delta}\right) \Delta \rho\left(X, \eta_{\Delta}, \phi_{\Delta}\right) \tag{11}
\end{array}
$$

18 The actual analysis is discrete: $\int \rightarrow \sum$

kernel K :

$$
\begin{equation*}
\left(\delta \eta-\eta_{\Delta}\right)\left(\delta \phi-\phi_{\Delta}\right) \rightarrow \varepsilon_{\eta} \varepsilon_{\phi} K_{m_{\delta} n_{\delta}: k l} \equiv \varepsilon_{\eta} \varepsilon_{\phi}\left(m_{\delta}-k+\frac{1}{2}\right)\left(n_{\delta}-l+\frac{1}{2}\right) \tag{12}
\end{equation*}
$$

reference density $\rho_{\text {ref }}$ makes a per-particle measure:

$$
\begin{gather*}
\rho_{\mathrm{ref}} \propto \bar{n}^{2} \Rightarrow \frac{1}{\sqrt{\rho_{\mathrm{ref}}}} \propto \frac{1}{\bar{n}} \tag{13}\\
\Delta \sigma_{p_{t}: n}^{2}\left(m_{\delta} \varepsilon_{\eta}, n_{\delta} \varepsilon_{\phi}\right)=4 \sum_{k, l=1}^{m_{\delta}, n_{\delta}} \varepsilon_{\eta} \varepsilon_{\phi} K_{m_{\delta} n_{\delta}: k l} \frac{\Delta \rho\left(p_{t}: n ; k \varepsilon_{\eta}, l \varepsilon_{\phi}\right)}{\sqrt{\rho_{\mathrm{ref}}\left(n ; k \varepsilon_{\eta}, l \varepsilon_{\phi}\right)}} \tag{14}
\end{gather*}
$$

Inverse problem: knowing $\Delta \sigma^{2}$, solve for $\Delta \rho / \sqrt{\rho_{\text {ref }}} \Rightarrow$ save $O(N)$ in CPU time !

$19 p_{t}$ correlations from the inversion

Top:
scale dependence of the "pure" p_{t} variance.

First direct evidence of elliptic flow as a p_{t} blast. Next, subtract the flow contribution to look at minijets.

Bottom:

corresponding
autocorrelation

20 Localized p_{t} correlations: minijets

STAR preliminary

SSTAR
AuAu 200 GeV . In η, correlation broadens with centrality; in ϕ the trend is opposite. The surrounding background seems to recoil.

21 Conclusions

- Semi-hard scattering leaves a trace in the soft p_{t} domain - new at RHIC !
- First direct measurements of p_{t} correlation structure reveal azimuthal anisotropy of p_{t} field \Rightarrow elliptic flow is a velocity phenomenon
- The minijet correlation structure is modified with centrality; the effect appears to "turn on" around $\nu=\left(N_{\text {part }} / 2\right)^{1 / 3} \approx 3$. Broadening of the correlation in η and weakening of $P_{\text {dyn }}^{\eta}$ on the coarse scale are consistent descriptions of the effect. How exactly does the coupling between longitudinal flow and mini-jets work ? What do we learn about the expanding fluid ?
- Increased symmetry of the charge-dependent correlation on (η, ϕ) in the central collisions may point to a change in the hadronization geometry in the medium

22 Extra slides

23 DWT of a photographic image

Reproduced from textbook: I.Daubechies, "Ten lectures on wavelets". The original caption: "A real image, and its wavelet decomposition into three multiresolution layers. On the wavelet components one clearly sees that the $d^{j, v}, d^{j, h}, d^{j, d}$ emphasize, respectively, vertical, horizontal, and diagonal edges. In this figure, the bottom picture has been overexposed to make details in the $d^{j, \lambda}$ more apparent. I would like to thank M.Barlaud for providing this figure." The colored marks are mine.

