e⁺e⁻ pairs BES Results in Au+Au Collisions at 19.6, 27, 39, and 62.4

Joey Butterworth [for the STAR collaboration] Rice University August 20th, 2014

Thermal Photons and Dileptons in Heavy-Ion Collisions, BNL, Upton, NY

Outline

Motivation

Experiment

- STAR
- Particle Identification
- Background
- Cocktail
- Model Comparisons
 - M_{ee}
 - p_{Tee}
- Summary

Motivation

Excellent Probe

- Minimal final state interactions
- Generated at all stages of the collision

Chronological Phases [Early to Latest]

- High Mass Region [HMR]
 - Drell-Yan
 - J/ψ + Υ Supression
- Intermediate Mass Region [IMR]
 - Heavy flavor modification
 - QGP (thermal) radiation
- Low Mass Region [LMR]
 - Vector meson modification
 - Possible link to chiral symmetry restoration

p-meson Modification

CERES

10-4 <dN_{ee}/dm_{ee}>/<N_{ch}>(100 MeV/c²)⁻¹ **CERES/NA45** Pb-Au 158 A GeV σ_{trig}/σ_{tot}≈ 7 % 17 GeV p_>200 MeV/c 10⁻⁵) ⊛_∞>35 mrad **2.1<η<2.65** (a) 10⁻⁶ 10⁻⁷ O Beeno 10⁻⁸ 1.2 0.2 0.4 0.6 0.8 1.4 0 1 1.6 m_{ee} (GeV/c²) Phys. Let B, 666, 425(2008) J.Butterworth : Rice University

Cocktail ρ is insufficient [solid]

- NA 60
 - Vacuum ρ is insufficient [dash-dot]
 - Excludes mass-dropping [dash]
 - Supports broadening of ρ spectral function [solid]

Beam Energy Scan Program: Phase I

J.Butterworth : Rice University

- RHIC Beam Energy Scan Program [2010-2011, 2014]

Au+Au @19.6, 27, 39, & 62.4 GeV [14.5 GeV Collected]

$\sqrt{s_{NN}}$ (GeV)	19.6	27	39	62.4
Events (M)	36	70	130	67

- Same colliding species & detector
- Opportunity to extensively study ρ spectral function
 - Connect between SPS & RHIC Au+Au 200 GeV
 - Dependence on $\sqrt{s_{NN}}$?
 - Compare to models

STAR Detector

- Time Projection Chamber [TPC]
 - Tracking
 - Ionization energy loss
 - Full azimuthal coverage

• Time of Flight [TOF]

- Precise time (resolution < 90 ps)
- Improves TPC's PID purity
- Full azimuthal coverage

Electron Identification

 TPC provides particle identification • $n\sigma_{el} > -0.663 \text{ w/ } p[\text{GeVc}^{-1}] \ge 0.637 \text{ OR } n\sigma_{el} > (1.604 \cdot p - 1.685) \text{ w/ } p[\text{GeVc}^{-1}] < 0.637$ nσ_{el} < -0.687 · p[GeVc⁻¹] + 2.1 TOF enables slow hadron rejection Improves identification TOF Befor Typical identified e^{+/-} purity ~95% |β⁻¹-1| < 0.03</p> Selects ~40M e^{+/-} β^{-1} vs Momentum ρ β-1 1.5 10⁶ 1.4 -2 1.3 10⁵ 27 GeV Data π 1.2 2×10⁻¹ 3×10⁻¹ 4×10⁻¹ Momentum²[GeVc⁻¹] 10⁴ 1.1 Dg el 10³ Affie 1**e** 10² 0.9 10 0.8 27 GeV Data e 0.7 0.5 1.5 2 Momentum [GeVc⁻¹] -1ŀ -2

J.Butterworth : Rice University

• Use TPC+TOF in tandem

- Selection Criteria for 27GeV data [varies for $\sqrt{s_{NN}}$]

104

10³

10²

10

105

10⁴

10³

10²

10

27 GeV Data

Momentum [GeVc⁻¹]

 π

1

3×10⁻¹ 4×10⁻¹

2×10⁻¹

TPC

Background

Pair Background Sources

Combinatorial, Correlated, Conversion

Like-Sign Same Event Method

- Combine all like-sign pairs and average
- Removes combinatorial & correlated
- Acceptance correction w/ mixed event method

 $2\sqrt{N_{++}N_{--}}\frac{ME_{+-}}{2\sqrt{ME_{++}ME_{--}}}$

Unlike-Sign Mixed Event Method

- Combine e^{+/-} from different events w/ similar properties*
 - Z Vertex, Ref. Mult., and Event Plane Angle
 - Pools of 20 events
- Removes combinatorial

Conversion Rejection*

• Selection based on pair's orientation in \vec{B}

* Criteria vary for each $\sqrt{s_{NN}}$

Cocktail

- Contributions
 - π^0 , η , η' , ω , ϕ , J/ψ , $c\overline{c}$ [Note: no ρ]

Input

- Flat ϕ [0, 2 π]
- η [-1,1]
 - Flat for 39 & 62 GeV.
 - GENESIS for 19 & 27 GeV
- p_T from Tsallis Blast Wave [TBW] fits

Decay

Breit-Wigner/Kroll-Wada Formalism

Yield

• Meson-to- π^0 ratio from NA45 w/ $\pi^{+/-}$ dN/dy from STAR

cc Contributions

PYTHIA; Scaled by N_{binary}

27 GeV TBW Fits

Invariant Mass: Data vs. Cocktail

- Au+Au 19.6, 27, 39, 62.4,
 & 200 GeV MB
- $p_{Te} > 0.2 \text{ GeV/c}, |\eta_e| < 1, |y_{ee}| < 1$
- Broad excess over LMR
 ρ contribution missing

Model: Rapp, Wambach, van Hees

- Complete evolution (Hadron Gas + QGP)
- In-medium modified ρ spectral function—" ρ melts"
 - Dependent on total baryon density
- QGP emission rates that are lattice QCD inspired

- Run 10 AuAu 200 GeV MB
- Vacuum ρ gives an insufficient description
- Model agrees within uncertainties

8/20/201

Invariant Mass: Data vs. Cocktail+Model

Transverse Momentum: Data vs. Cocktail+Model

- Au+Au 19.6, 27, 39, & 62.4 GeV MB
- p_{Te} > 0.2 GeV/c, |η_e| < 1, |y_{ee}| < 1</p>
- Cocktail + Model contributions consistent with Data as a function of $M_{ee} \& p_{Tee}$

Beam Energy Scan Program: Phase II

BES: Phase II

- Build upon the success of Phase I
- Enhanced statistics
 - Eg.: 19 GeV with 200 GeV MB Stat. Uncert.
- Detector upgrades
 - iTPC, Muon Telescope Detector
- Test total baryon density dependence

Total baryon density dependence

- In-medium modification of p's spectral function
- Excess yield of e⁺e⁻
- Statistics allow testing

8/20/2014

Nucl. Phys. A 674 (2000) 249.

Summary

- e⁺e⁻ continuum measurements across $\sqrt{s_{NN}}$ of 19.6, 27, 39, and 62.4 GeV
- At each $\sqrt{s_{NN}}$, there is an excess with respect to the hadronic cocktail
 - No strong $\sqrt{s_{NN}}$ dependence
- Excess consistent w/ model calculations involving a medium modified ρ spectral function
 Demonstrated for the excess as a function of M_{ee} & p_{Tee}!

J.Butterworth : Rice University

8/20/2014