LATEST ANALYSIS WITH THE PHENIX HBD

Mihael Makek (University of Zagreb) for the PHENIX Collaboration

Thermal Photons and Dileptons in Heavy-Ion Collisions, RIKEN BNL Workshop, BNL, 2014

Outline

- Introduction
- PHENIX with the HBD
 - The Hadron Blind Detector
 - Run-10 preliminary result
- Recent progress
 - Statistics
 - Electron identification
 - Background subtraction
 - Quantitative understanding of the background
- Summary

Introduction

2004 Run (Au+Au) √s_{NN}=200 GeV

conversions \rightarrow improve with the **HBD**

The Hadron Blind Detector

- Cherenkov detector
- □ GEMs with CF₄
- Distinguishes pair opening angle
- Can veto background e⁺e⁻ pairs from π⁰ Dalitz and γ conversions

Open

NIM A646, 35-58 (2011)

The preliminary result 2009 p+p Run, sqrt(s)=200 GeV

- Data consistent with the cocktail
- Fully consistent with the published result
- Provide the crucial proof of principle for understanding the HBD

The preliminary result 2010 Au+Au Run, sqrt(s_{NN})=200 GeV

Data over cocktail

2004 and 2010 Run results consistent

Large errors

(Run-10 errors driven by strong fiducial cuts and conservative estimate

Recent progress

Statistics:

4.6B→5.6B events, by relaxing the vertex cut Electron identification Background subtraction

PHENIX Time-of-flight

- Time-of-flight information implemented for improved hadron rejection
 - EMCal (PbSc)
 - 3/4 of acceptance
 - σ=450 ps
 - ToF East
 - ~ 1/8 of acceptance
 - σ=150 ps

Revised RICH reconstruction algorithm

- Ring reconstruction in the Ring Imaging Cherenkov Detector (RICH)
 - Parallel tracks point to the same ring in RICH
 - Hadrons can leak in
 - New algorithm forbids a ring to be associated with multiple tracks
 - Associate only with signal electron candidate tracks

Optimized electron identification

- Use neural networks for:
 - Hadron rejection
 - Conversion rejection
 - HBD double hit rejection
- Input for NNs: EmCal, HBD, ToF, modifed RICH
- Hadron contamination factor of ~1/3 as with 1D cuts, keeping similar efficiency
- Electron sample purity in
 0-10% central events is ~95% (was ~70% in 2004 Run)

NN trained and monitored on HIJING simulation:

DATA – black HIJING – red HIJING signal HIJING bckg

Background subtraction

- Run-10 preliminary result hybrid background subtraction
 - Subtract the mixed BG
 - Subtract the acceptance corrected residual like-sign spectra
 - Not enough precision for the central bins
- Run-10 current effort component-by-component subtraction:
 - Traditional approach: FG = mixed BG + jet + cross-pair
 - \rightarrow could not reproduce the like-sign data
 - New approach: FG = mixed BG with flow + jet + cross-pair + e-h hidden correlation

Mixed background with flow

E.g. simulation using single electron v_2 from 20-40% data

- Flow distorts the shape of the combinatorial background
- RP binning does not correct the effect completely
- To correct for the flow effect, each mixed background pair is weighted by an analytic factor:

 $w(\Delta \phi) = 1 + 2 v_2(p_{T,1}) v_2(p_{T,2}) \cos(2\Delta \phi)$

- □ Single electron v_2 derived from the data
- The approach is verified by the simulation (plots on the left)
- The weighting method reproduces correctly the combinatorial background shape

Cross-pairs

- □ e⁺e⁻ pairs from the same primary particle, but different parent → correlated background
- □ $\pi^0 \rightarrow e^+e^-\gamma$, $\pi^0 \rightarrow \gamma\gamma$ and $\eta \rightarrow e^+e^-\gamma$, $\eta \rightarrow \gamma\gamma$ simulated with EXODUS generator
- Passed through PHENIX acceptance and reconstruction
- Normalization: absolute
 - **and** η contributions scaled by dN/dy measured by PHENIX

Jet contributions

- Correlated e⁺e⁻ pairs from jets
- Simulated using PYTHIA generator (p+p jets)

- Passed though PHENIX acceptance and reconstruction
- Normalization: absolute
 - Each ee pair scaled by:
 - $N_{coll} * R_{AA} (p_T^a) * I_{AA} (p_T^b, \Delta \phi)$
 - p_T and $\Delta \phi$ refer to primary particles
 - a the particle with the higher p_T , b the particle with the lower p_T
 - R_{AA} is from PHENIX data for pions
 - I_{AA} from PHENIX data from PRC 78,014901 (2008)

e-h hidden correlation

- □ Hadron (h⁻) parallel to e^+ in RICH \rightarrow h⁻ is misidentified as electron
 - □ If e⁺ and h⁻ are reconstructed, the RICH ring sharing cut will reject the event
 - If e⁺ is not reconstructed (efficiency or dead area), the ring sharing is not recognized, and the e^{-h-} pair enters the event
- □ The e^{-h-} pair is correlated, so cannot be removed by the mixed background
 - Simulate this contribution and subtract

Mixed background normalization

Mixed BG normalization (weighted with flow):

- $FG_{++} = Cross_{++} + Jet_{++} + e-h_{++} + nf_{++} * mixBG_{++}$ • $FG_{--} = Cross_{--} + Jet_{--} + e-h_{--} + nf_{--} * mixBG_{--}$ Fit with nf_{++} and nf_{--} being the only free parameters
- A. Normalization using pair opening angle $(d\phi_0)$

Centrality	Norm region
0-10%	0.7 <dphi0<3.14< td=""></dphi0<3.14<>
10-20%	0.7 <dphi0<2.3< td=""></dphi0<2.3<>

Normalization using pair mass m_{ee} > 0.2 GeV/c²
 A and B are consistent

Like-sign spectrum, 0-10% centrality

- Understanding of the background verified by the like-sign spectra
- Correlated components absolutely normalized
- Combinatorial background mixed background with flow
- The ratio of the like-sign foreground to total background, for m_{ee}>0.15 is flat at 1
- Very good qualitative and quantitative understanding of all background components

Like-sign spectrum, 10-20% centrality

- Understanding of the background verified by the like-sign spectra
- Correlated components absolutely normalized
- Combinatorial background mixed background with flow
- The ratio of the like-sign foreground to total background, for m_{ee}>0.15 is flat at 1
- Very good qualitative and quantitative understanding of all background components

Summary

Since QM2012

- Significant progress on electron identification -95% sample purity achieved
- Good qualitative and quantitative understanding of the background component-by-component
- Analysis closing completion

Effect of flow on the combinatorial background (I)

Motivation:

- Residual correlated yield in the FG/mixedBG like-sign ratio
- This yield could not be explained by know sources (e.g. jets)

- Suspect flow correlations
 - Only partially removed by the reaction plane binning
 - Cannot be completely eliminated due to finite RP resolution

Effect of flow on the combinatorial background (II)

Explanation:

- Due to flow, particle emission angles

 (φ) are not uniformely distributed
 relative to the reaction plane (Ψ)
- If single particles are generated according to the distribution function: 1+2v₂cos(2(φ-Ψ))
- It can be shown that random pairs are distributed according to: w(Δφ) = 1 + 2v₂(p_{T,1})v₂(p_{T,2})cos(2Δφ)

Effect of flow on the combinatorial background (III)

Study the effect with realistic MC:

- Generate e⁺ and e⁻
 - p_T distribution from data
 - Uniform in rapidity
 - Reaction plane (Ψ) uniformely from [-π/2,π/2]
 - Determine azimuth angle (j) by:1+2v₂cos(2(φ-Ψ))
 - v₂ extracted from from 20-40% data
- Pass PHENIX acceptance filter
- Standard pair analysis
- MC reproduced the residual shape compatible with the one seen in data

Effect of flow on the combinatorial background (IV)

- Study the weighting method with realistic MC:
 - Apply the weight for each pair in the generated mixed background:

 $w(\Delta \phi) = 1 + 2v_2(p_{T,1})v_2(p_{T,2})cos(2\Delta \phi)$

- Electron v₂ extracted from the analyzed data
- Reproduces the combinatorial background perfectly
- Cross-check the reaction plane binning method with the same MC setup
 - Fails to reproduce the combinatorial background

Simple mixed BG RP binning Weighting method

e-h contribution simulation

- **D** Use π^0 and η cross-pair simulation
 - Add MC tracks to DATA events
 - Merge MC and DATA hits in RICH
- Filter only DATA tracks which used to fail eID cuts before merging, but pass eID cuts after merging (promoted hadrons)
- Apply all the analysis cuts
- Select the remaining MC-data pairs
- Normalization of e-h contribution: absolute
 - Comes automatically since the cross-pairs are absolutely normalized

Like-sign spectra, 0-10% centrality (++, -- separately)

Mihael Makek

Background normalization using the opening angle

- Idea: normalize the combinatorial background in the region where the correlated components are minimal
- Avoid the systematic error of the correlated components (MC)
- Opening angle distribution of all correlated sources
- □ Clear minium around $d\phi_0 \sim 90^\circ$

Jet normalization – I_{aa} extraction

- 1. Select the centrality bin:
 - 0-20%
 - 20-40%
 - 40-60%
 - 60-92%
- 2. Op. angle <90° or >90° ?
- Select p_T range of the "trigger particle" → for p_T<2.0, use the lowest p_T bin (2-3 GeV/c)
- Select p_T of the "associated particle" → take the closest point
- 5. Get the corresponding I_{aa}

Mihael Makek

eID flow

Combinatorial background in PHENIX

The Cocktail (QM2012)

- Hadron decays simulated in EXODUS
- Fit π⁰ and π[±] data p+p or Au+Au to modified Haggedorn function:

$$E\frac{d^{3}}{dp^{3}} = \frac{A}{(e^{-(ap_{T}+bp_{T}^{2})} + p_{T}/p_{0})^{n}}$$

for other mesons η, ω, ρ, φ, J/Ψ etc. use pion parametrization and replace:

$$p_T \to \sqrt{p_T^2 + m^2 - m_\pi^2}$$

- The absolute normalization of each meson provided by meson to $π^0$ ratio at high p_T
- Open heavy flavor (c,b) simulated with MC@NLO
- The cocktail filtered through the PHENIX acceptance and smeared with detector resolution

Differences in runs with and without HBD

Data:

Different magnetic field configuration:

- Run-9 (p+p) and Run-10 (Au+Au) with HBD: +- field configuration
- all other runs: ++ field configuration
- larger acceptance of low p_T tracks in +- field

□More material due to HBD:

more J/Ψ radiative tail

Cocktail:

MC@NLO for open heavy flavor (c,b) contribution instead of PYTHIA

Parallel analysis efforts

Two parallel and independent analysis streams: provide crucial consistency check

- A. Weizmann + Tokyo + Zagreb group
- B. Stony Brook group

Stream A

HBD: reconstruction based on MinPad clusterizer

Neural network for eID and for single/double electron separation

Correlated background from e-h contributions by **cross-pair simulation embedded into RICH data**

Stream B

HBD: reconstruction based on LBS clusterizer

Standard 1D cuts for eID and for single/double electron separation

Correlated background from e-h contributions by **full Central Arm embedding**

Statistics

- Relaxed vertex cut:
 - Preliminary:
 - -20 cm < z < 20 cm
 - 4.6B Min. Bias events
 - Current:
 - -30 cm < z < 25 cm 5.6B Min. Bias events

