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Spontaneous symmetry breaking

• Nambu & Goldstone (late 50’s) discovered a way through
which a symmetry of a system can be realized: spontaneous
breaking/restauration of the symmetry

• The symmetry is not realized in the particle mass spectrum.
Parity partners are non-degenerate in masses
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τ −→ hadrons

OPAL Collaboration
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Information on vector spectral density at finite T and µB from low mass
dileptons

• High-quality NA60
data

NA60, Eur. Phys. J. C 59, 607 (2009)
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Clear change in the ρ peak at SPS: Width grows, mass remains

X Spectral function
shows a clear peak at
the nominal ρ mass

X Peak broadens for
the most central
collisions

X Total dilepton yield
also increases with
centrality

NA60, Phys. Rev. Lett. 96, 162302 (2006)
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What about a1 at finite T and µB?

There is no equivalent experimental information on the thermal
properties of a1

Need theoretical link between QCD
and hadron properties
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Weinberg Sum Rules: Finite Temperature

• Relate vector and axial current correlators
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To relate QCD properties to hadron properties
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GMOR on the lattice
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Quark-antiquark condensate

HotQCD Collaboration, Phys. Rev. D 85, 0545031 (2012)
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Finite Energy QCD Sum Rules

X Quantum field theory based on
OPE of current-current
correlators and Cauchy’s theorem
on complex energy squared-plane

X Relates hadron spectral function
to QCD condensates and
fundamental degrees of freedom
(quark-hadron duality)

X Finite Energy refers to finite
radius of integration s0 called the
energy squared-threshold for the
continuum
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Melting of resonances

X Hadron spectral
function made out of
resonances plus a
continuum

X At finite
temperature/density,
s0 decreases.
Resonances melt

X FESR allow exploring
how the resonance
parameters change
with
temperature/density
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Finite Energy QCD Sum Rules

• Current correlator at finite temperature
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• Work in the limit q → 0 where Πµν contains only spatial
components
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Finite Energy QCD Sum Rules

• The integrand on the right-hand side can be written entirely in
terms of hadronic degrees of freedom.

• The integrand on the left-hand side can be written entirely in
terms of QCD degrees of freedom, using the OPE, as

ΠQCD(s) =
∑

M=0

C2M〈O2M〉

(−s)M
.

• The term with M = 0 corresponds to the perturbative (pQCD)
contribution. The FESR are
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Weinberg Sum Rules: Finite Temperature
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Use Finite Energy QCD Sum Rules to describe Vector spectral density

• ρ-saturation and BW form
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Finite Energy QCD Sum Rules: Finite Temperature

• Three leading FESR, six unknowns

• Strategy: provide expected behavior of three unknowns based
on experience from other channels

• Choose Γρ(T ), Mρ(T ) and C6〈O6〉(T ) as inputs

Γρ(T ) = Γρ(0)
[

1− (T/Tc )
3
]−1

,

C6〈O6〉(T ) = C6〈O6〉(0)
[

1− (T/T ∗
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8
]

,

Mρ(T ) = Mρ(0)
[

1− (T/T ∗
M)10

]

,

Γρ(0) = 0. 145 MeV, C6〈O6〉(0) = −0. 951667 GeV6 and
Mρ(0) = 0. 776 GeV, Tc = 0. 197 GeV, T ∗

q = 0. 187 GeV and
T ∗
M = 0. 222 GeV

• Solve for f ρ(T ), s0(T ) and C4〈O4〉(T ) [A.A., C.A. Dominguez, M.
Loewe, Y. Zhang, Phys. Rev. D 86, 114036 (2012)]
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fρ(T , µ)
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Test: computing dilepton rate at the ρ peak

• Consider processes where pions anhilate into ρ’s which in turn
decay into dimuons by vector dominance
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Comparison with NA60 data
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Use Finite Energy QCD Sum Rules to describe Axial spectral density

• a1-saturation and Gaussian piece-wise form
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Fit to ALEPH data
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Finite temperature a1 parameters

• Solving the FESR’s s0 turns out to be identical to the one in
the vector channel

s0 = 1.44 GeV2

• The finite temperature results for s0(T ), fπ(T ), fa1(T ) and
Γa1(T ) are written generically as

Y (T ) = Y (0)
(

1 + a1(T/Tc)
b1 + a2(T/Tc )

b2
)
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a1 width as a function of temperature
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a1 weak coupling as a function of temperature
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Weinberg Sum Rule 1
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Combining WSR1 and WSR2 obtain WSR with pinched kernel
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DISCUSION

• Is there any sign of mixing of vacuum spectral densities?

ΠV (q,T ) = (1− ǫ(T ))ΠV (q, 0) + ǫ(T )ΠA(q, 0)

ΠA(q,T ) = (1− ǫ(T ))ΠA(q, 0) + ǫ(T )ΠV (q, 0)

ǫ(T ) =
T 2

6f 2
π

from χPT

[M. Dey, V. L. Eletsky, and B. L. Ioffe, Phys. Lett. B 252, 620 (1990); J. I. Kapusta and E.V.

Shuryak, Phys. Rev. D 49, 4694 (1994); N. P. M. Holt, P. M. Hohler and R. Rapp, Phys.

Rev. D 87, 076010 (2013); P. M. Hohler, R. Rapp, Nucl. Phys. A 892 (2012) 58.]

• Our findings show that the parameters describing the vector
and axial spectral densities evolve independently from each
other at finite T

• What seems to matter is general features such as diverging
widths and vanishing s0 at Tcas well as constant mass up to
T close to Tc

• Important to further elaborate on these issues to clarify
properties of spectral densities and thus for the detailed
understanding of the approach to chiral symmetry restoration


