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ABSTRACT

Kaon and proton interferometry measurements are made for the reactions Pb+Pb—
K*K* + X and Pb+Pb— pp + X using the 158 GeV /nucleon ?°Pb beam from the
CERN Super Proton Synchrotron (SPS).

Two-particle intensity interferometry measurements are sensitive to the spatial
and temporal extent of the source as well as the expansion dynamics of the system.

The focussing spectrometer experiment NA44 is used to detect the position and
momentum coordinates of kaons and protons. NA44 has a narrow experimental accep-
tance that lies near mid-rapidity; for these measurements, the 131mr angular setting
was used, with a mean transverse momentum of 910 MeV /c. Two-particle Coulomb
corrections and experimental acceptance corrections are applied to the kaon data,
which are fit to one- and two-dimensional Gaussian functions in momentum space
to obtain radius parameters. Because proton correlations cannot be fit to analytic
functions, different methods are used to extract radius parameters from the proton

data.
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CHAPTER 1

INTRODUCTION

The study of ultra-relativistic heavy-ion reactions brought together the two fields
of high energy physics and nuclear physics. The primary difference between these
two areas lies in their treatment of the strong nuclear force. High energy physics de-
scribes the strong force in terms of elementary particles (quarks) interacting through
the exchange of gauge bosons (gluons). In the lower energy regime of nuclear physics,
the direct quark-gluon interactions are shielded due to confinement, so the strong in-
teraction is characterized by large composite particles (nucleons) exchanging smaller
composite particles (mesons). Relativistic heavy-ion physics attempts to describe the
intermediate region, where the nuclear is subjected to conditions of extreme temper-
ature and baryon density.

Under “normal” conditions (e.g., a block of lead at 290 K), quarks are confined
to nucleons, which in turn are confined to nuclei (see Figure 1.1). Increasing the
temperature or baryon density would cause nuclei to deconfine, forming a hadron gas
of nucleons (protons and neutrons) and other baryons (e.g., A) and mesons (e.g., 7 and
K). Further heating or compressing would cause the hadrons themselves to deconfine,
leaving a system of quarks and gluons, the quark-gluon plasma (QGP). Both lattice
quantum-chromodynamics (QCD) and the MIT bag model make predictions as to the

1



existence of the QGP, a phase of matter which has yet to be observed, but is believed

to have existed in the universe less than one microsecond after the Big Bang.

Early Universe ~ I!i_nl%
. | Quark-Gluon
g Plasma

200 MeVY

v / :
Hadron /
gas 2%
’
4

Nuclear / -
matter / -
/ -

Temperature

£
L
oG “nal.y

= 5- 10 nuclear

Baryon density p

Figure 1.1: The theoretically predicted phase diagram for nuclear matter.

In the laboratory, relativistic nucleus-nucleus collisions provide the best oppor-
tunity for recreating the conditions of a QGP. The time evolution of a collision in
which a QGP is created is shown in Figure 1.2. The time between the collision
and the hadronic freeze-out is on the order of a few fm/c (10723s), so the direct
detection of a QGP is virtually impossible. Freeze-out is defined as the point after
which the hadrons no longer interact strongly with each other. Since experiments can
only detect hadrons after freeze-out, theoretical models must be used to interpolate
backwards in time.

The goal of this thesis is to use intensity interferometry of identical hadrons to
study the spatial and temporal extent of the most energetic fixed-target heavy-ion
collisions, Pb+Pb collisions at 158 GeV/nucleon. Specifically, results from kaon-

kaon (K K) and proton-proton (pp) correlations will be presented and compared with



Figure 1.2: The theoretically predicted space-time evolution of a relativistic nuclear
collision.

results from pion-pion (77) interferometry, the most commonly studied type of cor-

relation. Comparisons to models will also be made.



CHAPTER 2

THEORY OF INTENSITY INTERFEROMETRY

In the 1950’s, Hanbury-Brown and Twiss became the first to use the technique of
intensity interferometry to measure the angular sizes of distant stars (the technique
was subsequently named Hanbury-Brown-Twiss interferometry, or HBT) [HBT56].
A few years later, Goldhaber, Goldhaber, Lee and Pais applied the same technique
(though independently developed) to pion pairs emitted from proton-antiproton col-
lisions [GGLP60].

When HBT was first used in heavy-ion collisions, it was thought that the ex-
tracted numbers were the radii of the source. It is now understood that HBT does
not directly probe the collision fireball (as no hadronic observable can). However,
HBT measurements, as well as other hadronic measurements from ultra-relativistic
heavy ion collisions, do probe the state of the system at freeze-out, providing a set
of observables which can be compared with, and thus validate, different theoretical

models.

2.1 Basics of Intensity Interferometry

Intensity interferometry, as its name implies, compares the intensity of two or
more particle wave functions, as opposed to amplitude interferometry, such as the

4



double slit experiment in optics. While amplitude interferometry can only be used
when the source is coherent, HBT is only meaningful with an incoherent source.
Imagine a source with density distribution function p(7), emitting two identical
particles 7 and 75, as shown in Figure 2.1. Some detectors at points A and B
measure these particles’ momenta as p; and p>. It cannot be determined which
particle originated from which position. Treating the particles as plane waves, the

wave-function describing these two particles can be written as:

1 1

\1112(7'.’1,7:'2) — _(eiﬁlﬁeiﬁﬁ'zieiﬁlﬁeiﬁzfl)H_ > +_(eiiflﬁeiﬁ2f2:|:eiﬁlf2eiﬁ'2ﬁ)|_ > .(2-1)

V2 V2
In this equation, the upper signs are for bosons, while the lower signs are for fermions.
The |+ > are kets representing the sum of all symmetric (|4 >) or anti-symmetric
(|- >) spin states. In the simplest case, spinless bosons (e.g., pions and kaons),

|— > is identically zero, and [+ >= [00 >. For spin-; fermions (e.g., protons and

neutrons):
> = G+ 1>+ 4>) + | ) and (2.2
—> = (11> -] 1>). (2.3)

2v/2
Since these kets make the anti-symmetric and symmetric spatial parts orthogonal,
one can drop one of the terms for the following discussion without loss of generality,

ie.,
\1’12 (Fl, FQ) = —(eiﬁlfle@ﬁ + eipmeipm). (24)
The probability for detecting these two particles is given by [BGJ90]:

Loy 1 I
Pe(f, ) = 5| [ dridraWin(i, 7)o ol P (2)



p(r)

Figure 2.1: Schematic diagram for an HBT experiment.

Assuming a coherent source, this expression vanishes if the spatial portion of the
wave function is anti-symmetric. For a symmetric spatial wave function, it reduces

to:

PC(ﬁl;ﬁ?) = |ﬁ(ﬁl)ﬁ(ﬁ2)‘2a (2-6)

the square of the product of two Fourier transforms of the source amplitude function.

This can be further reduced to;

Pe(pi,p2) = |p(py)I*|p(02) I, (2.7)

which is the product of the probability for detecting single particles with momenta,
p1 and ps. So there would be no correlation between the two particles in this case

[GKWT9).



If the source is incoherent, then the probability of detecting the two particles

becomes:

Pc(ﬁ1;ﬁ2) =1% |ﬁ(@)‘2: (2-8)

where Cj is the difference between the two particles’ momenta. With the spin wave

functions, the probability becomes:

Po(pr, o) = 1 £ (< +|+ > — < == >)[p(@Q) (2.9)
So, for spinless bosons, the joint probability is:

Po(fi, i) = 1+ |p(Q)F, (2.10)

and for spin-% fermions:

Polni) = 1+(; - IA@)P (2.11)
= 1 @) (2.12)

The correlation function is defined as this joint probability function:
02(@) = Pc(ph,p2) (2.13)

So the correlation function provides a way to measure the square of the Fourier
transform of the source density distribution function.

This derivation has assumed that the source had a constant distribution function
with respect to time, an invalid assumption for heavy ion collisions given the extremely
short lifetime of the source. It has also been assumed that there are no correlations
between a particle’s momentum and the position from which it was emitted. A

further invalid assumption is that the only interaction between these particles arises



from quantum mechanical statistics; that is, once the particles have been emitted
from the source, they no longer interact with each other.

In the case of an expanding system, the correlation function is not dependent
solely on the momentum difference [Pra84, Pra86]. A moving region of the source is
more likely to produce particles moving with a velocity comparable to that region.
Because of this, the correlation function will also depend on the average momentum
of the pair, K = %(ﬁl + pPo). As a result, the size of a source distribution cannot be
measured directly through interferometry. However, information about the dynamics
of the source can be extracted using a correlation that is a function of both the

momentum difference and total momentum of the pair of particles.

2.2 Final-State Interactions

The derivation thus far has assumed that the only interaction between the par-
ticles is quantum mechanical statistics. All the hadrons emitted from a heavy ion
collision interact with each other via the strong force. Furthermore, if the particles
are charged, they will exert a Coulomb force on each other. For charged pions and
kaons, these interactions affect the shape of the correlation function, but for protons,
these interactions determine the shape. Since the actual measurements would take

place after these interactions, their effects should be taken into account.
2.2.1 Strong Interaction

Bowler [Bow88|] has studied the strong interaction between pions, and it is reason-

able to assume that the results would be similar for kaons. His estimation is that the



repulsive force between two pions has a range of approximately 0.2 fm. The charac-
teristic separation of kaons would be on the order of 1 fm, so this force can essentially
be ignored.

For protons, the strong force is much more significant. At short range, there is
an attractive s-wave potential, approximated by the Reid soft core potential [Rei68].
This attraction leads to a peak in the correlation function near @, ~ 40 MeV/c and
dominates all other effects in defining the shape of the correlation function [Koo77].
Because of the symmetry of the s-wave, the correlation function depends only on the
volume of the source, so for pp correlations, only a one-dimensional parametrization

is necessary.
2.2.2 Coulomb Interaction

For both protons and charged kaons, the Coulomb interaction has a much larger
range. With like-sign charged particles, this force is repulsive, and significantly sup-
presses the two-particle probability at low relative momentum.

It has long been established [Sch68] that the Coulomb potential between two
like-signed particles will affect the solution to Schrodinger equation according to the
Gamow factor:

2mn
e2m — 1’

G(n) = (2.14)

where 7 = me?/Q, with m the mass of the particle, and e the charge. A more detailed
study of this effect on HBT analysis was performed by Gyulassy, et al. [GKWT79].
Later, Pratt [Pra86b] developed a formalism that did not assume a point-like source,

yielding a complicated integral that must be calculated numerically:

P, o) = [ dridraf e PRI s (AR, AF)P0(F)o(F), (215)

9



where 1), is a symmetrized wave function:

1

V2

obtained from the Coulomb wave function:

(@, F) = —=(¥e(@,7) + 1e(@, —7)), (2.16)

wc(Q, 7)=T(1+ in)e‘”"/zeiQTF(—in; 1;9Qr — z@ -7, (2.17)

where F is a confluent hypergeometric function. Equation (2.15) can be used to
correct real data, provided an analytic functional form for the correlation function
has been assumed. In the case of boson interferometry, a Gaussian parametrization
is used to iteratively calculate p(7), using the correlation function from the previous
iteration.

For fermion interferometry, the Coulomb interaction completely suppresses the
correlation function at zero relative momentum. No analytic functional form is as-
sumed for proton correlations, so these effects must be incorporated into any model
used for comparison.

Naturally, the out-going particles will also experience a Coulomb interaction with
the residual nuclear source. Due to the complicated three-body dynamics, this effect
has been left out of most of the literature. A study was done using data from the
Bevalac [Cha88], which showed that this interaction has an effect on the correlation

function. However, for this study, it will be ignored.

2.3 Parameterization of the Correlation Function

Equation (2.9) is the general expression for a correlation function. Assuming that
the original source density function, p(7), is a Gaussian distribution, then its Fourier

transform, ﬁ(@) will also be Gaussian. Barring final state interactions, the correlation

10



function would therefore also be Gaussian. To continue this discussion, a choice of

reference frame and coordinate system is necessary.
2.3.1 One-Dimensional Parameterization

As mentioned in section 2.2.1, only a one-dimensional parametrization of the pp
correlation function is necessary. If one wishes to compare HBT results from protons
and kaons, then a 1-d correlation for K K should also be examined. A convenient

choice is the Lorentz invariant momentum difference between the two particles:

Qim} =V |Q"2 - Q%a (218)

where (g is the difference in the two particles’ energies. With this parametrization,

the correlation function is:
Co(Qiny) = 1 + A&~ DinoTins (2.19)

where R;,, is the invariant radius parameter, and ) is a parameter that depends on
the particles under study.

Barring final state interactions, ideal one-dimensional correlation functions are
shown in Figure 2.2. The solid line depicts an ideal function for kaons (or any other
spinless bosons), and the dashed line shows an ideal proton (or other spin-3 fermion)
correlation.

A “true” pp correlation function from a Pb+PDb collision would look more like 2.3.
This figure shows the suppression at Q;,, = 0 due to the Coulomb interaction, and
the peak near @, ~ 40 MeV/c. The height of the peak is inversely proportional
to perceived size of the source [Koo77]. In order to extract a radius, a measured
correlation function must be compared with the correlation function from simulated
data where the source size is known.

11
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Figure 2.2: Ideal correlation functions for kaons (solid) and protons (dashed).

With bosons, the correlation function will also experience distortions. For a com-
pletely incoherent source, A will be equal to unity, and for a completely coherent
source, it will vanish [GKWT79]. Therefore, X is a measure for the degree of coherence
of the source. For this reason, it is referred to as the chaoticity parameter.

Using Q;n, has the advantage of not depending on reference frame, which simplifies
comparison between two different experiments. This parametrization also requires
fewer statistics, so if an experiment has a limited number of identical particle pairs, a
one-dimensional parametrization could still be possible. The disadvantage, as pointed
out by Bowler [Bow85]|, is that R;,, probes an average over the four-vector @, so

information of the full spatial extent of the source is lost.

12
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Figure 2.3: A more realistic correlation function for protons.

2.3.2 Higher-Dimensional Parametrization

Given ample statistics and an appropriate experimental acceptance, a more com-
plete parametrization is possible. The three-dimensional parametrization most com-
monly used is the Bertsch-Pratt coordinate system [BGT88, Pra86]. The momentum
difference Q is broken down into )7, and Q7. @, the “longitudinal” direction, is par-
allel to the beam direction, and )t is transverse. In a two-dimensional parametriza-
tion, these are the coordinates used. For 3-d, ()7, or more appropriately, Q} is further
broken down. The outward direction is defined as parallel to the total transverse mo-

mentum of the pair, and the sideward direction is perpendicular to that. So the

13



Beam Direction Beam Direction

Figure 2.4: The Bertsch-Pratt coordinate system used for 3-dimensional HBT analy-
sis.

momentum difference  would be represented as (Qro,Rrs,Qr), as illustrated in

Figure 2.4.

Using these coordinates, the two-dimensional Gaussian correlation function is:
Co(Q) =1 + Ne U Fr—QLEL (2.20)

and in three dimensions:

2

CQ(Q) =1+ \e~QroR7o—QrsR7s—QLRE (2.21)

These radius parameters are referred to as longitudinal (Ry), transverse (Ryr), out-
ward (Rro), and sideward (Rrg).

As the focus of this work is on two-dimensional analysis, no more will be said about
the three-dimensional parametrization. For a more detailed study of the implications

of a three-dimensional analysis, see [Har97].
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2.4 LCMS Reference Frame

Once the coordinate system has been decided upon, the reference frame must be
chosen. For this study, the longitudinally co-moving system (LCMS), suggested by
Pratt [PCZ90], will be used. In this frame, the total momentum of the pair is in the

transverse direction:
Pz + Pz =0, (2.22)

where p,, is the momentum of the i along the direction of the beam, the z-direction.
It should be pointed out that both the reference frame and the coordinate system are

different for each pair.
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CHAPTER 3

EXPERIMENT NA44

The heavy-ion experiment NA44 sat in CERN’s North Experimental Hall in Pre-
vessin, France, just across the border from Geneva, Switzerland. A second-generation,
fixed-target experiment, it was originally designed to use the Super Proton Syn-
chrotron’s (SPS) 200 GeV /nucleon 3?S beam from the H4 beamline. When the SPS
was upgraded in 1994 to inject a 158 GeV /nucleon ?°Pb beam, NA44 was also up-
graded. The Pb beam was used from 1994 until the experiment was de-commisioned,
in 1996. For the Pb ions, the maximum beam intensity was 6 x 10® particles per spill,
and each spill lasted 2 seconds; for the data here, the beam intensity was closer to
3 x 10° Pb ions per spill.

NA44 is a focussing spectrometer that specializes in the detection of a few parti-
cles near mid-rapidity, meaning single-particle yields and spectra and two- and three-
particle correlations were typically studied. Figure 3.1 shows the experiment as it
was during the 1996 Pb run. NA44 had a small acceptance, so only a few particles
per event were detected. As a result, the detector had excellent particle identifi-
cation (PID) on a track-by-track basis. Both Cerenkov detectors and time-of-flight

measurements were used in PID.
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The entire detector was mounted on movable supports to increase the range in
transverse momentum (p;) that could be studied. The spectrometer could be posi-

tioned at two different angles: 44mr (2°) and 131mr (7°), or small angle and large

angle.
wrrable suPP-:-irt
z="Sm o
Pad Aerogel Multi-Particle
Chamber Cerenkow Thresheld Imaging Cerenkow
H2 Strip Strip UCAL
Chamberl Chamber? H4
J /ﬂ v / r
i “\\‘-\ motor-driven su]:-ponsf//
—_——— + 1
z=10m r=15m z=m
D Clpole magmets
05 superconducting Juadrupole Magnets
CX: Cerenkov Beam Counter (33ps resolution)
] Threshold Gas Cerenkor Counter
H: Scintillator Hodoscopes (60,50,60 vertical slats)
UCAL Uranium-Cu-Scintillator Calorimeter

Figure 3.1: Experiment NA44 in 1996.
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3.1 The Target Area

Upstream of the target, two detectors are used to ensure a “clean” beam is striking
the target. The first is a Cerenkov beam counter, consisting of two phototubes, each
connected to a Cerenkov chamber. These detectors are used to estimate the timing
resolution and to eliminate events with a “double beam.” A double beam occurs
when more than one beam particle strikes the target within the limit of the detector’s
time resolution.

Two scintillators, CXVLA and CXVRA, are located around the beam line. A
large signal in either of hese detecors indicates that the beam is off-target; a large
signal in both these detectors would be indicative of a “beam-halo.” In either case, the
beam would be less likely to hit the target than some surrounding material. Events
with such large signals are always rejected.

The target sat just downstream of the beam counter and CX. For the data pre-
sented here, a Pb target of 6 mm thickness was used.

Downstream of the target sat two centrality detectors, T0O and a silicon pad detec-
tor. The two thin pieces of scintillator that make up T0 are placed far enough apart
that any particle within NA44’s acceptance window would pass between them. Other
particles produced from the collision within the psuedo-rapidity range 1.3 < n < 3.5
would hit the scintillators. Each scintillator was attached to two phototubes. As-
suming particle multiplicity to be proportional to centrality, the analog-to-digital-
converter (ADC) signals from T0 were used as the centrality trigger. The estimate

on centrality from TO came from:

TO0 count rate

centrality ~ (3.1)

beam counter rate x target interaction length
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The electrons not completely removed from the Pb ion beam, called delta electrons,
formed a large percentage of the particles detected by T0. These electrons were swept
to one side by the first dipole magnet, in which T0 sat.

The silicon pad multiplicity detector consisted of 512 pads, and had full azimuthal
symmetry in the pseudo-rapidity range 1 < n < 4. It supplied an additional check of

centrality in off-line analysis.

3.2 The Magnets

Figure 3.1 shows the magnets used in NA44: two dipoles (D1 and D2), and three
superconducting quadrupoles (Q1, Q2, and Q3). The dipoles were used to select
different nominal momenta of the particles being measured. The momenta typically
selected were 4 GeV/c, 6 GeV/c, and 8 GeV/c, each + ~ 20%.

The superconducting quadrupoles were used to focus the particles in a particular
plane, either the horizontal or the vertical. Because each plane maximizes the accep-
tance of a different set of two of the three components of Q, using the quadrupoles
optimizes the spectrometer for HBT studies.

Selecting the horizontal setting would maximize the acceptance for Qro and Qp;
Q1s and Q1o are measured better with the vertical setting. Due to time constraints in
the data taking, only one setting was possible for the data discussed in this thesis. The
horizontal setting was selected because it has better momentum resolution [Har97].
NA44’s acceptances for kaons and protons in the 8 GeV/c horizontal, large angle
setting are shown in Figure 3.2 on a p; versus rapidity plot. Figure 3.3 shows the

acceptances for the relative momenta for both protons and kaons.

19



NA44 ACCEPTANCE
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Figure 3.2: NA44 acceptance for kaons and protons in the 8 GeV/c high angle setting.
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8 GeV Horizontal Acceptance
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Figure 3.3: NA44 acceptance for 131mr protons (first graph) and kaons.
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3.3 The Detectors

Downstream of the magnets sat the various detectors that made up the core of
NA44. These detectors were used to identify particles and to track their trajec-
tories. Three highly segmented, scintillating time-of-flight (TOF) hodoscopes and
three multi-wire proportional chambers provided position and timing measurements
that were used to calculate the momenta and velocities of the various particles. In
addition, three Cerenkov detectors were used to identify the presence or absence of
certain particles. There were other detectors in place, but they were not used for

analyzing the data set described in this thesis.

3.3.1 The Hodoscopes

The three hodoscopes in NA44, H2, H3, and H4, were located, respectively, 13.9
m, 18.4 m, and 24.7 m from the target. H2 and H4 each had 60 vertically aligned slats
of plastic scintillator; H3 had 50 slats. The slats on H2 were 6 mm wide by 6 mm thick
by 200 mm long; on H3 they were 13 x 10 x 220 mm; on H4 they were 23 x 20 x 700
mm. While H2 and H3 sat perpendicular to the length of the experiment, H4 was at
a slight angle, which varied with the angular setting of the spectrometer.

Each slat was attached at top and bottom to a photomultiplier tube. The y-
position of a charged particle hitting a slat could be calculated using the time differ-
ence between light hitting the two phototubes. For H2, H3, and H4, the resolution
in the y-direction was estimated to be 9, 7, and 13 mm. Since the z-position was
determined by which slat the particle passed through, the z-resolution is the same as
the width of the slat. The timing resolution for TOF in each hodoscope was approx-

imately 100 ps. The time-to-digital-converter (TDC) signals from the hodoscopes
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were used to trigger on events. An event was considered to be a valid “pair event” if
there were at least two simultaneous hits in both H2 and H3.

Almost 35% of all 8 GeV/c kaons decayed before reaching H4, because it was
located .41ct from the target, in the kaons reference frame. Therefore, in the kaon
analysis, H4 was only used as an additional check on the TOF; valid hits in H4 were

not required for all kaon events.
3.3.2 Multi-wire Proportional Chambers

The three multi-wire proportional chambers in NA44 were the pad chamber (PC)
and two strip chambers (SC1 and SC2). The PC, located 9.5 m downstream from
the target, could simultaneously measure the x and y positions of a particle passing
through, by nature of its pad readout. It had a y-resolution of 2.7 mm and an z-
resolution of 4.3 mm. The information from the PC played a significant part in
calculating the particle’s momentum.

The two strip chambers were located in close proximity to H2 and H3. SC1 sat
directly behind H2, at 14.4 m downstream of the target, and SC2 sat directly in front
of H3, at 17.9 m downstream. Each detector had two sets of parallel strips, one set
horizontal and the other vertical. In reconstructing tracks, each strip chamber was
treated as two detectors; the vertical strips supplied the z-positions of each hit, and
the horizontal strips supplied the y-positions. The z-resolution of SC1 was 1.2 mm,
and the y-resolution was 1.1 mm; for SC2, the z-resolution was 1.4 mm, and the
y-resolution was 2.3 mm.

For two-particle analysis, one has to be careful not to confuse one track for two.

In order to avoid the creation of such “ghost tracks,” cuts were applied to the data
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such that tracks had separations of less than 5 mm in the pad chamber. A similar
requirement was made on hits in the strip chambers. Furthermore, two nearby tracks

in the hodoscopes had to have at least one slat between them.
3.3.3 Threshold Cerenkov Counters

C1 and C2 are two threshold Cerenkov counters used to trigger on the presence or
absence of certain species of particles. Both detectors, lcated downstream of the pad
chamber and before H2, were filled with gas that can be set to high or low pressure
settings. A change in the pressure of the gas changed the index of refraction, which
changed the minimum velocity, or threshold, needed for the emission of Cerenkov
light.

The trigger was set to require, ignore, or reject (veto) events in which either
Cerenkov fired. For these data, C2 was used to reject events with particles lighter
than kaons (mostly pions or electrons), and C1 was used off-line to detect the presence
of kaons. The trigger was set to veto events with C2, and ignore C1.

Further downstream, before SC2, sat another Cerenkov detector, the TIC (Thresh-
old Imaging Cerenkov). This was used to positively identify pions on a track-by-track
basis. Since most pions in this data sample were rejected by the C2 veto in the trigger,

the TIC only served to eliminate a small number of events.
3.3.4 Other Detectors

Two other detectors not used in this analysis were also a part of NA44, an Aerogel
Cerenkov counter, located between PC and C1, and a uranium calorimeter (UCAL),
situated directly downstream from H4. Unfortunately, the aerogel detector never

operated as well as expected, so it was not used in any analysis. The UCAL was

24



used in single particle analysis to eliminate electrons and muons from pion and kaon

spectra, and it was also useful in anti-deuteron analysis.

3.4 NA44 Monte-Carlo

Due to the finite acceptance and momentum resolution of the NA44 experiment, an
experimental bias was introduced into the data analysis. A Monte-Carlo simulation
of the experiment was used to try to correct for these distortions. This program
was based on the DECAY TURTLE (ref [Bro74]) and TRANSPORT (ref [Bro80])
simulation packages.

The first step of the Monte-Carlo code was to generate a momentum distribution
of particles. This could be a distribution of one particle species, or a mix of several.
The distribution used was a thermal one:

1 d?N
m? dy dmy

— o(=mt/T) ((y=v0)?/0?) (3.2)

Here, m; is the transverse mass of the particle, y is the rapidity, 7" is the inverse
slope parameter, and ¢ is the width of the rapidity distribution. The inverse slope
parameter was taken from single particle analysis; o was taken directly from rapidity
distributions.

Given a distribution of momentum and position points, the Monte-Carlo code
sends these tracks through a simulation of the spectrometer. These “measurements”
are then reconstructed as if they were real data. The discrepancies between the initial
and the reconstructed momenta can then be used to correct for any experimental bias.

A comparison between Monte-Carlo distributions and real data is shown in Fig-
ure 3.4. This is for 8 GeV/c, wide-angle kaons in the horizontal setting. The Monte-
Carlo output agrees quite well with the data. Although there is a slight difference in
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the distributions for the z confidence level (CLX), this difference is below the cut on
CL, and is therefore not significant for this analysis.

The differences between the initial Monte-Carlo momenta and the reconstructed
Monte-Carlo momenta can be used to roughly calculate NA44’s momentum resolu-
tion. Assuming that the distribution of the differences is Gaussian, then the width of
the distribution would be the resolution. Table 3.1 shows the momentum resolution

for the high angle, 8 GeV/c, horizontal setting.

Momentum component | Resolution
o(AQr) 13.5

Table 3.1: The momentum resolution (in MeV/c) as calculated from the Monte-Carlo
for Qiny, Qr, and @, for the 131mr 8 GeV/c horizontal setting. The @y, resolution
is evaluated in the LCMS frame.
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CHAPTER 4

DATA ANALYSIS

The goal of this chapter is to describe the reduction of NA44 measurements from
raw data to files of momentum and position vectors, and the production of a cor-
relation function from those files. The calibration of the main detectors and the
reconstruction of tracks will be discussed. The selection of suitable particle pairs and

the construction of the correlation function and its significance will also be presented.

4.1 The Data

All the data analyzed for this thesis were collected in the fall of 1996, with the
spectrometer in the high angle, 8 GeV setting. The trigger was set for pairs of particles
with a mass of the kaon or higher, so K™ K™, K*p, and pp were the most frequently
accepted valid pairs. The results from the Kt K™ analysis will be compared with a
similar analysis performed by Takeshi Kohama at the University of Hiroshima on a
low-p; Kt K™ sample taken during the 1995 Pb run.

Pions are the most abundantly produced particles in heavy ion collisions, with
protons and kaons a distant second and third. As a result, there was a lot of dead
time between accepted events. A total of 68 valid runs (run nos. 4677-4779) were

taken over the period of a week, with each run containing approximately 35K events.
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The limiting factor of each run is the amount of data that can be stored on an IBM
3250 magnetic tape; one tape contains one run. The target used was made of lead,
with a thickness of 3.405 g/cm? (3 mm) which is on the order of 6.3% of an interaction

length for a Pb projectile. The trigger centrality was set to oyig/0geom = 19 + 1%.

4.2 Hodoscope Calibrations

In order to optimize the performance of the three hodoscopes and the CX counter,
calibrations must be performed on a regular basis. Separate calibrating runs are not
needed; the data are used directly. During an extended length of time with the
same trigger settings, the detectors must be calibrated every 5-10 runs; the procedure
must be repeated whenever the trigger is changed, or if a long period of time elapses
between runs. A five-pass system is used for these calibrations.

In the first pass, pedestal values (PED) are calculated for the ADCs attached to
each photmultiplier tube in CX and the three hodoscopes. The difference between
the raw ADC value (ADC,,,,) and the pedestal yields a true ADC value (ADCyye =
ADC, 4 — PED). For each slat, a crude TOF offset (TOF) is calculated.

Slewing constants are calculated in the second pass, and further refined in the
third. The TDC response of the hodoscope slats depends on the amount of charge
deposited in the slat. The discrimator on the TDC needs a minimum charge to be
deposited, and a large amount of charge can satisfy this threshold in a shorter length
of time, so the corresponding time measurement would seem shorter. The slewing

constants (SLW) are used to eliminate this dependence. The corrected TDC values
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(TDC,,,,) are calculated from the raw values (T DC,,,,) using the following equation
[Lee93]:

1
V ADCtrue ‘

In the fourth pass, the calibrations are completed with the calculation of several

TDCopy = TDCloy — SLW X (4.1)

new constants, using the constants from the previous passes. First the TOF dis-
tribution is calculated. A typical TOF distribution has two peaks (for these data,
one for kaons and one for protons). One of these peaks is chosen, fit to a Gaussian,
and adjusted to be centered at the origin. The amount by which the peak is moved
is known as the TOF offset. The y,frs: is also calculated, the vertical position in
each hodoscope slat where the two phototubes fire simultaneously. The last constants
determined are the ADC gains of each photomultiplier tube (for all hodoscopes and
CX), for gain matching.

The final pass is purely diagnostic in nature. The results from the previous four
runs are checked, and once all the constants are deemed valid, they are inserted into

the NA44 database.

4.3 Reconstruction and DST production

The next step after calibrations is the reconstruction of tracks and the production
of data summary tapes (DSTs). Only some of the raw data on the IBM tapes are used
in reconstruction. From the information from the hodoscopes, the strip chambers,
and the pad chamber, it is determined which hits can be considered valid. These
valid hits are then used to determine tracks, and the corresponding momentum for
each track is calculated. All of this information is then stored in the final DST as an
ntuple [Bru8sg].
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Using the calibration constants previously calculated, the hodoscope ADC and
TDC values on the tape are converted to positions in z and y (z is determined by
the position of the detector) and TOF information associated with each track. To
reduce noise, a hit in the hodoscopes is considered valid if its ADC value is above a
minimum threshold. This prevents the reconstruction of tracks from “garbage” hits,
so-called ghost tracks.

The SC and PC information is handled differently. The ADC values are pedestal
subtracted before the data is saved to tape. A valid hit in these chambers appears
as a cluster of pads that have fired. A deconvolution algorithm is used to identify
the clusters [Spe94]. A Gaussian fit is used on the clusters (1-dimensional for the
SC, 2-dimensional for the PC), and the center of the Gaussian is considered the hit
position. Again, to eliminate garbage hits, a minimum ADC value is required.

A chi-squared fitting technique is used to determine tracks from the list of valid
hits. Tracks are required to follow a straight line trajectory. The detector resolution
is accounted for, as is the multiple scattering a particle would encounter before hitting
each detector. The requirements for each track are valid hits in H2, H3, the PC, and
3 of 4 of the SC planes; H4 is not used in the reconstruction. In events with multiple
tracks, a minimum distance is required between the two tracks in the PC and the SC,
and tracks passing through adjacent hodoscope slats are disallowed.

Once a track is deemed valid, its momentum must be calculated. The important
information here is the position of the track in the PC and in H2. A polynomial
parametrization is used with the raw position of the track in the PC, but the fitted
position in H2. This was found to improve the momentum resolution due to the

increased multiple scattering after the PC, the closest detector to the target.
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After the tracks have been fit and their momenta calculated, other track-specific
information is calculated. From TOF measurements from each hodoscope, the mass-
squared information for each track can be determined. Three rapidities for each track
are also calculated, treating the particle as a pion, a kaon, and a proton. All this
track-by-track information is written to a DST file, together with scaler information
that is useful on an event-by-event basis. This includes such things as the number of
ADC channels that fired in the Cerekov detectors, and the counts in each of the four

sectors of the TO0.

4.4 Pair Files

For the HBT analysis, the data are further reduced and simplified. Cuts are
applied so that only events with multiple tracks of a given particle remain. Double
beam events are eliminated with a cut on the Cerenkov beam counter ADC levels,
and beam halo events are taken care of using the data from the CX veto detectors.
Since most pions and electrons were removed at the trigger level with a veto on the
second Cerenkov detector, a modest C2 cut is required on the data. A cut on C1 is
used to differentiate between events with kaons and events with protons.

The next step is to eliminate tracks with poor quality. Tracks with a low confidence
level are rejected. Since the number of particles passing through the experiment tends
to be greater near the middle of the acceptance, the statistics for calibration are much
lower near the edges. Therefore, a cut is made that eliminates tracks passing through
the outer slats on the hodoscopes.

For final PID, TOF and mass-squared information in H2 and H3 is used. Only

a loose cut on the TOF for all the hodoscopes is made; those data are used in the
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calculation for mass-squared, so nothing would be gained with strict cuts on both
distributions. The mass-squared peak for kaons should be centered at 0.24 GeV?,
and for protons it should be at 0.88 GeV2. Because the spectrometer has a finite
resolution, the mass-squared distributions are somewhat Gaussian, with a width of
~ 0.25 GeV2. For kaons, the mass-squared for H3 (H3MSQ) was required to fall
between -0.1 and 0.6 GeV?, and for protons, the cut was 0.6 GeV? <H3MSQ<1.6
GeV?. Figure 4.1 shows the H3MSQ distributions with the C1 cut (used for kaons),
and without the C1 cut (used for protons). The estimated proton contamination in
the kaon sample was ~ 14%; in the proton sample, there was a kaon contamination
of =~ 6%.

Each event that satisfies all of the cut requirements is saved in the pair file. The
event information saved includes the run number, event number, TO ADC value,
silicon pad multiplicity, Si ADC sum, and number of kaons (protons). Within each
event, the kaon (proton) track information written to file includes the momentum (as
a 3-dimensional vector), PC position in z and y, the slat number and y position in

H2 and H3, and the number of accepted SC hits for that track.

4.5 Forming the Correlation Function

With a perfect detector, the particles which were produced as pairs could be
separated from those produced as singles, and the relative distributions would be
divided to form the correlation function. With a real detector, the approach usually

taken is to take the measured distribution of relative momenta, and divide that by
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Figure 4.1: H3 mass squared distributions for the 131mr 8 GeV/c horizontal setting.
The upper plot shows the distribution with events where more than 220 ADC channels
in C1 fired, and the lower plot has no cut on C1. Also shown are the expected positions
for the kaon and proton peaks.
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a “background” distribution, one produced by mixing pairs from different events, to
eliminate any non-Bose-Einstein correlations. That is, one would use the equation:

R(p1, p2)

B(Pl, p2) ’ (4'2)

Craw (ﬁl 5 ﬁZ) =

where p; are the particle momenta, R(p,ps) is the “real” distribution, and B(p, p)
is the background distribution. The background sample must be subjected to the
same cuts as the real pairs. A ratio of ten background pairs to each real pair was
used so the real distribution would have more influence on the statistical errors.

For protons, this raw correlation function is the final function; for kaons, various
corrections are applied before a final correlation function is produced. A Coulomb
correction is applied to account for the repulsion of the outgoing pair, an acceptance
correction is applied to account for the experiment’s finite momentum resolution and
two-track efficiency, and a background correction is incorporated to eliminate effects
from residual correlations from the mixed pairs. These corrections are applied on an
iterative basis, so the shape of the correlation function must be known. Within 5

iterations, the results are usually quite stable.
4.5.1 Coulomb Correction

To calculate the correction due to the Coulomb interaction, the procedure outlined
in Section 2.2.2 is used. One of the parameters for the Coulomb wave function inte-
gration is the size of the emitting source. The fitted values of the radius parameters
from each iteration are used as the source size in the successive iteration.

The Gamow factor has also been used to correct the data, even though it is known
to be less accurate than the full Coulomb wave integration. This was done to compare

with the Coulomb correction.
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4.5.2 Acceptance Correction

The physical limitations of the spectrometer cause several distortions to the corre-
lation function. Since the momentum resolution is finite, there is a minimum relative
momentum that can be measured, not to mention the fact that the cuts designed
to eliminate ghost tracks also eliminate pairs of tracks with low relative momentum.
As a result, the low relative momentum region is under-populated. Another problem
arises through the Coulomb correction; this correction is applied using the measured
momentum of each particle, not the particle’s true momentum.

The NA44 Monte-Carlo was used to calculate the acceptance correction. Two
particle events are produced with momenta (pj, p») that would pass them through
the detector’s acceptance. A simulated measurement is performed, yielding recon-
structed momenta (5, p,). These momenta are then used to form an ideal correlation
function (Cs(ideal)) and a reconstructed correlation function (Cy(reconstructed)).
These are both produced in a manner similar to that for producing the raw correla-
tion function from the data: a “real” distribution of the relative momenta is divided

by a “background” distribution, or:

R(py, P2)

Cs(ideal) = ————=,and 4.3

2( ) B( 3 2) ( )
>

Cy(reconstructed) = R(Zi},liz) (4.4)
B( 15 2)

The simulated background distribution is formed directly from the simulated mo-
menta. The real distribution also uses the momenta, but it is weighted by the Bose-
Einstein correlation. The correlation function is taken from the fit to the data. In

equation form:

RGL 1) = =N Gy, ) (4.5)
DP1,P2) = Pp, Pp, 2\P1,P2)- :
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It should be pointed out that for the simulated data, there are no cuts applied to
either the real distribution or the background distribution.

For the reconstructed distributions, the method is similar. The real distribution
is weighted by the Bose-Einstein correlation, again taken from the data, but the

function is evaluated at the simulated momentum points:

o o d°N a o
R(p},p3) = PP, P, x Co(p1, P2).- (4.6)

The background to the reconstructed correlation function is formed from mixed
events, but there is an additional weighting factor to account for the misapplica-
tion of the Coulomb correction. As previously mentioned, the Coulomb correction is
applied to the measured, not the actual, momenta, so the raw background distribution

is scaled:
(4.7)

where Ko (p1,P2) is the Coulomb correction particles with momenta 7, and p,. For
the reconstructed distributions, the same cuts are applied as are applied to the data.
Since both the ideal and the reconstructed distributions depend on the function fit
from the data, the acceptance correction is also calculated on an iterative basis.
Once these two correlation functions are calculated, the acceptance correction

factor is just the ratio between them, or:

o Cy(ideal)
KaCC ) = .
(P1, P2) Cy(reconstructed)

(4.8)

Figure 4.2 shows one-dimensional examples of these functions. The top plot is an
ideal Monte-Carlo correlation function, the middle plot a reconstructed correlation

function, and the third plot is the acceptance correction.
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Figure 4.2: The ideal MC correlation function (Cs(ideal)), reconstructed MC corre-
lation function (Cy(reconstructed)) and acceptance correction for kaons. The Bose-
Einstein weights for each pair are calculated using R;,, = 2.8 fm and A\ = 0.4.
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4.5.3 Background Correction

Because the background distribution used in Equation 4.2 is generated from par-
ticle pairs from different events, it was assumed that there were no Bose-Einstein
correlations between the particles. This is not necessarily a valid assumption. Zajc
has shown [Zaj84] that residual correlations remain in a mixed-pair background, and
Peitzmann has shown [Pei93] that these correlations are inversely proportional to
the size of an experiment’s acceptance. As NA44’s acceptance is rather small, these
residual correlations could be significant.

As with the other correction factors, in order to calculate the background cor-
rection, a functional form of the correlation must be assumed, and to further refine
the correction, an iterative approach is used. The procedure used on these data was
first described in [Bog93|. For the first iteration, an initial single-particle background

spectrum is calculated from:
B%(p1) = Y_ R(p1, a), (4.9)
P2

where R(py,D») is the numerator from Equation 4.2. For the i** iteration, the back-

ground is calculated from:

B = ¥ ol

i e (4.10)
72 }itl (P1, P2)

where C7;' (py,72) is the fitted correlation function from the (i — 1)™ iteration. A
background for particle-pairs is calculated from the product of two single-particle

spectra:

B'(py,p2) = B' (1) B*(52)- (4.11)
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From this, the background correction factor for the i** iteration is:

(4.12)

4.5.4 Fully Corrected Correlation Function

Once all the corrections have been calculated, the fully corrected correlation func-

tion is calculated from:

CQ(Q) = Craw(Q) X Kcoul X Kacc X Kbacka (413)

where (@ is the relative momentum (Q;,, for 1-dimensional fits, Cj for higher-dimensions).
It should be pointed out that each of the correctional factors required the form of
the correlation to be known beforehand, so there the final correlation function has
significant model dependence. However, at the present time, there exists no way to
calculate the acceptance and background corrections without assuming a form to the
correlation. While the initial choice of a Gaussian form may have been for simplicity,
the x?/DOF obtained from the fits are reasonable enough to suggest this choice is a

valid one.

4.6 Fitting the Correlation Function

To fit the correlation function, the MINUIT fitting package [MIN92] is used. The
maximum likelihood fitting method is used for the results presented here; a chi-
squared minimization technique was also used. A description of the two methods is

in order.
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The maximum likelihood method starts with the assumption that the data points
follow Poisson statistics. This means that the probability density function would look
like:

 pR
P(R;|R;) = RZ.! e, (4.14)

where R; is the number of real counts in the i** bin, and R; = C;B; is the expected
number of counts in that bin, given Cj is the value of the function, and B; is the
number of background counts. This method assumes that the statistical errors in the
background are insignificant compared to the real distribution, a reasonable assump-
tion since there are ten times more mixed than real pairs. For all the data points,

the likelihood function is the product of Equation 4.14 over all i:
L =[] P(Ri|Ry). (4.15)

To reduce the roundoff error from the multiplication of many small numbers, MINUIT

minimizes the logarithm of this equation:

The chi-squared minimization technique begins with a different function that must

be minimized:
X" =>_(Ci— Ri/By)V;;' (C; — R;/B). (4.17)

2,7
Here, R;, B;, and C; represent the same quantities as before, and V;; is a covariance

matrix. If the statistical errors are uncorrelated, this expression reduces to the method

of least squares:

=3 M, (4.18)

i g
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where o; is the approximate error on R;/B;. This method is problematic for bins
with limited statistics, in that o; could severely underestimate the true error [Pan93].
This would lead low-statistics bins to drive the fit too strongly, which is particularly
troublesome in the low () region, since the first few bins have the greatest influence
on the fit.

For the results presented here, the maximum likelihood fit method was used, due
to the relatively low number of kaon pairs. The chi-squared minimization technique
was explored, and the results were similar. The calculation of systematic errors was

then performed by hand, the details of which can be found in Appendix B.
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CHAPTER 5

EXPERIMENTAL RESULTS AND DISCUSSION

In this chapter, the one-dimensional and two-dimensional results from the 131mr
8GeV Pb+Pb — KTK™ + X data, and preliminary one-dimensional results from
the 131mr 8GeV Pb+Pb — pp + X data will be presented. A simple Gaussian
source model will be used to interpret the pp results. Results from a rescattering
model will be compared to the K™ K™ data. The KT K™ data will be compared to an
independently analyzed 44mr 6GeV data sample. All of these results will be compared
to results from NA44 pion interferometry Pb+Pb collisions, as well as analysis from

S+Pb collisions.

5.1 Omne-Dimensional K™K Correlation Functions

As stated in Section 2.3.1, the equation used in fitting the 1-dimensional correla-

tion function is:
Co(Qiny) =1+ e~ @ino Biny (5.1)

where (;,, is the Lorentz invariant length of each pair’s relative momentum. The
one-dimensional fit to the KT K™ correlation functions is shown in Figure 5.1. This

function has had the full Coulomb wave correction applied. Since the systematic
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errors were not included in the fit, the error bars are purely statistical, as will be the
case for all plots presented. With the 131mr 8GeV setting, the average transverse

momentum is < p; > = 910 MeV.
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Figure 5.1: The kaon correlation function in Q;,,, with the full Coulomb wave cor-
rection. The solid line is the fit function.

A comparison of the Coulomb wave correction and the Gamow correction is shown
in Figure 5.2. From this plot, it can clearly be seen that the Gamow corrected function
is larger at low relative momentum, corresponding to a larger radius parameter. This
comes from the fact that the Gamow correction treats the particle source as pointlike.
It should be pointed out that for both these fits, the first bin (0-10 MeV) is empty,
and the second bin has so few statistics (and hence large error bars), that it does not

contribute to the fit; all other points are included.
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Figure 5.2: A comparison of the Coulomb Wave and Gamow corrections in Q-

The values of the parameters from both the Coulomb and the Gamow correction
correlation functions are listed in Table 5.1. The errors are listed as statistical +

systematic. Also included is the x?/DOF for each.

Coulomb | 0.47 + 0.12 £ 0.08 | 3.28 £+ 0.62 £+ 0.75 21/26
Gamow | 0.53 + 0.10 £ 0.10 | 2.71 £+ 0.43 £+ 0.68 23/26

Table 5.1: Fitted results of Gaussian parameterizations of the correlation function in
Qinv- The errors are statistical + systematic.

The A parameter is expected to be on the order of 1 for kaons, significantly less

than that for pions. This is because pions are more likely to be produced as secondary
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particles from resonances than kaons; pions from resonances would have no Bose-
Einstein correlations with pions produced directly from the source. For this data
sample, the reduced A parameter is most likely a consequence of the 14% proton
contamination, for which no correction was made. For each correction technique, the
x2/DOF is on the order of unity, which implies that the assumption of a Gaussian

form was reasonable.

5.2 Two-Dimensional KT K™* Correlation Functions

To obtain more information, more dimensions must be used in the parametriza-
tion. Ideally, a three-dimensional fit would be made, but the statistics of this kaon
sample makes a two-dimensional fit the highest possible. With the Bertsch-Pratt

parametrization and the LCMS reference frame, the equation used in this case is:
Co(Qr, QL) = 1+ \e OrFi—QLRL) (5.2)

Projections of the Coulomb corrected function are presented in Figure 5.3. The
projection in (), restricts Q7 to be less than 20 MeV, and the opposite is true for
the other projection. The solid line represents a projection of the fit function. Figure
5.4 shows a comparison between the two different correction techniques; the Gamow
correction demonstrates the same behavior as in the one-dimensional case.

Table 5.2 shows the parameters extracted from the two-dimensional fits to the
correlation function, using both correction factors. Again, the x2/DOF for each is
close to unity, indicating the validity of the Gaussian parametrization.

As in the one-dimensional fits, the Gamow correction gives smaller radius param-
eters than the full Coulomb Wave. Comparing the two sets of fits, one sees that A
seems larger in the two-dimensional parametrization, although, within error bars, the
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Figure 5.3: The 2d projections of the full Coulomb corrected correlation function
using the standard Bertsch-Pratt parameterization.
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Figure 5.4: A comparison between the two different correction methods for a fit in
two dimensions.
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A Ry (fm) Ry, (fm) x°/DOF
Coulomb | 0.61+0.20+0.16 | 3.59+0.67+0.97 | 3.20+0.54+0.45 | 117/107
Gamow | 0.66+0.15+0.11 | 2.91+0.42+0.58 | 2.82+0.38+0.34 | 115/107

Table 5.2: Fitted results of the two-dimensional Gaussian parameterization of the
correlation function with both the Coulomb wave and Gamow corrections. Errors are
statistical + systematic.

results are the same. With the radius parameters, R;,, seems to correspond more

closely with Ry, than it does with Ry.

5.3 One-Dimensional pp Correlation Functions

For protons, no functional form is assumed, so no fit is made. The plot shown in
Figure 5.5 is just the ratio of the real spectrum to the background, normalized so the
asymptote isy = 1. No corrections of any kind were applied. For historical reasons,
pp correlations are plotted with g;,, = %Qim,.

To extract a radius parameter from pp analysis, some sort of model must be used.
For this data, a simple Gaussian model was used. Random three-momentum vectors
were chosen from NA44 Monte-Carlo output files, combined with random space points

sampled from a Gaussian of a user-specified radius, R:

p(7,t) = 6(t)e G ). (5.3)
These points were then used as input for Pratt’s Correlation After-Burner (CRAB)
code [Pra94]. The output from this program for radii of 2.5 and 4.0 fm is shown in
Figure 5.6.

Ten different radii were used over the range 3.0 to 4.0 fm, and a x? comparison

done between the generated functions and the data. The best value for R extracted
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Figure 5.5: The raw correlation function for protons. Note that ¢;,, = %QW,.

Figure 5.6: Output from the CRAB program for input Gaussian radii of 2.5 and 4.0
fm.
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from this is R = 3.42 + 0.24 fm, where the errors are purely statistical. A comparison

of the data with the CRAB output for this radius is shown in Figure 5.7.
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Figure 5.7: A comparison of the measured pp correlation function with the output
from CRAB using a Gaussian source with R = 3.42 fm.

5.4 Comparison with Other Pb+Pb Interferometry Data

From 1994 through 1996, NA44 took samples of kaon and pion pairs using multiple
settings. In addition to the kaon study presented here, there was also a larger sample
taken in 1995 at the 44mr 6GeV setting (< p; > = 250 MeV) [Bea0l]. In 1994
and 1995, pion samples were taken at 44mr 4GeV (< p, > = 150 MeV)and 131mr
4GeV (< py > = 450 MeV) [Bea98|. Similar analysis to that presented in this work
were performed on all these samples, although there were sufficient particle pairs in

all of them to enable a three-dimensional fit.
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The one-dimensional and three-dimensional results for all of these analyses are
listed in Table 5.3. All of these results have had the full Coulomb wave correction
applied. For the kaons, the errors are listed as statistical + systematic, while for the

pions, the two errors have been combined.

System A Riny (fm) x?/DOF
44mr KTK* | 0.55 &+ 0.09 £ 0.17 | 5.09 £+ 0.44 + 0.37 33/37
44mr ntot 0.503 £+ 0.046 6.66 + 0.41 39/26
131mr 7T 7t 0.407 + 0.031 5.39 + 0.36 51/35
System A Rro (fm) Rrs (fm) Ry, (fm)
44mr KTK* | 0.84+0.06+0.14 | 4.124+0.264-0.32 | 4.044-0.284-0.47 | 4.3640.33+0.43
44mr rtot 0.569 £+ 0.035 5.50 + 0.26 5.87 £+ 0.58 6.53 £ 0.48
131mr 7t 7t 0.679 £+ 0.034 4.39 £ 0.18 4.39 + 0.31 3.96 £ 0.23
System x>/DOF
44mr KTK+ | 5139/2978
44mr rtot 1423/1720
131mr 77t 1125/1574

Table 5.3: One- and three-dimensional results from other NA44 analyses. The spec-
trometer setting for the kaon data was 6GeV; for the pions it was 4GeV. Errors are
statistical + systematic for kaons, statistical+systematic for pions.

A comparison of the A\ parameters is only valid within the same particle species.
For the kaons, the low-p; three-dimensional A is consistent with unity (expected for
an incoherent source) and the two-dimensional result from the high-p, sample, mostly
due to the large error bars. The one-dimensional A, while not consistent with unity,
does agree with the high-p; result, within errors. For a discussion of the 77 results,
see [Bea98].

In order to compare the two-dimensional with the three-dimensional results, it
must be pointed out that in NA44’s horizontal setting, Q) points almost exclusively

in the Qro direction, so Rrs will be largely ignored for the following discussion. The
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same trend in p; is observed in the radius parameters for K*K* as for the same
parameters in 77 T; they all decrease with increasing p;. The results from all four
samples seem to show a similar trend in Ry, but not in R;,, or Rro. A more useful
comparison would be with respect to the transverse mass, m;. Table 5.4 lists the mean
p: and my for all of the meson analyses. For these results, R;,, and Rro decrease
with increasing m;. In fact, the low-p; kaon results agree remarkably well with the
high-p; pion results, which have essentially the same average m;. This behavior with

increasing m; has been predicted by models [Hum98|.

System <pt > (MeV) | <my > (MeV)
44mr 7ot 150 200
131mr 7wt 450 510
44mr KK+ 250 550
131mr KTK+ 910 1040

Table 5.4: Mean p; and m, for the different meson analyses.

5.5 Comparison to NA44 S+Pb Results

Prior to the 1994 Pb upgrade of the CERN SPS accelerator, the largest projectile
nucleus available was S, with an atomic mass of 32. A sample of kaon pairs was
collected using a S beam at 200 GeV and a Pb target, with the 44mr 6GeV spectrom-
eter setting [Bek94]. The one-dimensional and three-dimensional results are listed in
Table 5.5.

While the results agree within error bars with the K* K™ sample analyzed here,

the two samples do not have the same p;. A comparison with the low-p; sample shows
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A Ripny (fm) x2/DOF

0.98 £ 0.06 £ 0.16 | 3.34 + 0.16 + 0.34 54/36
A Rro (fm) Rrs (fm) Ry, (fm) x?/DOF
0.76+0.07£0.07 | 2.99+0.20+0.10 | 2.69+0.31+£0.16 | 3.30+0.32+0.17 | 2404/1981

Table 5.5: One- and three-dimensional K™ K results from NA44’s S+Pb data. Errors
are statistical & systematic.

that at the same p;, larger radius parameters are associated with the larger projectile.

For a nucleus of atomic mass A, the Gaussian radius is given by:

1.2V A

RGauss = \/5 (54)

So for lead, Rgauss = 3.2 fm, and for sulphur, Rgeuss = 1.7 fm, which makes the
RGauss ratio of Pb to S: 1.9. The R;,, ratio of Pb to Sis 1.5 £+ 0.7, and the Ry ratio
is 1.3 = 0.7. So within error bars, the radius parameters scale with projectile ratio for
K*K™*, in contrast with 77", where the radius parameters increased by 5% with
the larger projectile [Har97].

The S+Pb analysis for pion interferometry [Bek95] explored the dependence of the
radius parameters upon the transverse mass, m;. Specifically, these studies showed:
Ry o (y/mg)~'. A plot of the radius parameters from NA44 Pb+Pb data is shown in
figure 5.8. The closed points are pion data, and the open points are kaon data, except

for the proton point, which is labeled. R; and R,, were then fit to the function:

R, = A (5.5)
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where A and B were the parameters for the fit. The function plotted has A = 3.63 +0.94
and B = 0.292 + 0.042, and the reliability of the fit is shown with x2/DOF = 2.57/4.

So for Pb+Pb collisions, the relationship is closer to: Ry oc (/my)~".
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Figure 5.8: The radius parameters plotted with respect to m;. The closed points are
pion data, and the open points are kaon data, except the labeled proton point. The
curve is the best fit to R, = Am; 2, where A and B are fit parameters.

5.6 Comparison with a Rescattering Model

As discussed in Chapter 1, hadronic observables only probe the state of the collid-
ing system at freeze-out, so models must be used to try and interpret the stages of the

colliding system prior to freeze-out. A rescattering model [Hum94, Hum96, Hum98]
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was developed in an attempt to recreate the hadronic gas stage where the particles
rescatter, but have not yet experienced freeze-out.

The time prior to hadronization in this model is considered unknown and un-
knowable. The initial momenta are sampled from experimentally measured p; and y

distributions. The inverse slope parameter (see App. A), T, is given by:

T = o + mf2 (5.6)

init)?

where m is the particle mass. The inside-outside cascade model is used to determine

the longitudinal hadronization position (2pe4) and time (tpqq):

Zhad = Thadsmh(y) (5-7)

thad = ThadCOSh(Yy), (5.8)

where 73,4 is the hadronization proper time, and y is the particle’s rapidity. The
free parameters for this model are Tj,i, Binit, 0y, and Theq, Where o, is the width
in the rapidity distribution. A comparison with experimental m;, multiplicity, and y
distributions, leads all of these parameters to be the same for all particles. Only strong
interactions are considered, so positive and negative particles are treated identically,
and protons and neutrons are just considered to be nucleons, N. The four lightest
long-lived hadrons are included (7, K, N, and A) as well as several resonances (p, w,
n, 1, ¢, A, and K*).

Once the initial conditions for the particles are calculated, the system evolves in
time (with §¢ = 0.1 fm/c), allowing for particle decay, particle collisions and scatter-
ing, and the creation of resonances. When the system reaches a point where no more

interactions occur, freeze-out is assumed, short-lived resonances are allowed to decay,
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and the final space- and momentum-points are saved. From this output, two-particle
correlation functions were calculated and fit using the Bertsch-Pratt parametrization.

The results from this model using a 7,,¢ = 1 fm/c are listed in Table 5.6
[HumO00]; the NA44 two-dimensional results are included. The calculation for these
results assumed a Pb+Pb colliding system, and the transverse momentum of the final

state kaons was restricted to: 600 MeV < p; < 1650 MeV.

A RTO (fm) RTS (fm) RL (fm)
Model 0.88+0.03 3.97+£0.17 3.41£0.13 3.46£0.12
131mr K*K* | 0.614+0.20+0.16 | 3.59+0.67+0.97 3.20£0.544+0.45

Table 5.6: Results from a three-dimensional fit to a KT K™ correlation function using
output from the rescattering model, and the NA44 two-dimensional results.

This model shows excellent agreement with the two-dimensional results from the
high-p; kaon data sample, comparing Ry to Rro. The largest discrepancy appears in

the A parameter, which reflects the effect of the proton contamination in the data.
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CHAPTER 6

CONCLUSIONS

Ultra-relativistic heavy ion collisions provide a way of studying matter under the
most extreme limits of mass and energy density available in a laboratory. It is be-
lieved that hadronic matter under these conditions will undergo a QCD-predicted
phase transition. Experiments such as NA44 explore these collisions through the
measurement of hadronic observables which probe the colliding system at freeze-out.
With the help of theoretical models, these observables can help with the understand-
ing of the earlier stages of the collision.

Two-particle interferometry provides a means for indirectly measuring the spatial
volume of the colliding system at freeze-out. The KT K™ and pp results from NA44
presented show a smaller source size than 777+ and KT K™ results from lower p;,
which has been both previously observed and predicted. All the radius parameters
tend to decrease with increasing transverse mass.

When compared to S+Pb results at similar collision energy, the Pb+Pb results
show a larger source size. A comparison of K*K™ results from the same p; indicate
that the observed source size scales directly with the projectile size, contrary to the
results from 7t7* interferometry. Also, the results from S+Pb show a (/m;)~!
dependence, as opposed to the (W)_l dependence seen in the Pb+Pb data.
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Finally, a rescattering model was used as a comparison to the K™ K™ data, and
it was found to agree quite well with the measured results.

The first observed collisions at Brookhaven’s RHIC (Relativistic Heavy Ion Col-
lider) in the year 2000 are paving the way for continued study in this field. At the
STAR experiment (Solenoidal Tracker At RHIC), analysis of Kt and K~ pairs is

under way, as well as K° pairs, which would be free from Coulomb effects.
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APPENDIX A

KINEMATIC VARIABLES

This work follows the convention that A = ¢ = 1.

For NA44, as with most (if not all) accelerator experiments, the z-direction was
defined as the beam axis, positive being in the direct the beam traveled. The y-
direction is the vertical direction, with “up” defined as positive. The z-direction
was perpendicular to these directions, with positive x towards the left when looking
downstream.

A particle’s total three-momentum (p) is usually specified in terms of a transverse

momentum, p;, and a rapidity, y, where:

pr = \/P2+p2 =/|pl* - piand (A1)

y = 3in(5Ee) =tanh™ (), (A.2)

where E is the particle’s total energy. Rapidities add like Galilean velocities; rapidity
difference is a Lorentz invariant quantity. In the low rapidity limit, y < 1 (or p, < F),
y ~ 3 = v/c. Without proper particle identification, ' can be measured, but the total

energy is not known. In this case, the pseudorapidity, 7 is used:

n=—In tan(;r;,‘ ). (A.3)
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The energy, E, and longitudinal momentum, p,, can also be expressed as:

E = mycosh(y),and (A.4)

p, = my sinh(y), (A.5)

where the transverse mass, my, is defined as:

my = \/m? -|-p%_ (A6)

The collision system is often modeled as a thermal system, in which case, the

single-particle spectrum can be approximated by a Boltzmann distribution:

Ld_N X eimt/T.

AT
my dmt ( )

While T is similar to a temperature, its exact interpretation is not known, so it is

referred to as an “inverse slope parameter.”
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APPENDIX B

SYSTEMATIC ERRORS

For this analysis, five parameters were varied, and the change in the fitted results
was taken to be the systematic error for that parameter. Table B.1 lists the various
parameters, the value used for the main analysis, and the value chosen for the sys-
tematic error study. There may be other parameters that would contribute to the
systematic error, but they were not considered for this study.

MINCNT is the minimum number of counts required for any bin to be included
in the fit. This is included to prevent low-statistics bins (where the error is most
likely underestimated) from contributing too strongly to the fit. Because there were
plenty of statistics for a 1-dimensional analysis, and just enough for a 2-dimensional
analysis, MINCNT had a greater contribution to the systematic error inthe 2-d case.

Bin size is the width chosen for each bin. Again, from statistics-based arguments,
the 2-d fits were more strongly influenced by this parameter than the 1-d. The
standard width used for the 2-d case was, in fact, the narrowest that could be chosen

for a converging fit.
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PC_CUT is the minimum distance allowed in the pad chamber betwen two tracks.
A similar parameter is SUM_CUT, which compares the sum of the minimum separa-
tions in PC, H2, and H3. The acceptance correction should be able to account for
these effects, but the MC was not perfect in modeling the efficiency of these detectors.

Tc is the inverse slope parameter used in the MC. To generate tracks, the MC
selects momenta from a Boltzmann distribution A.7. The “temperature” used for
this distribution is a user-defined parameter. The value of 240 MeV was chosen from

single-particle analysis.

Parameter Standard | Variation
MINCNT (2-d) 40 20
MINCNT (1-d) 100 60
bin size (2-d) 20 MeV | 30 MeV
bin size (1-d) 10 MeV | 15 MeV
PC_CUT 0.5 cm 2.0 cm
SUM_CUT 10 ¢cm 12 cm
Tue 240 MeV | 220 MeV

Table B.1: The standard HBT cuts and the variations used in the systematic error
analysis. The meaning of each cut is explained in the text. Note that only MINCNT
and bin size had different values between 1-d and 2-d.

Table B.2 lists the standard parameters, and the variations they experience when
the different parameters are changed. Clearly, changing the bin size has a great effect
on most of the parameters. There is no explanation for the large error on A caused
by the variation in SUM_CUT.

A comparison of the relative strengths of the systematic errors is presented in

Table B.3. All of them are on the order of the statistical errors, not surprising given
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Case Ninw Riny (fm) A Ry (fm) Ry (fm)
Standard 0.47+0.12 | 3.284+0.62 | 0.61+£0.20 | 3.594+0.67 | 3.20+0.54
MINCNT 0.48+0.11 | 3.2040.60 | 0.594+0.13 | 4.07+0.85 | 3.24+0.60
bin size 0.52+0.13 | 3.714+0.68 | 0.65+0.16 | 2.85+0.53 | 2.84+0.45
pPC_CUT 0.501+0.16 | 4.07+0.73 | 0.624+0.22 | 3.754+0.74 | 3.2840.57
SUM_CUT | 0.51+0.14 | 3.4240.63 | 0.75£0.27 | 3.94+0.78 | 3.3940.58
Tve 0.501+0.14 | 3.87+0.66 | 0.564+0.18 | 3.424+0.67 | 3.14+0.55

Table B.2: Fitted 1-d and 2-d results for KT K™ correlation functions with the vari-
ations from Table B.1. The full Coulomb wave correction has been applied to these
results. Errors are purely statistical.

the relatively low number of kaon pairs. The total systematic error is then calculated
by adding the errors for each source in quadrature. The statistical error is not included

in the total error.

Source of Error | Ajny | Rinw | A Rr | Rp
Statistics 26% | 19% | 33% | 19% | 17%
MINCNT 3% | 4% | 5% | 13% | 6%
Bin size 11% | 13% | ™% | 20% | 11%
PC_CUT 2% | 4% | 2% | 4% | 3%
SUM_CUT 9% | 4% | 23% | 10% | 6%
Ty 6% | 18% | 8% | 5% | 2%
[ Total | 16% [ 23% | 26% | 27% | 14% |

Table B.3: The relative error from each source, and the total systematic error.
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