Direct-photon spectra and flow in Pb–Pb collisions at the LHC measured with the ALICE experiment

Friederike Bock for the ALICE collaboration

Lawrence Berkeley National Laboratory

August 21st, 2014

- Introduction to Direct Photon Measurements
- Measurement of Direct Photon Spectrum
- **③** Direct Photon v_2 Measurement
- Alternative Representation of Direct Photon Flow
- **(5)** Inclusive Photon v_3 Measurement

Additional sources Pb–Pb collisions

Thermal Photons

Jet-Medium Interactions

- Scattering of thermalized particles
- Exponentially decreasing but dominant at low p_T
- Scattering of hard partons with thermalized partons
- In-medium (photon) bremsstrahlung emitted by quarks

pp & Pb-Pb collisions

Prompt Photons

- Calculable within NLO pQCD
- Dominant at high $p_{\rm T}$
- γ leaves medium unaffected
 ⇒ ideal probe
- Test of binary scaling in Pb-Pb

BERKELEY

Direct Photon Flow

Initial azimuthal asymmetry in coordinate space in non-central $A{+}A$

 \Rightarrow asymmetry in momentum space

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} = \frac{1}{2\pi} \left(1 + 2\sum_{n \ge 1} v_n \cos(n(\varphi - \Psi_n^{RP})) \right)$$

- v_2 : elliptic flow, collective expansion at low $p_{\rm T}$
- v₃: triangular flow

Thermal Photon v_2

- Constrains onset of direct photon production
 - Early production \rightarrow small v_2
 - Late production \rightarrow hadron-like v_2

Thermal Photon v₃

• Allows to distinguish different initial conditions & exotic models

arXiv:0809.0548 [nucl-th] 0.20 Thermal Photons Au+Au@200 AGeV 0.16 $b = 6 \, \text{fm}$ (L^{0.12¹} 1.0 fm/c M+HM0.08 0.8 fm/c 0.6fm/ 0.04 0.00 2.0 3.0 1.04.05.06.0 p_T (GeV/c)

Direct Photon Transverse Momentum Spectrum

Subtraction Method:

$$egin{array}{rcl} \gamma_{ ext{direct}} &=& \gamma_{ ext{inc}} - \gamma_{ ext{decay}} = ig(1 - rac{\gamma_{ ext{decay}}}{\gamma_{ ext{inc}}}ig) \cdot \gamma_{ ext{inc}} \ &=& ig(1 - rac{1}{R_{\gamma}}ig) \cdot \gamma_{ ext{inc}} \end{array}$$

- Inclusive photons: measure all photons that are produced
- Decay photons: calculated from measured particle spectra with photon decay branches $(\pi^0, \eta, ...)$

Double Ratio:

 $R_{\gamma} = \frac{\gamma_{\rm inc}}{\pi^0} / \frac{\gamma_{\rm decay}}{\pi_{\rm param}^0} \cong \frac{\gamma_{\rm inc}}{\gamma_{\rm decay}}$ if > 1 direct photon signal

 \rightarrow advantage of ratio method: cancellation of uncertainties

- Numerator: Inclusive γ spectrum per π^0
- Denominator: Sum of all decay photons per π^0 ۲ Decay photons are obtained by a cocktail calculation

- High resolution ($\sigma_{\pi^0} < 2 \text{ MeV}/c^2$) at very low p_{T} ($0.3 < p_{\text{T}} < 2 \text{ GeV}/c$)
- High momentum reach limited only by statistics
- Conversion probability (~ 8.5%), acceptance: $|\eta| < 0.9, \ 0 < \varphi < 2\pi$

Ē

- Performance of the ALICE Experiment at the CERN LHC arXiv:1402.4476 [nucl-ex]
- Very useful tool to check the material budget:
 - Effective radiation length: $X/X_0 = 0.114 \pm 0.005$ ($|\eta| < 0.9, R < 180$ cm)
 - Final systematic error is $\sim 4.5\%$ ۵
- Cuts on the decay topology of photons and electron track properties \rightarrow Purity at 90% at 2 GeV/c for 0-40% Pb–Pb events
- Background is mainly combinatorial Strange particle contribution negligible

(cm)

π^0 Transverse Momentum Spectra & $\textit{R}_{\text{\tiny AA}}$

- π^0 measurement needed as input for R_γ ,
- Statistical & systematic uncertainties of π^0 measurement dominate uncertainties on the R_γ
- Size of excess in R_{γ} depends on R_{AA} of $\pi^0 \rightarrow$ suppression of main source of decay γ
- Extraction of direct photons easier in more central events

Direct photons in pp collisions at $\sqrt{s} = 7$ TeV

- Inclusive γ spectrum corrected for:
 - purity (*P*), efficiency (*E*), conversion probability (*C*), secondary photon candidates
- In the ratio uncertainties related to:
 - normalization, $\pi^{\rm 0}$ measurement, rec. efficiency

partially or exactly canceled

- The NLO double ratio prediction is plotted as $\mathcal{R}_{NLO} = 1 + \frac{\gamma_{direct, NLO}}{\gamma_{cocktail}^{decay}}$
- Measurement is consistent with the expected direct photon signal
- Integrated luminosity for measurement $\sim 5 \ \rm nb^{-1}$

Direct photon signal in pp at 7 TeV is consistent with zero

Double Ratio - Pb-Pb 2.76 TeV

BERKELEY LAB

40-80%

Double ratio for peripheral events shows no excess at any value of $p_{\rm T}$

- Measurement is consistent with the expected direct photon signal
- pp NLO predictions scaled with N_{coll}

0-40%

Double ratio for peripheral events shows no excess at any value of $p_{\rm T}$

- Measurement is consistent with the expected direct photon signal
- pp NLO predictions scaled with N_{coll}

Excess of 20% \pm 5% stat \pm 10% syst for $\textit{p}_{T} < 4\,\rm{GeV/c}$

• N_{coll} scaled pp NLO in agreement with high p_{T} direct photons

Experimental definition of Direct Photons:

- Every photon which is not directly produced by: π^{0} , η , ω , η' , ϕ , ρ^{0} and Σ^{0}
- Decay photons simulated via a cocktail calculation based on measured yield of π⁰ (Pb–Pb, pp) and η (pp), remaining spectra are obtained from m_T scaling of measured π⁰

Nucl.Phys. A904-905 (2013) 573c-576c 1.51.5

Experimental measurement of π^0 :

- Published π^0 measurements contain feed-down from higher mass particles going to π^0 , except π^0 from ${\rm K}^0_s$
- Measured spectra are taken as input for cocktail calculation

Cocktail Generation

Decay photon spectra are obtained via calculation

- Based on a fit to measured π^0 (Pb–Pb, pp) and η (pp)
- Other particle spectra obtained via $m_{\rm T}$ -scaling of measured π^0
- Incorporated mesons: π^0 , η , η' , ω , ϕ , ρ_0 and the Σ^0 baryon

 $\frac{m_{\tau}\text{-Scaling:}}{\text{Same shape of cross sections,}}$ $f(m_{\tau}), \text{ of various mesons}$ $E\frac{d^3\sigma_m}{dp^3} = C_m \cdot f(m_{\tau})$

N	ucl.Phys. A904-905 (2013) 573c-576c	Meson (C_m)	meas.	Mass	Decay Branch	B. Ratio
		π ⁰	pp,	134.98	$\gamma \gamma$	98.789%
3 10 ³ ■	all decay γ		Pb–Pb		$e^+e^-\gamma$	1.198%
* E 🖤	$n \rightarrow \gamma\gamma (\sigma^{+}\pi^{-}\gamma e^{+}e^{-}\gamma \pi^{0}\gamma\gamma)$	η	pp	547.3	$\gamma\gamma$	39.21%
	$(n \rightarrow \pi^0 \gamma (m))$				$\pi^+\pi^-\gamma$	4.77%
PERFORMANCE	$n' \rightarrow qy (qy, yy)$	(0.48)			$e^+e^-\gamma$	$4.9 \cdot 10^{-3}$
¹⁰ 26/07/2012	$\phi \rightarrow \eta \gamma (\pi^0 \gamma, \omega \gamma)$	ρ0		770.0	$\pi^+\pi^-\gamma$	9.9 · 10 ⁻³
1	$\rho \rightarrow \pi^+ \pi^- \gamma (\pi^0 \gamma, \eta \gamma)$	(1.0)			$\pi^0\gamma$	$7.9 \cdot 10^{-4}$
0 - 000/		ω	pp	781.9	$\pi^0 \gamma$	8.5%
10 ⁻¹ π ⁻ ≈ 88%		(0.9)			$\eta \gamma$	$6.5 \cdot 10^{-4}$
$\eta \approx 10\%$	18	η'		957.8	$\rho^0 \gamma$	30.2%
10^2 $\omega \approx 1.3\%$					$\omega \gamma$	3.01%
		(0.25)			$\gamma \gamma$	2.11%
10'3		ϕ	pp,	1019.5	$\eta \gamma$	1.3%
			Pb–Pb		$\pi^0 \gamma$	$1.25 \cdot 10 - 3$
10 ⁴	2.76 ToV	(0.35)			$\omega \gamma$	< 5%
0-40% PD-PD, γS _{NN}	= 2.76 lev	Σ^{0} (1.0)		1192.6	$\Lambda\gamma$	100%
10° <u>0</u> 2 4 6	8 10 12 14 p _T (GeV/c)				Phys. Rev. C	(arXiv:1110.3929)
E Rock (LRNI Rockslov)	Direct F	Photons in Ph. Ph.			August	1c+ 2014 14

Test of Assumptions for Cocktail

- $\eta \& \omega$ meson only measured in pp, φ meson measured in pp & 0-10% Pb–Pb collisions
- *m_T* scaling overestimates yield at low *p_T* consistently for all 3 mesons
- Collective flow in Pb–Pb collisions modifies shape of spectra, thus m_T scaling might not be a valid approximation especially at low p_T
- Systematic uncertainties on cocktail 5-10%
- Aim to measure $\eta \& \omega$ meson at low $p_{\rm T}$ in Pb–Pb collisions

- $\eta \& \omega$ meson only measured in pp, φ meson measured in pp & 0-10% Pb–Pb collisions
- *m_T* scaling overestimates yield at low *p_T* consistently for all 3 mesons
- Collective flow in Pb–Pb collisions modifies shape of spectra, thus m_T scaling might not be a valid approximation especially at low p_T
- Systematic uncertainties on cocktail 5-10%
- Aim to measure $\eta \& \omega$ meson at low p_T in Pb–Pb collisions

BERKELEY

Test of Assumptions for Cocktail

- $\eta \& \omega$ meson only measured in pp, φ meson measured in pp & 0-10% Pb–Pb collisions
- *m_T* scaling overestimates yield at low *p_T* consistently for all 3 mesons
- Collective flow in Pb–Pb collisions modifies shape of spectra, thus m_T scaling might not be a valid approximation especially at low p_T
- Systematic uncertainties on cocktail 5-10%
- Aim to measure η & ω meson at low $p_{\rm T}$ in Pb–Pb collisions

BERKELEY

Results of Pb–Pb Direct Photons at 2.76 TeV

- Systematic uncertainties on the double ratio are partially correlated in p_{T} , Significance of direct photon signal depends on degree of correlation
- Easiest example for fully correlated uncertainties: Material bugdet uncertainty (absolute 4.5% of double ratio)

Direct Photon Flow

$$v_2^{ ext{direct }\gamma} = rac{R_\gamma \cdot v_2^{ ext{inc }\gamma} - v_2^{ ext{decay }\gamma}}{R_\gamma - 1}$$

- $R_{\gamma} \cdot v_2^{\text{inc } \gamma}$: weighted inclusive photon v_2 due to extra photons compared to background
- $v_2^{\text{decay }\gamma}$: calculated decay photon v_2 from cocktail calculation

Inclusive Photon v2 Analysis Method

Initial azimuthal asymmetry in coordinate space in non-central A+A \Rightarrow asymmetry in momentum space

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{1}{2\pi} \left(1 + 2\sum_{n \ge 1} v_n \cos(n(\phi - \Psi_n^{RP})) \right)$$

*v*₂ given by photon production with respect to event plane

$$v_2 = \langle \cos(2(\phi - \Psi_2^{RP}))
angle$$

Event Plane angle determined by using the VZERO detector

- VZEROA: 2.8 $< \eta < 5.1$
- VZEROC: $-3.7 < \eta < -1.7$

Reaction plane resolution obtained by the three sub-event method

Resolution correction for EP:

$$v_2 = rac{v_2^{EP}}{\langle \cos(2\Psi_2^{EP} - \Psi_2^{RP}))
angle} = rac{v_2^{
m raw}}{
m resolution}$$

Decay photon v_2 :

• KE_T scaling: v_2 of mesons scales with KE_T $KE_T = m_T - m = \sqrt{p_T^2 + m^2} - m$

$$\Rightarrow V_2^{\pi^0} \approx V_2^{\pi^{\pm}} (m^{\pi^0} \approx m^{\pi^{\pm}})$$

 $\rightarrow v_2$ of various mesons (X) calculated via KE_T (quark number) scaling from $v_2^{\pi^{\pm}}$

$$v_{2}^{X}(p_{T}^{X}) = v_{2}^{\pi^{\pm}} \left(\sqrt{(KE_{T}^{X} + m^{\pi^{\pm}})^{2} - (m^{\pi^{\pm}})^{2}} \right)$$

• Decay photon v₂ from different mesons obtained from cocktail calculation

- Above 3 GeV/c inclusive photons significantly smaller than decay photons
- $\rightarrow \mbox{Direct photon } v_2 \mbox{ contribution with } v_2^{\rm direct} < v_2^{\rm decay}$
 - Below 3 GeV/c consistent within uncertainties
- \rightarrow Either contribution of direct photons with similar v_2 or no direct photons

Direct Photon v₂ 0-40%

- R_γ · v₂^{inc γ}: weighted inclusive photon v₂ due to extra photons compared to background
- ν₂^{decay γ}: calculated decay photon ν₂ from cocktail calculation

- Large direct photon v_2 for $p_T < 3 \, {\rm GeV/c}$ measured
- Magnitude of v₂ comparable to hadrons
- Result points to late production times of direct photons after flow is established

- Central points for direct photon yield and v₂ underestimated by most theoretical calculations by factors of 2-10
- $\bullet\,$ No significant deviation beyond $2\sigma\,$

- Both measurements are coupled via R_{γ} , critical assessment of uncertainties and their correlations needed
- Theory curves composed out of different sources, experimentally not possible to distinguish those

Propagation and Correlation of Errors on the R_{γ}

- Measured R_{γ} less than $2\sigma_{svs}$ deviation from 1
- Gaussian error propagation only applicable if:
 - a) Relation between observable and input observables is linear or
 - b) Uncertainties sufficiently small

both conditions not fulfilled

$$\frac{\partial v_n^{\gamma,\;\text{dir}}}{\partial R_\gamma} = \frac{v_n^{\gamma,\;\text{decay}} - v_n^{\gamma,\;\text{inc}}}{(R_\gamma - 1)^2}$$

- Errors for $v_n^{\gamma, \text{ dir}}(p_T)$ calculated using MC simulation with probability distributions according to $R_{\gamma}(p_{\rm T}), v_n^{\gamma, \text{ decay}}(p_{\rm T}), v_n^{\gamma, \text{ inc}}(p_{\rm T})$ within 4 $\sigma(p_{T})$ of respective uncertainties
- $p_{\rm T}$ correlated uncertainty, like material budget (4.5%),complicates error propagation
- \rightarrow Evaluation of significance of R_{γ} and $v_{n}^{\gamma, \text{ dir}}$ under investigation Direct Photons in Pb-Pb

Alternative Representation of Direct Photon Flow

Comparison of

$$(v_{n, \text{ measured}}^{\text{incl } \gamma} - v_n^{\text{model } \gamma}) / \sigma^{\text{tot.}}$$

for various models, where model could be:

- $v_{n, \text{ decay}}$ based on measured π data
- $v_{n, \text{ decay}}$ based on measured π data $\cdot w_{\gamma, \text{ decay}}$ $+ v_{n, NLO} \cdot w_{\gamma, NLO}$
 - $+ v_{n, \text{ thermal}} \cdot w_{\gamma, \text{ thermal}}$
- $v_{n, \text{ incl}}$ from full theory calculation

Allows decoupling of measured R_{γ} from comparison, large discrepancy of central points in R_{γ} between theory and data taken out

Comparison of Inclusive Photon v_2

- Deviations from 0 for data, mainly explained by contribution from prompt photons
- Region of interest for thermal sources: 1-3 GeV/c Large systematic uncertainties
- No statement on the existence of direct photon puzzle can be made by ALICE at this stage

- First measurement of inclusive photon v₃ at LHC
- Above 3 GeV/c inclusive photons consistently smaller than decay photons, with large statistical uncertainties
- $\label{eq:constraint} \begin{array}{l} \rightarrow \mbox{ Direct photon } \nu_3 \mbox{ contribution} \\ \mbox{ with } \nu_3^{\rm direct} < \nu_3^{\rm decay} \mbox{ as} \\ \mbox{ expected for prompt photons} \end{array}$
 - Below 3 GeV/c mostly consistent within uncertainties
- \rightarrow Either contribution of direct photons with similar v_3 or no direct photons

Comparison of Inclusive Photon v_3

- $R_\gamma \approx 1.2 \pm 0.05^{\rm stat} \pm 0.1^{\rm syst}$ has been measured by ALICE in 0-40% Pb–Pb collisions
- Direct photon yield extracted with an exponential slope of $\mathcal{T}=304\pm51^{\rm stat+syst}\,{\rm MeV}$
- Direct photon v_2 which is of similar size as the charged hadron flow has been measured in 0-40% Pb–Pb collisions
- First measurement of inclusive photon v_3 at the LHC in 0-40% Pb–Pb collisions
- Current uncertainties on R_{γ} , $v_n^{\gamma \text{incl}} \& v_n^{\gamma \text{decay}}$ do not allow statement on the existence of a direct photon puzzle at LHC energies

Backup Slides

Closer Look at the Central Barrel - ITS and TPC

Inner Tracking System - ITS

- Full azimuth coverage, six cylindrical layers
- Three different detector types: silicon pixel / drift / stripes
- Designed for primary / secondary vertex finding (inner radius $R_{BP} = 2.94 \,\mathrm{cm}$)
- Tracks charged particles down to $\rho_{\rm T} = 100\,{\rm MeV/c}$

- Main tracking and PID detector
- Full azimuth coverage, R = 84.8 cm up to 246.6 cm
- Tracking: 100 MeV/c (primary) or 50 MeV/c (secondary) up to 100 GeV/c

Global Electron Selection Criteria

- Both tracks originate from the same V0 candidate
- No kinks
- Opposite charge
- Small R cut ($R < 5 \,\mathrm{cm}$)

- TPC refit condition
- $\bullet\,$ Minimum momentum of 50 MeV/c
- Minimum fraction of the TPC clusters with respect to findable clusters due to conversion radius

PID Based Selection Criteria

- n σ around electron energy loss hypothesis in the TPC dE/dx
- TOF electron $n\sigma$ selection (if information available)
- $\bullet~$ After PID $\sim 80\%$ pure photon sample

F. Bock (LBNL Berkeley)

Photon χ^2/ndf :

- Based on a Kalman-Filter (AliKFParticle package)
- Measure for conversion likelihood: includes: zero V0 mass, pointing to primary vertex, correct electron mass, mutual secondary vertex

Further Photon Selection Criteria:

- Crosschecks for std. photon criteria
- Psi-Pair angle opening angle perpendicular to B field
- Cosine of pointing angle pointing to the primary vertex

Photon q_{T} :

- Transv. mom. component of daughter relative to the V0 $q_T = p \times \sin(\Theta_{mother-daughter})$
- Clear separation of γ , Λ and K_s^0

Two centrality selections: 0-40% and 40-80% (central and peripheral)

Combined Fit for Direct Photons

Combined fit (Hagedorn + Exponential) gives similar result for the inverse slope parameter T as for the exponential only fit

Systematic Error Sources R_{γ} pp

• Cut Variations for γ and π^0 :

Cut Name	Std. value	Variation 1	Variation 2	Variation 3
Electron dEdx	-4,5 σ	-4,4 σ	-3,4 σ	-
Pion dEdx	1,-10 <i>σ</i>	2,10	2,0.5 <i>o</i>	2,0.5 <i>o</i>
Min.pe ⁺ /e ⁻	0.4 GeV/c	0.4 GeV/c	0.4 GeV/c	0.3 GeV/c
Find. Cls. TPC	0.35	0.6	-	-
Photon χ^2	20	30	10	-
9t	0.05	0.07	0.03	-
min. pt e ⁺ /e ⁻	50 MeV/c	75 MeV/c	100 MeV/c	-
photon η , $\pi^0 y$	0.9, 0.8	0.8, 0.7	1.2, 0.9	-
min. R	5 cm - 180 cm	2.8 cm - 180 cm	10 cm - 180 cm	-

- V0s with shared electrons rejected
- Purity for different centralities used
- TOF and α cut not used for pp
- R cut already considered for material budget
- π^0 yield extraction:
 - Three different integration windows
 - Different Numbers of mixed events for bg, different mixed event bins (n V0s, n tracks)
- Cocktail simulation:
 - Two different fits
 - Variation of the m_t scaling factors (η measured)

• Cut Variations for γ and π^0 :

Cut Name	Std. value	Variation 1	Variation 2	Variation 3
Electron dEd×	$-3,5\sigma$	$-4,5\sigma$	-2.5,4 <i>o</i>	-
Pion dEdx	3,-10 <i>o</i>	$2.5,-10\sigma$	$3.5,-10\sigma$	3,-10 <i>o</i>
Min.pe ⁺ /e ⁻	0.4 GeV/c	0.4 GeV/c	0.4 GeV/c	0.3 GeV/c
Find. Cls. TPC	0.6	0.7	0.35	-
Photon χ^2	10	5	20	-
9t	0.05	0.03	0.07	-
min. $p_t e^+/e^-$	50 MeV/c	75 MeV/c	100 MeV/c	-
photon η , $\pi^0 y$	0.75, 0.7	0.9, 0.8	0.8, 0.7	-
min. R	5 cm - 180 cm	2.8 cm - 180 cm	10 cm - 180 cm	-
α meson central	0.65	1.00	-	-
α meson peripheral	0.8	1.00	-	-
TOF	-5,-5 <i>0</i>	-3,-5 <i>o</i>	-2,-5 <i>o</i>	-

V0s with shared electrons rejected

Purity for different centralities used

• π^0 yield extraction:

- Three different integration windows
- Different Numbers of mixed events for bg, different mixed event bins (n V0s, n tracks)

Cocktail simulation:

- Two different fits, with and without blast wave
- Variation of the m_t scaling factors