Mikhail Kopytin
http://www.star.bnl.gov/~kopytin

Summary of recent I'T-related professional
experience

1. Purpose and scope of this document

This document summarizes my professional experience for the past 5 years, while
being a member of the STAR Collaboration (http://www.star.bnl.gov),
exclusively from the point of view of information technology. Intended readership:
potential employers and recruiters.

2. The "Big Picture"

A few words about computing in modern high energy nuclear/particle physics
experiments (such as STAR) are in order here. A reader familiar with the field can
skip to section 3.

Experiments rely heavily on IT in order to function and produce results.
Experimental information is digitized by electronics at the source and passes a
cascade of computerized processing stages before becoming a series of figures in a
journal publication.

Our computing is storage-intensive. STAR and PHENIX together record up to a
terabyte of data during a day of operation. Tens of petabytes of data are stored
in the HPSS.

Our computing is CPU-intensive. A 10+ teraflop farm of Pentium 4 computers
at BNL and another one at LBL are used.

Users and resources are spread around the world. STAR Collaboration alone
includes over 50 institutions world-wide. The community evolves towards grid
computing.

OOP is an accepted paradigm. The community has embraced ROOT
(http://root.cern.ch) as the framework and C++ as the programming language.

Our computing is largely open source: Linux, gcc, MySQL, Apache, perl.

We develop in teams, often flexibly organized and cross-institutional.



3. My contribution

In the Service Work and Physics Analysis subsections below, the projects are listed in
reverse chronological order.

3.1 Service work

3.1.1 Connection-handling API

The project is in the design phase, with two BNL staff members involved besides
myself. The goal of the project is to move the load-balancing function from the
general database access API (see section 3.1.2) into a separate component, which
will likely involve Web service methodology. I have written (in C++) an XML parser
which selects the subset of services suitable to the user, based on the XML message
describing the user, and an XML description of the services.

3.1.2 An experiment-specific API to MySQL

The project is in the maintenance phase, with two BNL staff members involved
besides myself. I extended the product' s functionality to provide API access to a
particular subset of databases (the "online" databases) with specific requirements of
frequent (up to 1kHz) write access, and provided load balancing among the various
MySQL servers for off-line reading. This required interference in both the database
structure and the C++ code of the API.

3.1.3CVS

I administered transition to CVS code management system for STAR trigger group,
a group with 3-4 active developers, and became a person in charge of that group' s
CVS repository.

3.1.4 Adding an equipment subsystem into a framework

I incorporated a Mortran description of an equipment subsystem into the simulation
framework (GEANT), developed a C++ response simulation for the subsystem and

incorporated it into the analysis framework. The task required extensive
communication with simulation, analysis infrastructure and subsystem experts.

3.2 Physics analysis

In this section, I summarize programming projects necessitated by my personal
research interests.

3.2.1 Two-particle and three-particle correlation analysis



I developed a set of C++ classes to carry out correlation analyses within
StHbtMaker, an extensible polymorphic framework created and used in STAR.

3.2.2 OO0 data aggregation

I developed an infrastructure (perl, C++) to manage parallel processing of analysis
jobs on a farm, with an OO mechanism for aggregating outputs from multiple jobs.
The design features a base class providing STL containers of generic objects and
aggregation methods for objects of the class. I keep reusing it in all subsequent
projects within this problem domain.

3.2.3 Event Generator

I developed a generator of events with built-in two-particle correlations (C++).
The program generates "events" which are sets of order of 10° or fewer particles
whose energy and momenta are randomly sampled from specified distributions,
modulo the constraint of the two-particle correlation function specified by the user.
The program outputs events in a standardized (ROOT-based) binary format.

3.2.4 PointSet

I developed a library of C++ classes to visualize arbitrary X vs Y dependencies (or
sets thereof) in numeric data structured as g-tuples of arbitrary composition. A user
can apply selection criteria along arbitrary dimensions. Graphics relies on ROOT. 1
keep reusing this solution, combining it with a data conversion module specific to
the problem at hand.

3.2.5 Discrete wavelet transform correlation analysis

I developed an application to analyze final STAR data (ROOT trees). Use of discrete
wavelet transform technique makes this O(N) (N -- number of particles in an event)
analysis sensitive to two-particle correlations which usually require pair-sampling O
(N?) algorithms in order to be seen. Implemented in C++.



