# Correlations and fluctuations in STAR

A review with an emphasis on topics under-represented elsewhere...

#### Mikhail Kopytine for the STAR Collaboration Kent State University

Hot and Dense Matter in the RHIC-LHC Era, Tata Institute of Fundamental Research, Mumbai

Mikhail Kopytine, STAR, Mumbai 2008

1

## Content

Two-particle correlations: axial and transverse collectivity, femtoscopy challenge
Three-particle correlations: gluon radiation, strong P- and CP-breaking

## Introduction



Relativistic kinetics – relaxation space/time scales, approach to equilibrium

> Relativistic hydro – locally equilibrated chunks of matter

need advanced studies including bottom-up correlation approaches

spectra, flow, HBT

Classical thermo"dynamics" -timeless – global equilibrium

particle yields, spectra

#### STAR HBT in light systems: p+p, d+Au



•m<sub>t</sub> trend is usually
explained by
coordinate-momentum
(r,p) correlation
•(r,p) correlation in the
final state can be
caused by a "blast
wave" (Hubble-like)
expansion

Mikhail Kopytine, Kent State, 10/2007



## STAR HBT in light systems: d+Au



- •"non-femtoscopic" (outside the HBT bump area)
- Q-anisotropic (not a simple vertical offset)seen by others (NA22, OPAL)
- •does it affect femtoscopy?

#### Spherical harmonic analysis of Q-anisotropy



A complete, formal, model-independent description of a CF in the popular basis:

$$A_{l,m}(|\vec{Q}|) = \frac{\Delta_{\cos\theta} \Delta_{\varphi}}{\sqrt{4\pi}} \sum_{i}^{all.\,bins} Y_{l,m}(\theta_i, \varphi_i) C(|\vec{Q}|, \cos\theta_i, \varphi_i)$$

Respect pair-permutation symmetry:  $\phi \rightarrow \phi + \pi \Rightarrow no \ odd \ m; \ \theta \rightarrow \pi - \theta \Rightarrow no \ odd \ I$ 

Not easy to selectively suppress harmonics; anisotropy decreases with multiplicity



Mikhail Kopytine, Kent State, 10/2007

Energy-Momentum-Conservation-Induced Correlation: EMCIC

GENBOD: EMCIC on a global event scale

Chajecki, Lisa (WPCF'06) approximate phase-spacebased event generator GENBOD with an analytical expression based on the CLT – not quite the data trends



Mikhail Kopytine, Kent State, 10/2007

## Non-identical particle correlations: Coulomb-based femtoscopy



- Final state interaction: A weak, B -strong
- Discriminate I and II by sign of k\*<sub>out</sub>, C=C(|k\*|)
- C(I)/C(II) not 1 => A and B have different weights for I and II
- flow=>AI,BII

Mikhail Kopytine, STAR, Mumbai 2008



Mikhail Kopytine, STAR, Mumbai 2008

## Soft and hard components in pp



Mikhail Kopytine, STAR, Mumbai 2008



Mikhail Kopytine, STAR, Mumbai 2008

#### Anomalous centrality variation of the Au+Au axial correlation peak

binary collisions per participant pair grows with centrality



Mikhail Kopytine, STAR, Mumbai 2008



A common trend transition around 10 GeV in azimuthal and HBT correlations – a coincidence? Hydro-style transverse expansion or minijettiness would both reduce homogeneity lengths



Mikhail Kopytine, STAR, Mumbai 2008

#### However...



...transverse collectivity has to originate (stay?) on a low level for such scaling of HBT radii to work – binary collisions level? Hard to reconcile the **lack of system dependency** with bulk collectivity (hydro)



#### Are there clashes of interpretations? Or just a co-existence of different level concepts

(mini) jets velativistic hydro – (mini) jets velativistic hydro – (mini) jets locally equilibrated chunks of matter ime and experimental and experimen Relativistic kinetics – Proving these inadequate - a matter of time and experimental accurate for a long time.

need advanced studies including bottom-up correlation approaches

> spectra, flow, HBT... Bubbles?!

> > particle yields, spectra

## Strong P-symmetry breaking ?

Does not break QCD! Topological charge (gluonic field winding number) fluctuates, possibly creating P-odd domains in HIC

+++



+++



Topological charge animation by Derek Leinweber

$$dN_{\pm}/d\phi \propto (1 + 2a_{\pm}\sin(\phi - \Psi_{RP}))$$

measure charge separation along the orbital momentum

$$\langle \cos(\phi_a + \phi_\beta - 2\phi_c) \rangle = \langle \cos(\phi_a + \phi_\beta - 2\Psi_{RP}) \rangle v_{2,c}$$



Mikhail Kopytine, STAR, Mumbai 2008

#### Search for conical emission associated with hard scattering

Mach cone or Cherenkov gluon "rings" would look similar. 3particle cumulant technique relies on subtraction of 2-particle correlations (cumulants).



C.Pruneau PRC 74, 064910 (2006)



 $C_{3} = \kappa_{3}^{(123)} = \rho_{3}^{(123)} - \rho_{2}^{(12)} \rho_{1}^{(3)} - \rho_{2}^{(13)} \rho_{1}^{(2)} - \rho_{2}^{(23)} \rho_{1}^{(1)} + 2\rho_{1}^{(1)} \rho_{1}^{(2)} \rho_{1}^{(3)}$ 

Mikhail Kopytine, STAR, Mumbai 2008



•C<sub>3</sub> structure depends on the subtraction of  $v_2v_2v_4$  term

 ${\scriptstyle \bullet} For \mbox{ measured } v_{_2},$  no conclusive evidence of conical emission from this method

 $\cdot C_{3}$  consistent with jet deflection



## Summary:

•HBT needs a treatment of non-femtoscopic correlations – work in progress
•Femtoscopic signal of transverse collectivity seen in d+Au

- •Transverse collectivity seems minijet-driven will hydro be out of vogue?
- •A sharp increase in minijet peak population at 2.4 particles/fm<sup>2</sup>/unit  $\Delta \eta$  seen
- •Minijet peak properties scale with transverse density of produced particles
- •QCD-related P-violation in Au+Au an intriguing interpretation of a 3-particle correlation signal
- •Mach cones or Cherenkov gluons no conclusive evidence from cumulants; jet deflection is seen