Electromagnetic Observables and Hydrodynamics

Figure: K. Reygers (2014)

Charles Gale McGill University

Sources & EM emissivity: Rates •Modelling the evolving system: 3D viscous hydro Fluctuating initial states • How are the photon yield and v_2 dependent on the dynamics? • Photons as a characterization tool: Temperature (& shear viscosity) Status of our interpretation of the data

Why study photons and dileptons in relativistic nuclear collisions?

- •Penetrating probes: negligible final state effects (α)
- Real and virtual photons are complementary, and they supplement hadronic observables
 Thermal photon emission rate favours hotter
- zones of the colliding system
- ^oEmitted throughout the collision history
- ^oLow emission rates
- •Procedure: Calculate thermal emission rates & use hydrodynamics to model the evolution. Integrate rates over whole history

Sources of photons in a relativistic nuclear collision:

Hard direct photons. pQCD with shadowing Non-thermal

Fragmentation photons. pQCD with shadowing Non-thermal

Thermal photons Thermal

Jet-plasma photons Thermal

Jet in-medium bremsstrahlung Thermal

INFO CARRIED BY THE THERMAL RADIATION

$$dR = -\frac{g^{\mu\nu}}{2\omega} \frac{d^3k}{(2\pi)^3} \frac{1}{Z} \sum_{i} e^{-\beta K_i} \sum_{f} (2\pi)^4 \delta(p_i - p_f - k)$$
$$\times \langle j | J_{\mu} | i \rangle \langle i | J_{\nu} | j \rangle$$

Thermal ensemble average of the current-current correlator

Emission rates:

$$\omega \frac{d^{3}R}{d^{3}k} = -\frac{g^{\mu\nu}}{(2\pi)^{3}} \operatorname{Im}\Pi^{R}_{\mu\nu}(\omega,k) \frac{1}{e^{\beta\omega} - 1} \qquad \text{(photons)}$$

$$E_{+}E_{-}\frac{d^{6}R}{d^{3}p_{+}d^{3}p_{-}} = \frac{2e^{2}}{(2\pi)^{6}} \frac{1}{k^{4}} L^{\mu\nu} \operatorname{Im}\Pi^{R}_{\mu\nu}(\omega,k) \frac{1}{e^{\beta\omega} - 1} \qquad \text{(dileptons)}$$

Feinberg (76), McLerran, Toimela (85) Weldon (90), Gale, Kapusta (91)

Charles Gale

(FOR DILEPTONS:)

 $\operatorname{Im} < J_{\mu}J_{\nu} >_{T} \Rightarrow \operatorname{Im} < \rho_{\mu}\rho_{\nu} >_{T} \Rightarrow \operatorname{Im} D_{\mu\nu}^{T} \Rightarrow \operatorname{Vector spectral density}$

Thermal Photons from hot QCD: HTL program (Klimov (1981), Weldon (1982), Braaten & Pisarski (1990); Frenkel & Taylor (1990))

$$\int \int R_{R\mu} dr$$

$$\int_{R\mu}^{\mu} \sim \ln\left(\frac{\varpi T}{\left(m_{th}\left(\sim gT\right)\right)^{2}}\right)$$

Kapusta, Lichard, Seibert (1991) Baier, Nakkagawa, Niegawa, Redlich (1992)

Going to two loops: Aurenche, Kobes, Gélis, Petitgirard (1996) Aurenche, Gélis, Kobes, Zaraket (1998)

Co-linear singularities: $\alpha_s^2 \left(\frac{1}{m_{th}^2}\right) \sim \alpha_s$

2001: Results complete at $O(\alpha_{s})$

Arnold, Moore, and Yaffe JHEP 12, 009 (2001); JHEP 11, 057 (2001) Incorporate LPM; Inclusive treatment of collinear enhancement, photon and gluon emission

 \sim

Going beyond LO AMY rates?

•Approach is LO, but

 $\alpha_{s} \sim 0.2 - 0.3$

• Integral equation can be written in terms of a Dyson-Schwinger type iteration...

which contains a scattering kernel:

 $C(q_{\perp})|_{\rm LO} = g^2 C_R T \frac{m_D^2}{q_{\perp}^2 (q_{\perp}^2 + m_D^2)}$

Aurenche, Gélis, Zaraket (2002)

The techniques used to derive this - and all results in perturbative, finite-temperature field theory - rely on the scale separation:

$$gT \ll T$$

soft \ll hard

The LO-NLO scattering kernel(s)

Clue that NLO effects might be important: Heavy quark diffusion

 $C(q_{\perp})\Big|_{\rm LO} \rightarrow C(q_{\perp})\Big|_{\rm NLO}$

Simon Caron-Huot PRD (2009)

Possible large effects on photon production!?

The LO-NLO scattering kernels

Ghiglieri, Hong, et al., JHEP (2013)

The two main contributions:

ELECTROMAGNETIC RADIATION FROM HADRONS

Chiral, Massive Yang-Mills: O. Kaymakcalan, S. Rajeev, J. Schechter, PRD 30, 594 (1984)

$$\mathcal{L} = \frac{1}{8} F_{\pi}^{2} \operatorname{Tr} D_{\mu} U D^{\mu} U^{\dagger} + \frac{1}{8} F_{\pi}^{2} \operatorname{Tr} M \left(U + U^{\dagger} \right)$$
$$- \frac{1}{2} \operatorname{Tr} \left(F_{\mu\nu}^{L} F^{L\mu\nu} + F_{\mu\nu}^{R} F^{R\mu\nu} \right) + m_{0}^{2} \operatorname{Tr} \left(A_{\mu}^{L} A^{L\mu} + A_{\mu}^{R} A^{R\mu} \right)$$
$$+ \text{ non-minimal terms}$$

Parameters and form factors are constrained by hadronic phenomenology:

•Masses & strong decay widths

- •Electromagnetic decay widths
- •Other hadronic observables:
 - •e.g. $a_1 \rightarrow \pi \rho \quad D/S$

(See also, Lichard and Vojik, Nucl. Phys. (2010); Lichard and Juran, PRD (2008)) 10

EM emissivities computed: Turbide, Rapp, Gale, PRC (2004); Turbide, McGill PhD (2006)

ELECTROMAGNETIC RADIATION FROM HADRONS

All allowed s-, t-, and u- Born graphs of the reactions:

 $X + Y \longrightarrow Z + \gamma$ $\rho \to Y + Z + \gamma$ $K^* \to Y + Z + \gamma$ > X,Y,Z $\in \{\rho, \pi, K^*, K\}$

Turbide, Rapp, and Gale, PRC (2004)

COMPARING RATES

Turbide, Rapp, and Gale, PRC (2004)

PHOTONS @ RHIC: RATES ARE INTEGRATED USING "STANDARD" RELATIVISTIC HYDRODYNAMIC MODELLING

- At low p_T, spectrum dominated by thermal components (HG, QGP)
- At high p_T, spectrum dominated by pQCD
- Window for jet-QPG contributions at midрт?

• All hydro calculations undershoot low p_T photons

ONE OF THE USES OF PHOTONS: CHARACTERIZING THE HOT MATTER CREATED AT RHIC

$$T_{\rm excess} = 221 \pm 19 \pm 19 \,\mathrm{MeV}$$

van Hees, Gale Rapp,PRC (2011)Shen, Heinz, Paquet, Gale, PRC (2014)

BEYOND SIMPLE SPECTRA: FLOW AND CORRELATIONS

Soft photons will go with the flow Jet-plasma photons: a negative v₂ <u>Details will matter</u>: flow, T(t). . .

Turbide, Gale, Fries PRL (2006) Low p_T : Chatterjee *et al.*, PRL (2006) All p_T : Turbide *et al.*, PRC (2008)

THE EFFECTS OF SHEAR VISCOSITY ON BULK DYNAMICS

$$\begin{split} T_{\text{ideal}}^{\mu\nu} &= (\mathcal{E} + P) u^{\mu} u^{\nu} - P g^{\mu\nu} \\ T^{\mu\nu} &= T_{\text{ideal}}^{\mu\nu} + \pi^{\mu\nu} \\ \partial_{\mu} (s u^{\mu}) &\propto \eta \end{split} \text{ Israël & Stewart, Ann. Phys. (1979), Baier et al., \\ JHEP (2008), Luzum and Romatschke, PRC (2008) \\ \end{split}$$

THE EFFECTS OF SHEAR VISCOSITY ON THE PHOTON DISTRIBUTION

In-medium **hadrons**:

$$f_{0}(u^{\mu}p_{\mu}) = \frac{1}{(2\pi)^{3}} \frac{1}{\exp[(u^{\mu}p_{\mu} - \mu)/T] \pm 1}$$

$$f \to f_{0} + \delta f, \quad \delta f = f_{0}(1 \pm (2\pi)^{3}f_{0})p^{\alpha}p^{\beta}\pi_{\alpha\beta}\frac{1}{2(\varepsilon + P)T^{2}}$$

$$q_{0}\frac{d^{3}R}{d^{3}q} = \int \frac{d^{3}p_{1}}{2(2\pi)^{3}E_{1}}\frac{d^{3}p_{2}}{2(2\pi)^{3}E_{2}}\frac{d^{3}p_{3}}{2(2\pi)^{3}E_{3}}(2\pi)^{4}|M|^{2}\delta^{4}(...)\frac{f(E_{1})f(E_{2})[1 \pm f(E_{3})]}{2(2\pi)^{3}}$$

One considers all the reaction and radiative decay channels of external state combinations of:

 $\{\pi, K, \rho, K^*, a_1\}$ With hadronic form factors

+ QGP Photons

Charles Gale

- •Large at early times
- Small at later times: viscosity corrections to the distribution functions will also vanish

The Net thermal photon yield & V₂

- •Viscous corrections make the spectrum harder, ≈100% at p_T = 4 GeV.
- Increase in the slope of
 ≈15% at p_T = 2 GeV.
- Once pQCD photons are included: a few % effect from viscosity
- •The net elliptic flow is a weighted average. A larger QGP yield will yield a smaller v₂.

Charles Gale

INITIAL STATE FLUCTUATIONS: A PARADIGM SHIFT IN HEAVY ION ANALYSES

MOVING INTO THE "CHARACTERIZATION" PHASE ...

ALL TOGETHER NOW: FICS + VISCOSITY

0.12

- Combined with viscous corrections, FIC yield an enhancement by ≈5 @ 4 GeV, and ≈2 @ 2 GeV
- •Temperature estimated by slopes can vary considerably
- •A combination of hot spots and blue shift hardens spectra
- •FICs enhance v₂ in this centrality class (0-20%), as for hadrons
- •Net v₂ is comparable in size to that with ideal medium, in this centrality class

Charles Gale

PHOTON V2 DATA?

RHIC

Chatterjee et al. (2013) Dion et al. (2011)

ABORATORY

•Data is higher than calculation, even with e-b-e initial state fluctuations, and ideal hydro

•Size comparable with HG v₂

Charles Gale

PHOTON V2 DATA?

Pb+Pb, 2.76 TeV 0-40%

Paquet et al., (2014)

SOME FACTS AND SOME LEADS

- FICs are here to stay. "Initial temperature" is ill-defined.
- Some room to explore systematically hydro initialization and parameters. This requires consistency with the hadronic data.
- Making the QGP signal **larger** will *decrease* the v₂. The T=0 photons, *decrease* v₂. Suppose 2 sources:

$$\frac{v_2 = \int d\phi \frac{dN}{d\phi} \cos\left(2(\phi - \psi)\right)}{\int d\phi \frac{dN}{d\phi}} = \frac{\int d\phi \frac{dN^1}{d\phi} \cos\left(2(\phi - \psi)\right)}{\int d\phi \frac{dN}{d\phi}} + \frac{\int d\phi \frac{dN^2}{d\phi} \cos\left(2(\phi - \psi)\right)}{\int d\phi \frac{dN}{d\phi}}$$

• For each source:

$$\frac{v_2^i = \int d\phi \frac{dN^i}{d\phi} \cos\left(2(\phi - \psi)\right)}{\int d\phi \frac{dN^i}{d\phi}}, \qquad \therefore \quad v_2 = \frac{\sum_i N^i v_2^i}{\sum_i N^i}$$

Tension between rates and elliptic flow for QGP signal
Missing strength in the hadronic sector(?)

SOME FACTS AND SOME LEADS

- Can we improve on the hadronic rates? Baryons? Baryons +mesons? How important is bremsstrahlung?
- Early-times magnetic field effects? (Basar, Kharzeev, Skokov, PRL (2012); Basar, Kharzeev, Shuryak, arXiv: 1402.2286)
- Non-perturbative effects? Glasma effects (McLerran, Schenke, arXiv:1403.7462). See L. McLerran's talk. Semi-QGP: see S. Lin's talk.
- Is the large photon elliptic flow telling us about the dynamics?
- •Non-zero initial shear tensor? Primordial flow? Can we improve on the hydro initial states?
- Can we improve on the hydrodynamic evolution? Is the pQCD contribution really well-known?

THE "PQCD PHOTONS"

ELLIPTIC FLOW AND SPACE-TIME DYNAMICS

- In a thermal fireball picture, the net photon yield is sensitive to the value of the acceleration parameter, and to details of the initial state. The photons **do** report on the details of the dynamics.
- How uniquely determined are these? How unique is the entire evolution?

van Hees, Gale, Rapp, PRC (2011)

• Smooth fireball, Primordial flow, a slightly different set of resonances, baryons

See H. van Hees' talk

Charles Gale

BEYOND GLAUBER: IP-GLASMA + MUSIC EFFECT ON HADRONIC OBSERVABLES Flow harmonics reproduced up to v₅ at RHIC and LHC Distributions of v_n at LHC:

- •IP-Glasma + MUSIC provides consistent flow systematics at RHIC & LHC
- •Contains an initial flow: Investigating the effects on EM variables

Gale, Jeon, Schenke, Tribedy, Venugopalan PRL (2013)

Is the hydrodynamic modelling complete?

 In the last ~5-8 years, relativistic hydrodynamics has undergone a revolution

• 3D

- 3D Shear viscosity
- 3D Shear viscosity Fluctuating initial conditions
- 3D Shear viscosity Fluctuating initial conditions also in y
 What's left?

$$T^{\mu\nu} = -Pg^{\mu\nu} + \omega u^{\mu}u^{\nu} + \Delta T^{\mu\nu}$$

The dissipative terms:

$$\Delta T^{\mu\nu} = \eta \Big(\Delta^{\mu} u^{\nu} + \Delta^{\nu} u^{\mu} \Big) + \Big(\frac{2}{3} \eta - \zeta \Big) H^{\mu\nu} \partial_{\rho} u^{\rho} - \chi (H^{\mu\alpha} u^{\nu} + H^{\nu\alpha} u^{\nu}) Q_{\alpha}$$

No simulation incorporates all of these

Charles Gale

BULK VISCOSITY?

S. Weinberg, Ap. J (1971)

A. Buchel, Phys. Lett. (2008)

G. Denicol et al., PRC (2014)

Bulk viscosity vanishes in conformal fluids. QCD is only very approximately conformal:

BULK VISCOSITY EFFECTS ON PHOTONS?

Ideal photon $v_2(q_T)$

Viscous photon $v_2(q_T)$

•
$$\frac{\zeta}{s}(T)$$
 etc..

• Bulk visc. is consistent with hadronic data

J.-B. Rose, MSc 2014 (McGill)

100

X^2

0.3

0.25

0.2

MORE ON THE HYDRO MODELLING AND PHOTON PRODUCTION

$$\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} == 2\eta\sigma^{\mu\nu} - \frac{4}{3}\tau_{\pi}\pi^{\mu\nu}\theta$$

- •Can the relaxation time be changed? Does this affect anything?
- •What about $\pi_0^{\mu\nu}$?

MORE ON THE HYDRO MODELLING AND PHOTON PRODUCTION, PART II

* Photons are sensitive to early time dynamics; hadrons less so

* Those extra dimensions are not typically explored in hydro

Vujanovic et al., arXiv:1404.3714

See G. Vujanovićs talk

THERMAL PHOTONS AS A THERMOMETER

Suppose a static source at temperature T:

Read off the temperature from the exponent

Suppose an expanding source at local temperature T:

 $< E \frac{d^3 n}{d^3 p} \approx E e^{-\beta \gamma E + \beta \gamma v E}$

Side view

The effective temperature (deduced from the slope) is <u>not</u> the true temperature

Charles Gale

STUDYING THE DIFFERENTIAL TEMPERATURE DISTRIBUTION WITH A REALISTIC FLUID-DYNAMICAL CALCULATION

WITH A FLUID-DIMMAMICAL CALCULATION

DISTRIBU

4

VING THE

THERMAL PHOTONS AS A VISCOMETER

 $\omega \frac{dR}{d^3 q} = \Gamma_0 + \frac{\pi^{\mu\nu}}{2(\epsilon + P)} \Gamma_{\mu\nu}(p,T) \qquad \text{Shen, Heinz, Paquet, Kozlov, Gale, arXiv 1308.2111}$

MAXIMIZING THE EFFECT

- * Slope of ratio vs centrality grows with viscosity
- * The ratio has stronger centrality dependence than for hadrons: photons access earlier times with larger viscous tensor
- This ratio is insensitive to sources
 with a vanishing v_n such as pre equilibrium & pQCD

WHAT ABOUT DILEPTONS?

- OAdditional degree of freedom: M and pT may be varied independently
- ^oSame approach as for photons: integrate rates with hydro

NATIONAL LABORATORY

THERMAL DILEPTON SOURCES, QGP

•HTL at zero momentum: Braaten, Pisarski and Yuan, PRL (1990)

•2-loop, p=0, E>>T: Majumder and Gale, PRC (2002)

•HTL, *M~gT*, *E>T*: Aurenche, Gélis, Moore, Zaraket, JHEP (2008)

•HTL at finite momentum:

• Non-perturbative calculation:

No single calculation covers the entire dilepton kinematical phase space

M. Laine, JHEP **11**, 120 (2013) $M^2 \gtrsim (\pi T)^2, p \neq 0$

BROOKHAVEN

Charles Gale

THERMAL DILEPTON SOURCES, HG

- HG contribution: calculate the in-medium vector spectral density:
 - Many-Body approach with hadronic effective Lagrangians
 Rapp and Wambach, ANP (2000)
 - Empirical evaluation of the vector mesons forwardscattering amplitudes

$$\Pi_{ab}(E,p) = -4\pi \int \frac{d^3k}{(2\pi)^3} n_b(\omega) \frac{\sqrt{s}}{\omega} f_{ab}^{\text{c.m.}}(s)$$

- E. Shuryak, NPA (1991)
 Eletsky, Ioffe, Kapusta (1999)
 Vujanovic, Gale (2009)
- Chiral Reduction formulae
 Yamagishi, Zahed (1996)

LABORATORY

DILEPTONS, THE STORY AS OF A FEW YEARS AGO

Dileptons, some recent results from STAR

STAR

THERMAL DILEPTON V₂ WITH VISCOUS EFFECTS DILEPTON V₂? [R. CHATTERJEE ET AL., PRC (2007)]

G. Vujanovic et al.,PRC (2014)

CONCLUSIONS

- The status of EM rates and their integration in fluid dynamical models is still in flux
- The fluid dynamical paradigm is not yet established
- Photon v₂ is sensitive to the EOS, and to various hydro parameters such as viscosity, and initial conditions (time and FICs). One must be consistent with hadronic data
- Photons and dileptons are sensitive to non-equilibrium effects (in addition to shear viscosity)
- Current v_2 data: new physics? Measuring photon $v_{3,}\,v_n$ at RHIC and LHC will help complete this picture
- Physics in dilepton vn
- Jet-plasma photons need to be included: MARTINI
- Known unknowns: pre-equilibrium radiation

Thanks to

- * G. Denicol (McGill) * R. Rapp (Texas A&M)
- * U. Heinz (OSU)
 * B. Schenke (BNL)
- * S. Jeon (McGill) * C. Shen (OSU)
- * I. Kozlov (McGill)
 * H. van Hees (Frankfurt)
- * M. Luzum (LBNL/McGill) * G. Vujanovic (McGill)
- * J.-F. Paquet (McGill)