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The STAR Detector
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Just like with water, QCD has it’s own phase diagram, 
which plots temperature vs net baryon density
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Highlights of the 1st decade of AA collisions in STAR
๏ Strong Elliptic Flow

๏ Collective flow of created matter
๏ Constituent quark number degrees 

of freedom apparent in scaling laws 
of elliptic flow

๏ Particle production through 
recombination/coalescence 
dominates over fragmentation at 
medium pT

๏ Exotic particles
๏ First observations of 3ΛH and 4He

๏ Jet quenching
๏ Energy loss of high-pT partons 

traversing the hot and dense matter
๏ Gluon saturation at small-x?

๏ Tantalising hints of saturation 
phenomena in d+A collisions
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Jet quenching in A+A collisions

๏ Jet-finding is relatively straight-forward in low-
multiplicity p+p collisions

๏ How do we do this in high-multiplicity A+A collisions?
6

Central Au+Au Event
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How to measure high-pT processes
๏ Single particle spectra

7

RAA(pT ) =
Y ield(A + A)

Y ield(p + p)� < Ncoll >

RAA(pT) = Nuclear Modification Factor

๏ 2-particle correlations
๏ Measure 

correlations of high-
pT hadrons in 
azimuth in lieu of jet-
finding in high-
multiplicity 
environments
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STAR

Suppression of inclusive hadron yield at high pT
๏ Good quality measurements of single particle 

spectra as a function of collision centrality
๏ Increasing suppression as the A+A centrality 

increases
๏ They appear to traverse dense opaque matter

8

energy
loss

pQCD + Shadowing + Cronin

pQCD + Shadowing + Cronin + Energy Loss
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Suppression of 2-particle correlations
Back-to-back high-pT hadrons are 
clearly seen in peripheral collisions.

Peripheral
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Suppression of 2-particle correlations
Back-to-back high-pT hadrons are 
clearly seen in peripheral collisions.

Peripheral

Central

Find an absence of back-to-back hadrons 
in central collisions
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Jet suppression: final or initial state effect?
๏ In d+Au collisions, deconfinement is not expected

๏ Measure correlations in d+Au collisions to determine if this is 
an initial or a final state effect
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STAR

Jet suppression: final or initial state effect?
๏ In d+Au collisions, deconfinement is not expected

๏ Measure correlations in d+Au collisions to determine if this is 
an initial or a final state effect

๏ No suppression is observed in d+Au collisions at mid-rapidity 
at RHIC
๏ Jet suppression a final state effect?

10
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Highlights of the 1st decade of AA collisions in STAR
๏ Strong Elliptic Flow

๏ Collective flow of created matter
๏ Constituent quark number degrees 

of freedom apparent in scaling laws 
of elliptic flow

๏ Particle production through 
recombination/coalescence 
dominates over fragmentation at 
medium pT

๏ Exotic particles
๏ First observations of 3ΛH and 4He

๏ Jet quenching
๏ Energy loss of high-pT partons 

traversing the hot and dense matter
๏ Gluon saturation at small-x?

๏ Tantalising hints of saturation 
phenomena in d+A collisions
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⇐ these and comparisons to 
models led to the “perfect fluid” 

hypothesis
Paradigm shift: 

strongly coupled QGP = sQGP



STAR

Saturation at RHIC: correlations at forward rapidities
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Saturation at RHIC: correlations at forward rapidities

12

p+p d+Au central

Model: Nucl.Phys.A796:41-60,2007 

mid-rapidity



STAR

Spin Results
๏ The main aim of the RHIC 

polarised proton running is the 
measurement of Δg(x) at 
medium-x (0.01<x<0.3).

๏ Inclusive jet-yield is well 
reproduced by NLO pQCD 
calculations
๏ Can use NLO pQCD to extract 
Δg(x) from measurements of 
ALL

๏ Measurement good enough to 
discriminate between some 
GRSV scenarios

๏ Lot more to do in the spin 
programme
๏ Running at √s=500 GeV 

increases the x-range and 
available measurements

13
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Questions remaining to be answered
๏ Despite RHIC’s successful 1st decade - unanswered questions remain:
๏ A+A

๏ What are the properties of the sQGP? How does it thermalise?
๏ Are the interactions of energetic partons with QCD matter characterised 

by strong or weak coupling? What is the detailed mechanism of partonic 
energy loss?

๏ Where is the QCD critical point and the first-order phase transition line?
๏ Can we strengthen the current evidence for novel symmetries in QCD 

matter and open new avenues?
๏ What other exotic particles are created at RHIC?
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Questions remaining to be answered
๏ Despite RHIC’s successful 1st decade - unanswered questions remain:
๏ A+A

๏ What are the properties of the sQGP? How does it thermalise?
๏ Are the interactions of energetic partons with QCD matter characterised 

by strong or weak coupling? What is the detailed mechanism of partonic 
energy loss?

๏ Where is the QCD critical point and the first-order phase transition line?
๏ Can we strengthen the current evidence for novel symmetries in QCD 

matter and open new avenues?
๏ What other exotic particles are created at RHIC?

๏ p/d+A
๏ What is the nature of the initial state in nuclear collisions?

๏ p+p
๏ What is the partonic spin structure of the proton?
๏ How do we go beyond leading-twist and collinear factorisation in pQCD?

14



STAR

๏ As RHIC has improved luminosity, so STAR has improved
๏ 2001: TPC DAQ ~ 8 Hz (when the stars aligned)
๏ 2012: TPC DAQ ~ 1.8 kHz (test run planned for 10 kHz)
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STAR in 2012
๏ STAR in 2012 has 

“evolved” from the 
initial concept of a 
decade ago
๏ TPC is still the main 

workhorse detector
๏ Many additions 

have been made to 
the original setup

๏ We are not 
stopping here 
though - further 
upgrades are 
planned

17
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Timeline of STAR detector upgrades

18

Run: 9 10 11 12 14

Forward TPC’s
Heavy Flavor Tracker

DAQ 1000

Full TOF

Forward Gem Tracker

Small Beampipe STAR

EBIS 

RHIC II Luminosity

Low E Cooling

Muon Telescope Detector

Roman Pots Phase 2

Forward Upgrade
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RHIC Upgrades - EBIS Source
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STAR

RHIC Upgrades - EBIS Source

๏ EBIS advantages:
๏ Low cost/maintenance, modern
๏ Can produce any ion (e.g. 3He↑, U)
๏ Higher intensity
๏ Fast switching between species

20

E-Gun

(10 A)

Drift Tube Structure
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CollectorSuperconducting 
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Flexibility: U+U

๏ Run 12: first feasibility studies
๏ Unique: pathlength dependence of quenching (50% more L)

๏  Full range of measurements: γ-jet, b and c, jets, Upsilons, 
…

Au+Au
U+U

Body-Body

A. Kuhlman, U. Heinz, Y.V. Kovchegov, Phys. Lett. B638, 171(2006)

21
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Heavy Flavour Tracker
๏ Original mid-rapditiy Si vertex tracker at STAR not capable of 

identifying charm and bottom hadrons through direct 
reconstruction of the displaced vertex

๏ Heavy Flavour Tracker designed to do this.  Installation begins in 
2013

22
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HFT Technology

23

SSD R=23cm

IST R=14cm

Pixel 1-2 R=2.5, 8cm

New beam pipe

SSD
IST
PIXEL
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Physics of the HFT

๏ Very thin vertexer focussed on reconstructing charm:
๏ Run 14: does charm flow hydrodynamically?
๏ Run 15: reference data in p+p 200 GeV
๏ Run 16: baryonic composition

๏ Does baryon/meson ratio at intermediate pT behave as p/π and Λ/K?
๏ If so - need to re-visit the interpretation of the non-photonic electrons due 

to different branching ratios than what was expected

24
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Forward GEM Tracker
๏ Triple GEM Detector
๏ GEM foils: Hole inner r: 

50micron, outer: 
70micron, 140micron pitch

๏ Quoted resolutions in the 
proposal:
๏ as good as 40microns in 

phi (120microns in R - 
inclined tracks) from 
simulations

๏ Evaluate performance 
after this run

25
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Physics of the FGT - Quark Helicities
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STAR

Physics of the FGT - Quark Helicities
๏ u,d,anti-q helicity distributions 

obtained through AL 
measurements of W±

๏ W±→e±+X (11% BR) provides 
a clean signature with high 
efficiency

๏ Initial measurements of AL 
utilised STAR’s barrel and end-
cap calorimeters sampled 12 
pb-1
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STAR

Physics of the FGT - Quark Helicities
๏ u,d,anti-q helicity distributions 

obtained through AL 
measurements of W±

๏ W±→e±+X (11% BR) provides 
a clean signature with high 
efficiency

๏ Initial measurements of AL 
utilised STAR’s barrel and end-
cap calorimeters sampled 12 
pb-1

๏ Upgrades to add the FGT 
significantly improve this 
measurement and allow for 
charge-sign discrimination

๏ FGT partially installed in 
current run (Run 12)
๏ 14 out of 24 quadrants 

installed
26
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Muon Telescope Detector

๏ MTD is a Multi-gap Resistive Plate 
Chamber gas detector

๏ Long MRPCs cover the whole iron bars 
- gaps inbetween are not covered
๏ Acceptance: 45% at |η|<0.5

๏ 118 modules, 1416 readout strips, 2832 
readout channels

๏ MRPC technology and electronics is the 
same as that used in the STAR TOF

27

MTD 
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Physics capabilities with the MTD

๏ MTD can measure muons at mid-rapidity
๏ di-leptons of a different flavour

๏ High-precision Upsilons, J/Psi,...
๏ No Bremmstrahlung tails allows effective separation of Upsilon states

๏ Allows a handle on melting of lightly bound Upsilon states in hot and de-
confined matter

๏ Possibility of further upgrade to increase the acceptance coverage

28
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Forward instrumentation upgrade

๏ Forward instrumentation optimised for p+A and transverse spin physics
๏ charged particle tracking
๏ e/h and γ/π discrimination
๏ baryon/meson separation

29

FMS FHC

~ 6 GEM disks
Tracking: 2.5 < η < 4

RICH
Baryon/meson 
separation

Preshower
1/2” Pb radiator
Shower “max”

proton nucleus

W powder HCal
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0.6 GeV 
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15.3 GeV 
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30  GeV 

5.5 GeV 
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30  GeV 

27.55 GeV 

Gap 5 mm total
0.3 T for 30 GeV 

eRHIC - the future of RHIC

Vertically separated
recirculating passes.

# of passes will 
be chosen to optimize 

eRHIC cost 

eRHIC staging:
All energies scale proportionally 

by adding SRF cavities to the 
injector and two linacs and 
cranking power supplies up
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eSTAR - the future of STAR?
๏ STAR will need to be optimised/modified for its current 

setup for e+A collisions
๏ 5 GeV electron beams currently being studied with p(A) 

energies from 50 GeV to 130(325) GeV
๏ Key measurements:

๏ Inclusive scattering over the entire DIS region
๏ FL in e+A - a direct measure of nuclear gluon densities
๏ F2A/F2p - parton distributions in nuclei

๏ Semi-inclusive DIS over a broad (x,Q2) range
๏ Flavour-separated parton distributions in nuclei, including 

strangeness
๏ Parton energy loss in cold nuclear matter

๏ What’s needed?
31
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eSTAR kinematics in phase 1: 5 GeV electrons
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eSTAR kinematics in phase 1: 5 GeV electrons

๏ “Forward” (-2.5 < h < -1) electron acceptance is essential in order to span 
the DIS regime
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STAR

eSTAR kinematics in phase 1: 5 GeV electrons

๏ “Forward” (-2.5 < h < -1) electron acceptance is essential in order to span 
the DIS regime

๏ Both “forward” and “backward” hadron coverage is needed for SIDIS 
physics

32
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The realisation of an eSTAR detector
๏ HCal: W powder, 

spaghetti calorimeter
๏ GCT: compact tracker 

with enhanced 
electron capability
๏ combine high-

threshold (gas) 
Cherenkov with TPC-
like tracking

๏ TPC: replace inner 
sectors
๏ make a greater 

density of pad rows
๏ TOF: π, K i.d., t0, 

electron
๏ ECal: electrons, 

photons
33

proton/nucleus electron
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The realisation of an eSTAR detector
๏ HCal: W powder, 

spaghetti calorimeter
๏ GCT: compact tracker 

with enhanced 
electron capability
๏ combine high-

threshold (gas) 
Cherenkov with TPC-
like tracking

๏ TPC: replace inner 
sectors
๏ make a greater 

density of pad rows
๏ TOF: π, K i.d., t0, 

electron
๏ ECal: electrons, 

photons
33

proton/nucleus electron

HCalGEM
disks

GCT

TPC i.s.

TOF

ECal

R&D ongoing thanks to BNL-directed 
EIC generic detector R&D funds
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Example physics: parton energy loss in cold QCD matter

34

๏ HERMES: limited range in ν
๏ hadrons form partially inside the medium

๏ eRHIC: large range in ν (Lc up to a few 100 fm)
๏ light quarks form well outside the medium
๏ also ability to explore heavy-quark formation

๏ probably requires stage-II eRHIC (> 5 GeV electrons) for quantitative evaluation

HERMES, NP B780, 1
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Summary and Conclusions
๏ STAR has completed it’s first decade of physics 

with exciting and unexpected results
๏ A strongly coupled plasma is formed in heavy-ion 

collisions, creating a perfect liquid
๏ STAR has a clear path of upgrades to build on the 

physics already learned, together with the 
upgrades of the machine
๏ New detectors, new electronics

๏ In the long term (STAR’s 3rd decade), a role is 
foreseen to for STAR → eSTAR
๏ Complement but not replace the need for an all-

singing, all-dancing, purpose-built detector
35
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The future physics programme of STAR

36



STAR

STAR in the long-term: eSTAR?
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STAR in the long-term: eSTAR?
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STAR in the long-term: eSTAR?
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Exotic particle search with STAR

๏ By utilising the high anti-baryon density and temperature of A+A collisions, 
coupled with special high-level trigger algorithms, have been able to find:
๏ 3ΛH - 2010
๏ 4He - 2011

42
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coupled with special high-level trigger algorithms, have been able to find:
๏ 3ΛH - 2010
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The search for exotic particles
๏ By utilising STAR upgrades 

(both DAQ rate and 
detectors), have been able 
to search for exotic particles

๏ Combining TPC and TOF 
PID techniques, get clean 
PID out to relatively large pT

๏ By measuring nσdE/dx - the 
deviation from the expected 
energy loss of anti-4He - 
can separate well the heavy 
nuclei produced

๏ Currently measured 18 
counts of anti-4He.
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The search for exotic particles
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STAR

The search for exotic particles
๏ Very clean identification 

after searching > 5x108 
tracks from 107 Au+Au 
collisions!!
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STAR

The search for exotic particles
๏ Very clean identification 

after searching > 5x108 
tracks from 107 Au+Au 
collisions!!

๏ Production rate reduces by 
a factor of 1.6x103 (1.1x103) 
for each additional anti-
nucleon (nucleon) added to 
the anti-nucleus (nucleus).
๏ Searching for heavier anti-

nuclei becomes 
problematic due to 
required statistics
๏ There are ideas and 

searches which can be 
done here (DAQ10K, 
H0..)

44

473, 353 (2011)
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Flexibility: Critical Point Search
๏ Phase 1: 2010, 2011

๏ ~5 million events per 
energy and more already 
taken
๏ Fluctuations, constituent 

quark scaling, HBT…
๏ Phase 2: 2014 and beyond

๏ Luminosity improvement 
with electron cooling at 
RHIC

๏ Scan to even lower 
energies

๏ Increase event counts at 
energies already 
scanned
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Flexibility: Critical Point Search
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STAR in the long-term: eSTAR?

48

Perfect Liquid



STAR

How perfect is the “perfect” liquid?
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v2/ε is a sensitive probe of the system:
(S is transverse area of collision, h is ideal hydro limit 
of v2/ε and B∝η/s)

Conjectured quantum limit:
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๏η/s well below superfluid 
He for all models

๏Can’t yet distinguish 
between initial conditions 
- need e+A at an EIC !
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STAR in the long-term: eSTAR?
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RHIC luminosity vs energy
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STAR

TPC Inner Sector
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STAR

Physics highlights from STAR
๏ A+A collisions

๏ Jet quenching
๏ Heavy-quark suppression
๏ NCQ scaling
๏ “Perfect” liquid

๏ d+A collisions
๏ Gluon saturation at small-x?

๏ Polarised p+p collisions
๏ Large transverse spin asymmetries in the pQCD 

regime
53
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How to measure high-pT processes
๏ Single particle spectra

54

RAA(pT ) =
Y ield(A + A)

Y ield(p + p)� < Ncoll >

RAA(pT) = Nuclear Modification Factor
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How to measure high-pT processes
๏ Single particle spectra

55
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How to measure high-pT processes
๏ Single particle spectra
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RHIC - Brookhaven Lab
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Highlights of the 1st decade of AA collisions in STAR
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STAR

Highlights of the 1st decade of AA collisions in STAR
๏ Strong Elliptic Flow

๏ Collective flow of created matter
๏ Constituent quark number degrees 

of freedom apparent in scaling laws 
of elliptic flow

๏ Particle production through 
recombination/coalescence 
dominates over fragmentation at 
medium pT

๏ Exotic particles
๏ First observations of 3ΛH and 4He

๏ Jet quenching
๏ Energy loss of high-pT partons 

traversing the hot and dense matter
๏ Gluon saturation at small-x?

๏ Tantalising hints of saturation 
phenomena in d+A collisions
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Highlights of the 1st decade of AA collisions in STAR
๏ Strong Elliptic Flow

๏ Collective flow of created matter
๏ Constituent quark number degrees 

of freedom apparent in scaling laws 
of elliptic flow

๏ Particle production through 
recombination/coalescence 
dominates over fragmentation at 
medium pT

๏ Exotic particles
๏ First observations of 3ΛH and 4He

๏ Jet quenching
๏ Energy loss of high-pT partons 

traversing the hot and dense matter
๏ Gluon saturation at small-x?

๏ Tantalising hints of saturation 
phenomena in d+A collisions
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⇐ these and comparisons to 
models led to the “perfect fluid” 

hypothesis
Paradigm shift: 

strongly coupled QGP = sQGP
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Talk Outline
๏ RHIC and the STAR Detector
๏ STAR Physics - the first decade

๏ Heavy-ion physics
๏ Spin physics

๏ STAR Physics - the second decade
๏ Heavy-ion physics

๏ Detector requirements
๏ Spin physics

๏ Detector requirements
๏ eSTAR

๏ The physics of eSTAR and the detector requirements
58
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Strong Elliptic Flow
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Strong Elliptic Flow
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Strong Elliptic Flow
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• v2 shows particle type dependence
• Good agreement between data and 

ideal (zero viscosity) 
hydrodynamics
‣ small η ⇒ strong coupling ⇒ 

“perfect” fluid!!
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Jet quenching in A+A collisions

๏ Jet-finding is relatively straight-forward in low-
multiplicity p+p collisions

60

Peripheral Au+Au Eventp+p Event
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multiplicity p+p collisions
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Jet quenching in A+A collisions

๏ Jet-finding is relatively straight-forward in low-
multiplicity p+p collisions
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p+p Event Central Au+Au Event



STAR

Suppression of single particle spectra

๏ <h++h-> spectra 
measured out to pT 
= 12 GeV/c
๏ Plot from 2004, 

can go even 
higher with 
accrued statistics

๏
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Probes of Dense Matter – Jet Tomography
Simplest way to establish the properties of a system 

• Calibrated probe (electrons, X-Rays)
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STAR 62

Probes of Dense Matter – Jet Tomography
Simplest way to establish the properties of a system 

• Calibrated probe (electrons, X-Rays)

Au+Au Collision

• Calibrated interaction (beam of known energy and direction)
• Suppression pattern tells about density profile



STAR

Suppression of single particle spectra
๏ <h++h-> spectra 

measured out to pT = 
12 GeV/c
๏ Plot from 2004, can 

go even higher with 
accrued statistics

๏ RAA ratios show a 
decrease in ratio with 
increasing centrality
๏ High-pT particles 

appear to be 
quenched by the 
dense medium they 
travel through
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