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What is eRHIC? 

e-

e+

p

Unpolarized and
polarized leptons

5-20 (30) GeV

Polarized light ions He3 
166 GeV/u

Light ions (d,Si,Cu)
Heavy ions (Au,U)

50-100 GeV/u

Polarized protons
50-250 GeV

Electron accelerator
to be built

RHIC
Existing = $2B

70% e- beam polarization goal

polarized positrons?

Centre-of-mass energy range: √s=30-200 GeV; L~100-1000xHera
longitudinal and transverse polarization for p/He3 possible

e-

2

protons
electrons
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RHIC

NSRLLINAC

Booster

AGS

Tandems

STAR
6:00 o’clock

PHENIX
8:00 o’clock

eLenses
10:00 o’clock

RF
4:00 o’clock

ANDY
2:00 o’clock

From RHIC to eRHIC 

EBIS

ERL Test Facility 

Jet/C-Polarimeters
12:00 o’clock
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NSRLLINAC
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AGS

Tandems

STAR
6:00 o’clock

PHENIX
8:00 o’clock

eLenses
10:00 o’clock

RF
4:00 o’clock

ANDY
2:00 o’clock

From RHIC to eRHIC 

EBIS

ERL Test Facility 

e
e

eRHIC
eRHIC-Detector
& Polarimeters
12:00 o’clock
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e-

co
ole

r
27.55 GeV 

22.65 GeV 

17.75 GeV 

12.85 GeV 

3.05  GeV 

7.95 GeV 

Beam 
dump

Polarized 
e-gun

3rd detector

0.6 GeV 

25.1 GeV 

20.2GeV 

15.3 GeV 

10.4 GeV 

30  GeV 

5.5 GeV 

30  GeV 

30  GeV 

27.55 GeV 

Gap 5 mm total
0.3 T for 30 GeV 

From RHIC to eRHIC

Vertically separated
recirculating passes.

# of passes will 
be chosen to optimize 

eRHIC cost 

eRHIC staging:
All energies scale proportionally 

by adding SRF cavities to the 
injector and two linacs and 
cranking power supplies up
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Detector requirements
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Inclusive Reactions:
๏ Momentum/energy and angular resolution of e’ critical
๏ Very good electron pid
๏ Moderate luminosity >1032 cm-1 s-1

๏ Need low x ~10-4 à high √s (Saturation and spin physics)
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Inclusive Reactions:
๏ Momentum/energy and angular resolution of e’ critical
๏ Very good electron pid
๏ Moderate luminosity >1032 cm-1 s-1

๏ Need low x ~10-4 à high √s (Saturation and spin physics)

Semi-inclusive Reactions:
๏ Excellent particle ID:  π,K,p separation over a wide range in η
๏ full Φ-coverage around γ*
๏ Excellent vertex resolution à Charm, bottom identification
๏ high luminosity >1033 cm-1 s-1 (5d binning (x,Q2,z, pt,Φ))
๏ Need low x ~10-4 à high √s 



Detector requirements
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e’

t

(Q2)
e
γL*

x+ξ x-ξ 

H, H, E, E 
(x,ξ,t)

~~

γ, π,J/Ψ

p p’
Inclusive Reactions:

๏ Momentum/energy and angular resolution of e’ critical
๏ Very good electron pid
๏ Moderate luminosity >1032 cm-1 s-1

๏ Need low x ~10-4 à high √s (Saturation and spin physics)

Semi-inclusive Reactions:
๏ Excellent particle ID:  π,K,p separation over a wide range in η
๏ full Φ-coverage around γ*
๏ Excellent vertex resolution à Charm, bottom identification
๏ high luminosity >1033 cm-1 s-1 (5d binning (x,Q2,z, pt,Φ))
๏ Need low x ~10-4 à high √s Exclusive Reactions:

๏ Exclusivity à high rapidity coverage à rapidity gap events 
๏ high resolution in t à Roman pots
๏ high luminosity >1033 cm-1 s-1 (4d binning (x,Q2,t,Φ))



The pillars of the eRHIC physics programme

๏Wide physics programme with demanding 
requirements on detector and machine performance
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Most compelling physics questions
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Spin physics

๏ What is the polarisation of gluons at small 
x where they dominate?

๏ What is the x-dependence and flavour 
decomposition of the polarised sea?

Determine quark and gluon contributions 
to the proton spin at last!!

0
10-4 10-3 10-2 10-1 1

 HERA-I PDF (prel.)

 experimental uncertainty

 model uncertainty

x

xf

 Q2 = 10 GeV2

HERA Structure Functions Working Group
Nucl. Phys. B 181-182 (2008) 57–61

20

4

8

12

16

 xg

 xS

vxu

vxd



Most compelling physics questions
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Spin physics

๏ What is the polarisation of gluons at small 
x where they dominate?

๏ What is the x-dependence and flavour 
decomposition of the polarised sea?

Determine quark and gluon contributions 
to the proton spin at last!!

Imaging

๏ What is the spatial distribution of quarks/
gluons in nucleons AND nuclei?

๏ Understand deep aspects of gauge theories 
revealed by kT dependent distributions

Possible window to orbital angular 
momentum

Strong Colour Fields and Hadronisation

๏ Quantitatively probe the universality of strong colour fields in A+A, p+A and e+A 
๏ Understand in detail the transition to the non-linear regime of strong gluon fields and the 

physics of saturation
๏ How do hard probes in e+A interact with the medium?

Currently have no experimental knowledge of gluons in nuclei at small x!!
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spin physics



10 week INT programme - Fall 2010
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Golden measurements in spin
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Deliverables Observables What we learn Requirements

polarised gluon 
distribution Δg

scaling violations in 
inclusive DIS

gluon contribution 
to the proton spin

coverage down to x 
~ 10-4;

L of about 10 fb-1

polarised quark and 
antiquark densities

semi-incl. DIS for 
pions and kaons

quark contr. to 
proton spin;

asym. like Δū-Δƌ; 
Δs

similar to DIS;
good particle ID

novel electroweak 
spin structure 

functions

inclusive DIS at 
high Q2

flavour separation 
at medium-x and 

large Q2

√s ≥ 100 GeV; 
L ≥ 10 fb-1;

positrons; polarised 
3He beam



The quest for Δg - where do we stand?

๏ low-x behaviour is unconstrained
➡ significant polarisation still possible

➡ no reliable error estimate for 1st moment

๏ By 2015 - expect to have:
➡ DSSV 2.0 global analysis on new world 

data

➡ reduced uncertainties in Δg in current x 
range

➡ evidence of a node further scrutinised

➡ extend x-range towards lower x
‣ 500 GeV running and particle 

correlations

12

x

RHIC
pp

DIS
&
pp

current
status:

DSSV global fit
de Florian, Sassot, 

MS, Vogelsang

DSSV includes “only” RHIC run6 data

๏ inclusive pions and jets remain the main probes
๏ jet/hadron correlations are essential to cover smaller x



The quest for Δg - what can we do at eRHIC?
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strategy to quantify impact: global QCD fits with realistic pseudo-data 
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The quest for Δg - what can we do at eRHIC?

13

strategy to quantify impact: global QCD fits with realistic pseudo-data 

measurements limited by systematics – need to control them very well  

issues: bunch-by-bunch polarimetry, relative luminosity, detector performance, …

current
data



The quest for Δg - what can we do at eRHIC?
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how effective are scaling violations ?
quantitative studies based on simulated data for eRHIC stage-1: 5 x (50, 100, 250, 325) GeV 

χ2 profile for
Z 1

10�4

�g(x,Q2)dx

from current ep & RHIC data

  expect to determine                       at about 10% level (more studies needed)
Z 1

0
dx�g(x, Q

2)

kinematic reach down to x = 10-4 essential to determine integral
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What’s new with DSSV(+)?
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•	
  DIS: A1
p	
  	
  from COMPASS 

             arXiv:1001.4654

•	
  SIDIS: A1,d
π,K	
  	
  from COMPASS 

             arXiv:0905.2828

extended x coverage w.r.t. HERMES

•	
  SIDIS: A1,p
π,K	
  	
  from COMPASS 

             arXiv:1007.4061 

DSSV+ - use as a 
baseline for eRHIC 

studies



New pseudo-data

๏ Global analysis:
➡ use relative uncertainty of each point to produce mock data (based on DSSV)

➡ randomise data within 1σ

➡ for SIDIS: incl. 5%(10%) uncertainty from pion (kaon) frag. functions

➡ map out X2 profiles with Lagrange multiplier method (Hessian is work in progress)
16

5x100 and 5x250
only

data for DIS and SIDIS (π±, K±)

10 fb-1 each, 70% beam pol.

๏ W2 > 10 GeV2

๏ depol. factor > 0.1
๏ 0.001 < y < 0.95
๏ 1o < θ < 179o

๏ pe > 0.5 GeV
๏ phadr > 1 GeV

Cuts:



Update on Δg

17

previous	
  result

๏ Very similar results to before

๏ Slightly larger uncertainties
๏ need to study 10-4→1 range
๏ need to translate into error 

on x-shape of Δg



What about Δq?

18

x�s(x) = x�s̄(x)

data

๏ surprise: Δs small & positive 
from SIDIS data
๏ but 1st moment is negative and 
sizable due to “constraint” from 
hyperon decays (F,D) (assumed 
SU(3) symmetry - debatable M. 
Savage)
๏ drives uncertainties on ΔΣ (spin 
sum)  

current uncertainties DSSV DSSV (incl. latest COMPASS data)



What about Δq?

18

x�s(x) = x�s̄(x)

data

current uncertainties DSSV DSSV (incl. latest COMPASS data)

simulated impact of RHIC

๏W boson data on global fit
 

๏ reduction of uncertainties 
for 0.07 < x < 0.4 can test 
consistency of low Q2 SIDIS 
data in that x regime 



First results on the quark sea

19

๏ 	
  very	
  encouraging	
  	
  results

๏ 	
  as	
  expected,	
  DIS	
  has	
  no	
  impact	
  

๏ 	
  need	
  to	
  study	
  0.0001-­‐1	
  range

๏ 	
  need	
  to	
  translate	
  into	
  error	
  on	
  x-­‐shape
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19

๏ 	
  very	
  encouraging	
  	
  results

๏ 	
  as	
  expected,	
  DIS	
  has	
  no	
  impact	
  

๏ 	
  need	
  to	
  study	
  0.0001-­‐1	
  range

๏ 	
  need	
  to	
  translate	
  into	
  error	
  on	
  x-­‐shape

๏ 	
  note	
  the	
  change	
  of	
  scale	
  on	
  x-­‐
axis

๏ 	
  perhaps	
  “neutron	
  beam”	
  would	
  
lead	
  to	
  further	
  improvements

๏ 	
  should	
  be	
  able	
  to	
  test	
  “constraint”	
  from	
  SU(3)	
  
symmetry	
  	
  (F,D	
  values	
  from	
  hyperon	
  decays)	
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e+A physics
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Golden Measurements

22

Deliverables Observables What we learn Stage-1 Stage-II

integrated 
gluon 

distributions
F2,L

nuclear wave 
function;

saturation, Qs

gluons at 
10-3 < x < 1

saturation 
regime

kT dependent 
gluons;
gluon 

correlations

di-hadron 
correlations

non-linear QCD 
evolution /
universality

onset of 
saturation measure Qs

transport 
coefficients in 

cold matter

large-x SIDIS;
jets

parton energy 
loss, shower 

evolution;
energy loss 
mechanisms

light flavours 
and charm;

jets

rare probes and 
bottom;

large-x gluons



Silver Measurements
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Deliverables Observables What we learn Stage-I Stage-II

integrated 
gluon 

distributions
Fc2,L, FD2,L

nuclear wave 
function;

saturation, Qs

difficult 
measurement / 
interpretation

saturation 
regime

flavour 
separated 

nuclear PDFs

charged current 
and γZ 

structure 
functions

EMC effect 
origin

full flavour 
separation for 
10-2 < x < 1

measure Qs

kT dependent 
gluons SIDIS at small x

non-linear QCD 
evolution / 
universality

onset of 
saturation

rare probes and 
bottom;

large-x gluons

b-dependent 
gluons;
gluon 

correlations

DVCS;
diffractive 

vector mesons

interplay 
between small-
x evolution and 

confinement

moderate x with 
light, heavy 

nuclei

smaller x, 
saturation



Integrated gluon distributions from 
inclusive structure functions

24



Integrated gluon distributions 
from inclusive structure functions
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Deliverables Observables What we learn Stage-I Stage-II

integrated 
gluon 

distributions
F2,L

nuclear wave 
function;

saturation, Qs

gluons at 
10-3 < x < 1

saturation 
regime

integrated 
gluon 

distributions
Fc2,L, FD2,L

nuclear wave 
function;

saturation, Qs

difficult 
measurement / 
interpretation

saturation 
regime

charm diffractive



Measuring the glue via Structure Functions

26

Scaling violation: dF2 
/dlnQ2 and linear DGLAP 

Evolution ⇒ G(x,Q2)ZEUS NLO QCD fit

H1 PDF 2000 fit

0
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F 2 em
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g 10
(x
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Q2(GeV2)
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x=0.65

BCDMS

E665

NMC

H1 94-00

H1 (prel.) 99/00

ZEUS 96/97

HERA F2

0
10-4 10-3 10-2 10-1 1

 HERA-I PDF (prel.)

 experimental uncertainty

 model uncertainty

x

xf

 Q2 = 10 GeV2

HERA Structure Functions Working Group
Nucl. Phys. B 181-182 (2008) 57–61
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Measuring the gluons: extracting FL
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๏ FL ~ αs xG(x,Q2)

➡ y = Q2/xs 
➡ require an energy 

scan to extract FL

๏ 3 different proton 
energies run at 
HERA
➡ 2 low-statistics 

runs
➡ bad for FL 

extraction

�r(x,Q

2) = F

A
2 (x, Q
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+
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Measuring the gluons: extracting FL
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Are F2/FL good differentiators of models?
๏ In order to see if measuring F2/FL at an EIC is “worthwhile”, we need to see if a 

measurement could differentiate between models
๏ Models:

➡ MSTW08: code downloadable from HEPFORGE.  Code to extract F2/FL obtained 
privately from Graeme Watt
‣ Global fit, using total cross-section from HERA
‣ DGLAP evolution

➡ IPSat: data kindly provided by T. Lappi
‣ Fit to ZEUS’96 data - χ2/d.o.f. ~ 1.2

➡ bCGC: data kindly provided by T. Lappi
‣ Fit to Zeus’96 data - χ2/d.o.f. ~ 1.2

➡ rcBK: AAQMS data kindly provided by J. Albacete
‣ Evolution along x with BK equation
‣ Fit to H1+ZEUS combined 2006 data

➡ Leading-Twist Shadowing: FGS10 data kindly provided by V. Guzey 
‣ Evolved with DGLAP

๏ Data:
➡ F2: H1&Zeus combined data from: http://www-h1.desy.de/psfiles/papers/desy09-158.pdf
➡ FL: H1 data from: http://www-h1.desy.de/psfiles/papers/desy10-228.pdf

28

http://www-h1.desy.de/psfiles/papers/desy09-158.pdf
http://www-h1.desy.de/psfiles/papers/desy09-158.pdf
http://www-h1.desy.de/psfiles/papers/desy10-228.pdf
http://www-h1.desy.de/psfiles/papers/desy10-228.pdf


29

F2(p) - low Q2
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F2(p) - higher Q2
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F2(A)/A - low Q2
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F2(A)/A - higher Q2



Using the correct PDF

33

๏ The current 
implementation of FGS10 
uses CTEQ5m as its PDF

๏ This overestimates the 
gluon contribution quite 
drastically compared to 
more modern calculations
➡ New curves are on their 

way from FGS10 with 
CTEQ6

➡ Not ready for this 
meeting

➡ Following FL data 
therefore still uses 
CTEQ5m for FGS10
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FL(p) - low Q2



35

FL(p) - higher Q2



36

FL(A)/A - low Q2
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FL(A)/A - higher Q2



FL ratios - low Q2
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FL ratios - higher Q2



๏ Simulated data for 
e+A coverage in x-
Q2 space
➡ 3 energies is the 

minimum 
requirement in 
the FL capability 
study

➡ 1st stage only 
gets to medium x

➡ Need high 
electron energy 
to get to “small” 
x
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Feasibility study: 
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Strategies:
slope of y2/Y+ for 
different s at fixed x & 
Q2

e+p:  1st stage
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running combined
4 weeks/each
(50% eff)

stat. error shown
and negligible

To Do:
refine method &
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can extract FL in e+A 
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Extracting F2 and FL at the EIC
๏ F2,L extracted from 

pseudo-data 
generated for 1 
month running at 3 
eRHIC energies
➡ 5+100 GeV

➡ 5+250 GeV

➡ 5+325 GeV

๏ Data, with errors, 
added to theoretical 
expectations from 
ABKM09 PDF set
➡ valid for Q2 > 2.5 

GeV2
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Evolution of FL(p) with Q2 - fixed x
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Evolution of FL(p) with Q2 - fixed x
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Evolution of FL(p) with Q2 - fixed x



Charm and diffractive structure functions, FD2,L , Fc2,L
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Charm and diffractive structure functions, FD2,L , Fc2,L
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๏ Fc2,L give more direct access to the gluon distribution than the 
inclusive F2 structure function
➡ Due to the high charm mass, they probe higher values of x
‣ Less sensitive to non-linear effects



Charm and diffractive structure functions, FD2,L , Fc2,L

44

xP = 10�3

Q2 = 5GeV 2

๏ Fc2,L give more direct access to the gluon distribution than the 
inclusive F2 structure function
➡ Due to the high charm mass, they probe higher values of x
‣ Less sensitive to non-linear effects

๏ FD2,L is also sensitive to the gluon distribution
➡ Differences between linear and non-linear models appear at 

higher Q2 than for F2 (8 GeV2 vs 2 GeV2)
‣ More experimentally challenging measurement than F2



kT dependent gluons, gluon correlations from 
di-hadron correlations, SIDIS (semi-inclusive DIS)
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kT dependent gluons, gluon correlations from 
di-hadron correlations, SIDIS (semi-inclusive DIS)

46

Deliverables Observables What we learn Stage-I Stage-II

kT dependent 
gluons;
gluon 

correlations

di-hadron 
correlations

non-linear QCD 
evolution /
universality

onset of 
saturation measure Qs

kT dependent 
gluons SIDIS at small x

non-linear QCD 
evolution / 
universality

onset of 
saturation

rare probes and 
bottom;

large-x gluons

e+A ➝ e + h + X

Direct link between pT of produced 
hadron and that of the small-x gluon



kT dependent gluons, gluon correlations from 
di-hadron correlations, SIDIS (semi-inclusive DIS)
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Deliverables Observables What we learn Stage-I Stage-II

kT dependent 
gluons;
gluon 

correlations

di-hadron 
correlations

non-linear QCD 
evolution /
universality

onset of 
saturation measure Qs

kT dependent 
gluons SIDIS at small x

non-linear QCD 
evolution / 
universality

onset of 
saturation

rare probes and 
bottom;

large-x gluons

e+A ➝ e + h + X

e+A ➝ e + h1 + h2 + X



di-hadron angular correlations in d+A
๏ At y=0, suppression of away-

side jet is observed in A+A 
collisions

๏ No suppression in p+p or d+A
➡ x ~ 10-2

47
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observed in d+Au

• Away-side peak also 
much wider in d+Au 
compared to p+p
➡ x ~ 10-3
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collisions

๏ No suppression in p+p or d+A
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observed in d+Au
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much wider in d+Au 
compared to p+p
➡ x ~ 10-3



di-hadron correlations in e+A
๏ At small-x, multi-gluon 

distributions are as important 
as single-gluon distributions 
and they contribute to di-
hadron correlations
➡ The non-linear evolution of 

multi-gluon distributions is 
different from that of single-
gluon distributions and it is 
equally important that we 
understand it

๏ The d+Au RHIC data is 
therefore subject to many 
uncertainties
➡ these correlations in e+A 

can help to constrain them 
better

48

Never been measured - we expect to 
see the same effect in e+A as in d+A

Preliminary result from Bowen Xiao

Q2 = 4GeV2; zh1 = zh2 = 0.3
2 GeV < pTT < 3GeV
1GeV < pTA < 2GeV



di-hadron correlations in e+A
๏ At small-x, multi-gluon 

distributions are as important 
as single-gluon distributions 
and they contribute to di-
hadron correlations
➡ The non-linear evolution of 

multi-gluon distributions is 
different from that of single-
gluon distributions and it is 
equally important that we 
understand it

๏ The d+Au RHIC data is 
therefore subject to many 
uncertainties
➡ these correlations in e+A 

can help to constrain them 
better

48

Never been measured - we expect to 
see the same effect in e+A as in d+A

Preliminary result from Bowen Xiao

Q2 = 4GeV2; zh1 = zh2 = 0.3
2 GeV < pTT < 3GeV
1GeV < pTA < 2GeV

For a discussion of this 
work, see talk by Tobias 

Toll on Thursday



transport coefficients in cold nuclear matter 
from  large-x semi-inclusive DIS and jets

49



Transport coefficients in cold nuclear matter

50

Deliverables Observables What we learn Stage-I Stage-II

transport 
coefficients in 

cold matter

large-x SIDIS;
jets

parton energy 
loss, shower 

evolution;
energy loss 
mechanisms

light flavours 
and charm;

jets

rare probes and 
bottom;

large-x gluons
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• thf - hadron formation time 
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pT broadening - how can the EIC contribute?

52

HERMES:
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pT broadening - how can the EIC contribute?
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EIC:

Measurements from HERMES 
can be repeated, with the 
addition of heavy quarks



Attenuation - how can the EIC contribute?
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Attenuation - how can the EIC contribute?

53

HERMES:

ν = virtual photon energy
Zh = Eh/ν

Ee = 27 GeV ➝ √s = 7.2 GeV
Eh = 2-15 GeV

EIC:

large ν range ➝ boost 
hadronization in and out of nucleus

charm hadrons:

 (GeV/c)Tp
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A
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R

1

0.1

/dy = 1000gDVGL Rad dN
/fm 2= 10 GeVqBDMPS c+b 

DGLV Rad+EL 
van Hees Elastic
DGLV charm Rad+EL 
Collisional dissociation

STAR Au+Au 0-5% (PRL98, 192301)
PHENIX Au+Au  0-10% (PRL96,032301)

(e++e-)/2
$X�$X��FHQWUDO��¥VNN=200 GeV

hadrons

RHIC:



Jets at an EIC
๏ E665 at FNAL have measured jets in μ+A at 
√s ~ 30 GeV
➡ Feasible to start a jet programme in phase 1
➡ caveat that collider kinematics are different 

to fixed target
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Jets at an EIC
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b dependent gluons, gluon correlations from 
DVCS and diffractive vector meson production

55



Silver Measurements

56

Deliverables Observables What we learn Stage-I Stage-II

b-dependent 
gluons;
gluon 

correlations

DVCS;
diffractive 

vector mesons

interplay 
between small-
x evolution and 

confinement

moderate x with 
light, heavy 

nuclei
smaller x, 
saturation

See talk by Tobias Toll on Thursday afternoon



Summary and Conclusions
๏ The e+A physics programme at an EIC will give us an unprecedented 

opportunity to study gluons in nuclei 

๏ Low-x: Measure the properties of gluons where saturation is the 
dominant governing phenomena

๏ Higher-x: Understand how fast partons interact as they traverse nuclear 
matter and provide new insight into hadronization

๏ Understanding the role of gluons in nuclei is crucial to understanding 
RHIC (and LHC) heavy-ion results

๏ The INT programme in the Fall of 2010 allowed us to formulate the 
observables in terms of golden and silver measurements
➡  A detailed write-up of the whole programme (encompassing both e+A 

and e+p) will be published shortly

57

Good headway can be made on these measurements already 
with a stage-I eRHIC (Ee = 5 GeV) 
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 recall: DSSV analysis in 2008/09 

x�s

well constrained

total quark densities

x -> 1 behavior
to be determined

gluon small (node?) 

in x-region

constrained by data

indications for non-trivial

sea quark polarizations
�ū > 0
�d̄ < 0

surprising strangeness polarization

sizable SU(3) breaking?

requires reliable kaon fragmentation fcts. 

lattice: Bali et al., 0811.0807; 0911.2407; 1011.2194

DSSV: de Florian, Sassot, MS, Vogelsang; PRL101 (2008) 072001; PRD80 (2009) 034030
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coping with new data: SIDIS A1
d,π,K

arXiv:0905.2828

ü DSSV works well:
    	
  no surprises at small x	
  x-range

not covered
by HERMES

χ2 numerology♮:

DSSV 08
data sets

with 
A1

d,π,K

DSSV 08 392.5 420.8

DSSV+ 418.9

 ♮ the branch of knowledge that deals 
with the occult significance of numbers 63



coping with new data: SIDIS A1
p,π,K

x-range
not covered
by HERMES

1st kaon data on p-target
(not available from HERMES)

χ2 numerology:

DSSV 08
data sets

with 
A1

p&d,π,K

DSSV 08 392.5 456.4

DSSV+ 453.0
arXiv:1007.4061
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coping with new data: SIDIS A1
p,π,K

x-range
not covered
by HERMES

1st kaon data on p-target
(not available from HERMES)

χ2 numerology:

DSSV 08
data sets

with 
A1

p&d,π,K

DSSV 08 392.5 456.4

DSSV+ 453.0
arXiv:1007.4061

ü no refit required
     (Δχ2=1 does not reflect

      faithful PDF uncertainties) 	
  

§ trend for somewhat less

   polarization of sea quarks;

                          less significant 	
  �ū��d̄ 6= 0
64



Δs revisited: impact of COMPASS data

current value for ΔΣ	
  strongly depends on assumptions on low-x behavior of Δs

•	
  new COMPASS data support small/positive Δs(x) at x > 0.01
• they also prefer a sign change at around x=0.01 

>0 <0
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Δs revisited: impact of COMPASS data

current value for ΔΣ	
  strongly depends on assumptions on low-x behavior of Δs

•	
  new COMPASS data support small/positive Δs(x) at x > 0.01
• they also prefer a sign change at around x=0.01 

>0 <0

• but large negative 1st moment entirely driven by assumptions on SU(3)
• caveat: dependence on FFs 

COMPASS

RSF ⌘
R

DK+

s̄ (z)dzR
DK+

u (z)dz
0.004 < x < 0.3
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Δs: can we blame it on the fragmentation fcts ?

indeed, flavor decomposition strongly depends on fragmentation functions

different FFs           different results

recently proposed as a “solution” to the “strange quark puzzle”: 
Leader, Sidorov, Stamenov

arXiv:1103.5979
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Δs: can we blame it on the fragmentation fcts ?

indeed, flavor decomposition strongly depends on fragmentation functions

different FFs           different results

find: only DSS FFs describe underlying unpol. cross sections in the relevant kinematics 

of course, this does not guarantee that we extracted the right Δs: more data are needed 

recently proposed as a “solution” to the “strange quark puzzle”: 
Leader, Sidorov, Stamenov

arXiv:1103.5979

but  wrong FFs           misleading results
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b-dependent gluons from DVCS and DVMP
๏ Transverse position distribution of gluons can be determined from Deeply Virtual 

Compton Scattering (DVCS: e+A ➝ e+γ+A) and Diffractive Vector Meson 
Production (DVMP: e+A ➝ e+VM+A)
➡ Proportional to the square of the gluon distribution!!

๏ Coherent diffraction (intact nuclear target)
➡ transverse distribution of gluon density

๏ Incoherent diffraction (dissociated nuclear target)
➡ transverse gluon correlations in addition
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Exclusive Vector Meson Production in e+A
๏ Many event generators exist for e+p collisions

➡ Pythia (v6), LEPTO, PEPSI, RAPGAP….
๏ Dearth of event generators for e+A collisions

➡ DPMJET-III
๏ Work at BNL (T. Toll, T. Ullrich) to write an e+A generator (SARTRE)

➡ Comparison of saturation vs non-saturation scenarios
➡ First case study is that of exclusive diffractive J/ψ production
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Exclusive Vector Meson Production in e+A

๏ Low-t: coherent diffraction dominates - gluon density
๏ High-t: incoherent diffraction dominates - gluon correlations

➡ For smaller nuclei, transition between coherent and incoherent is 
pushed out to higher |t|

➡ Need good breakup detection efficiency to discriminate between the two 
scenarios
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How can the EIC contribute?
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Diffractive Kinematics

๏ HERA
➡ 10-15% of all events were diffractive

๏ EIC
➡ saturation models predict that 30-40% of all events will 

be diffractive
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Primary new 
science 

deliverables

What we 
hope to 

fundamentally 
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Basic 
measurements

Typical 
required 
precision

Special 
requirements 

on 
accelerator/

detector

What can be 
done in phase 

I

Alternatives 
in absence of 

an EIC

Gain/Loss 
compared 
with other 
relevant 
facilities

Comments

integrated 
nuclear gluon 
distribution

The nuclear 
wave function 
throughout  
x-Q2 plane

FL, F2, FLc, F2c

What HERA 
reached for 

F2 with 
combined 

data

displaced 
vertex 

detector for 
charm

stage 1: large-
x & large-Q2

need full EIC, 
for FL and F2

c

p+A at LHC

(not as

precise 
though) & 

LHeC

First 
experiment 
with good x, 
Q2 & A range

This is 
fundamental 

input for A+A 
collisions

kT 
dependence 

of gluon 
distribution 

and 
correlations

The non-
linear QCD 
evolution - 

Qs

SIDIS & di-
hadron 

correlations 
with light and 
heavy flavours

Need low-pt 
particle ID

SIDIS for sure

TBD: 
saturation 
signal in di-
hadron pT 
imbalance

1) p+A at 
RHIC/LHC, 

although e+A 
needed to 

check 
universality

2) LHeC

Cleaner than 
p+A: reduced 
background

b dependence 
of gluon 

distribution 
and 

correlations

Interplay 
between 
small-x 

evolution and 
confinement

Diffractive VM 
production and 

DVCS, 
coherent and 
incoherent 

parts

50 MeV 
resolution 

on 
momentum 

transfer

hermetic 
detector with 
4pi coverage

low-t: need to 
detect 
nuclear 

break-up

Moderate x 
with light and 
heavy nuclei

LHeC
Never been 
measured 

before

Initial 
conditions for 
HI collisions – 

eccentricity 
fluctuations
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Role of colour-neutral (Pomeron) excitations
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xIP = mom. fraction of 
pomeron w.r.t. hadron

• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?

• Predictions: ~25-40%?      
• Look inside the “Pomeron”

• Diffractive structure functions

• Distinguish between linear evolution and saturation models
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๏ FL ~ αs xG(x,Q2)

➡ y = Q2/xs 

➡ require an energy 
scan to extract FL

๏ 3 different proton 
energies run at HERA
➡ 2 low-statistics runs

➡ bad for FL 
extraction

๏ Note that non-linear 
fits describe the data 
better at the lowest x
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• Hard to “see” glue in the low-energy 
world

➡ Gluon degrees of freedom “missing” in 
hadronic spectrum 

‣ Constituent Quark Picture?
➡From DIS:
- Drive the structure of baryonic matter 

already at medium-x 

★ Crucial players at RHIC and LHC
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What do we know about gluons?

➡ What is the spatial and momentum distribution of gluons in nuclei/nucleons?

➡ What are the properties of high-density gluon matter?

➡ How do quarks and gluons interact as they traverse matter?

➡ What role do the gluons play in the spin structure of the nucleon?

How do we get to the answers?

We have identified 4 important questions to address:



The role of gluons in hadronic collisions
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How well do we know gluon distributions in nucleons?
๏ HERA: e+p collisions:

➡ 27.6 GeV (e-) on
➡ 920 GeV p

๏ Wealth of data allows a high-
statistics extraction of valence 
quark, sea quark and gluon 
densities as a function of xBj

➡ Gluons and sea quarks 
dominate over valence 
quarks at smaller values of 
xBj

๏ Small experimental and 
model uncertainties

89
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The distribution of valence and sea quarks 
are relatively well known in nuclei - 

theories agree well

What about gluons in nuclei?
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The distribution of valence and sea quarks 
are relatively well known in nuclei - 

theories agree well

What about gluons in nuclei?

Large discrepancies exist in the gluon 
distributions from models for mid-rapidity 

LHC and forward RHIC rapidities !!

Constrained by DIS

Constrained by DY

Constrained by sum rules

Assumptions



๏ Using the Linear DGLAP evolution 
model:

➡ Linear evolution has a built-in high-
energy “catastrophe”

➡ xG has rapid rise with decreasing x 
(and increasing Q2) ⇒ violation of 
Froissart unitarity bound

‣ Must have saturation to tame the 
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What’s the underlying dynamics?
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Non-linear QCD - Saturation
๏ BFKL: evolution in x

➡ linear

‣ explosion in colour field at low-x

๏ Non-linear BK/JIMWLK equations

➡ non-linearity ⇒ saturation

‣ Allows for the recombination of 
gluons in a dense gluonic 
medium

➡ characterised by the saturation 
scale, QS(x,A)

92

proton

N partons any 2 partons can recombine into one

Regimes of QCD Wave Function



The Nuclear “Oomph Factor”
๏ Enhancing Saturation effects:

➡ Probes interact over distances L ~ (2mnx)-1

➡ For probes where L > 2RA (~ A1/3), cannot distinguish 
between nucleons in front or back of the nucleus.

‣ Probe interacts coherently with all nucleons.

93

R ~ A
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R ~ A
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Simple geometric considerations lead to:

Nuclear “Oomph” Factor:

Enhancement of QS with A: ⇒ non-linear QCD regime 
                                                  reached at significantly lower 
                                                  energy in e+A than in e+p

(QA
s )2 � c Q2
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x

⇥1/3

Q2
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A
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A dependence : xGA � AHERA: A dependence:
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formula for high A
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al., PRL 94:022002; Kowalski, Teaney, 
PRD 68:114005
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• Diffractive cross-section σdiff/σtot in e+A  predicted to be ~25-40%

• Process most sensitive to xG(x,Q2)

• Rich physics program on momentum & spatial gluon distribution

• Coherent vs Incoherent: requires detection of breakup with ~ 1-10-4 efficiency

e + A → e’ + J/ψ + A’

Never done at a collider!
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Scaling violation: dF2 
/dlnQ2 and linear DGLAP 

Evolution ⇒ G(x,Q2)ZEUS NLO QCD fit
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• Use coloured probes to study soft nuclear glue

➡ a “large-x” probe of small-x gluons

• Use nuclei to study parton propagation and 
fragmentation

➡ parton showers, quark-to-hadron transition

• Ideal program for phase-1 EIC

h

g*

e+

e+

Jets and hadronization

q



Interaction of fast probes with gluonic medium
๏ nDIS:

➡ Clean measurement in ‘cold’ nuclear matter
➡ Suppression of high-pT hadrons 

analogous to, but weaker than at RHIC
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PHENIX expt: Phys.Rev.Lett.91:072301 (2003)

ν = virtual photon energy
Zh = Eh/ν
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