

AM, <u>Phys. Rev. C 90, 021901(R) (2014)</u> AM, arXiv:1408.1410 [nucl-th]

Quark chemical equilibration for thermal photon elliptic flow

Akihiko Monnai RIKEN BNL Research Center Nishina Center for Accelerator-Based Science, RIKEN

Thermal Photons and Dileptons in Heavy-Ion Collisions 21st August 2014, Brookhaven National Laboratory, NY, USA

Quark-gluon plasma (QGP): many-body system of deconfined quarks and gluons

The QGP created in high-energy heavy ion collisions is quantified as a relativistic fluid with extremely small viscosity

Au-Au, Au-Cu (200 GeV) and U-U (193 GeV) at RHIC Pb-Pb (2.76 TeV) at LHC

It is a QCD phenomenon; what can an electromagnetic probe tell us?

Thermal Photons and Dileptons in Heavy-Ion Collisions, 21st August 2014, BNL, USA

Introduction

Next slide:

Photon emission in heavy ion collisions (low p_T)

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Photon emission in heavy ion collisions (low p_T)

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Photon emission in heavy ion collisions (low p_{T})

Thermal photons (hadronic) Thermal photons (QGP)

- from black-body radiation

Prompt photons

- from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

• Photon emission in heavy ion collisions (low p_{T})

Decay photons

- from hadronic decay

Thermal photons (hadronic) Thermal photons (QGP)

- from black-body radiation

Prompt photons

- from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Photon emission in heavy ion collisions (low p_T)

Decay photons

- from hadronic decay

Thermal photons (hadronic) Thermal photons (QGP)

- from black-body radiation

Prompt photons

- from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Photon emission in heavy ion collisions (low p_T)

Decay photons

- from hadronic decay

Thermal photons (hadronic) Thermal photons (QGP)

- from black-body radiation

Prompt photons

- from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Motivation

Experiments have posed "photon v₂ puzzle"

- Direct photon v_2 is large; no definite answer so far
 - Hydrodynamic models predict small flow harmonics because of the contribution from earlier stages with little elliptic flow
 - Viscosity? Magnetic field? Pre-equilibrium flow? Modified photon emission rate?
- Direct photon v_3 is also LARGE

The enhancement is at least partially due to the properties of the hot medium itself

Photon v_n puzzle

Possible (not *all*) reasons: an overview

Со	llision _{Equilik}	oration	Freeze	e-out "Corr	rect"
Bulk	Pre-equilibrium	Hydrodynamics		Hadron gas	
Photons		QGP thermal photons	Hadronic thermal photons	(Decay photons)	
Promp	t photons			"Wro	ong"

Possible (not *all*) reasons: an overview

Thermal photon emission/v_n estimate needs modification

Possible (not *all*) reasons: an overview

- Thermal photon emission/v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification

Photon v_n puzzle

Possible (not all) reasons: an overview

- Thermal photon emission/v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification
- Other sources of photons are not considered

Photon v_n puzzle

Possible (not *all*) reasons: an overview

Со	llision Equilil	oration	Freeze	e-out "Corr	rect"
Bulk	Pre-equilibrium	Hydrodynamics		Hadron gas	
Photons		QGP thermal photons	Hadronic thermal photons	(Decay photons)	
Promo	tnhotons			"Wrc	ong"

- Thermal photon emission/v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification
- Other sources of photons are not considered
- Other effects which work on photons are missing

Wrong

5/15

Photon v_n puzzle

Possible (not *all*) reasons: an overview

Coll	ision Equilib	ration	n Freeze-out		rect"
Bulk	Pre-equilibrium	Hydrodynamics		Hadron gas	
Photons		QGP thermal photons	Hadronic thermal photons	(Decay photons)	

- Thermal photon emission/v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification
- Other sources of photons are not considered
- Other effects which work on photons are missing
- Bulk evolution needs modification

Possible (not *all*) reasons: an overview

Coll	ision Equilib	ration Free		e-out "Corr	ect"
Bulk	Pre-equilibrium	Hydrodynamics		Hadron gas	
Photons		QGP thermal photons	Hadronic thermal photons	(Decay photons)	

Prompt photons

"Wrong"

5/15

- Thermal photon emission/v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification
- Other sources of photons are not considered
- Other effects which work on photons are missing
- Bulk evolution needs modification
- Experimental data needs more statistics

Possible (not *all*) reasons: an overview

Coll	ision _{Equilib}	ration Free		e-out "Correc	
Bulk	Pre-equilibrium	Hydrodynamics		Hadron gas	
Photons		QGP thermal photons	Hadronic thermal photons	(Decay photons)	

Prompt photons

- Thermal photon emission/ v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification
- Other sources of photons are not considered
- Other effects which work on photons are missing
- Bulk evolution needs modification
- Experimental data needs more statistics

"Wrong"

This talk

Possible (not *all*) reasons: an overview

Coll	ision _{Equilib}	ration Freez		e-out "Correct	
Bulk	Pre-equilibrium	Hydrodynamics		Hadron gas	
Photons		QGP thermal photons	Hadronic thermal photons	(Decay photons)	

Prompt photons

- Thermal photon emission/v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification
- Other sources of photons are not considered
- Other effects which work on photons are missing
- Bulk evolution needs modification
- Experimental data needs more statistics

"Wrong"

Approach of this work

Bulk evolution

Color glass condensate (CGC): Colliding nuclei are saturated gluons
 QGP/hadronic fluid: Equilibrated <u>quark-gluon</u> plasma
 Chemical equilibration does not necessary coincides with thermalization (cf: AM and B. Müller, arXiv: 1403.7310)

Approach of this work

Fewer quarks + more gluons at the onset of QGP fluid

Thermal Photons and Dileptons in Heavy-Ion Collisions, 21st August 2014, BNL, USA

The model

(2+1)-dimensional ideal hydrodynamic model + rate equations

The energy-momentum conservation (a) gluon splitting $\partial_{\mu}T_{a}^{\mu\nu} + \partial_{\mu}T_{a}^{\mu\nu} = 0$ p 000000 (1-z)n (1-z)nQuark and gluon number changing processes $\partial_{\mu}N_{q}^{\mu} = 2r_{b}n_{g} - 2r_{b}\frac{n_{g}^{\mathrm{eq}}}{(n_{g}^{\mathrm{eq}})^{2}}n_{q}^{2}$ (b) quark pair production $+r_c n_q - r_c \frac{1}{n_c^{\mathrm{eq}}} n_q n_g$ (c) gluon emission from a quark p (1-z)p (1-z)p p r_a, r_b, r_c : reaction rates $n_{q}^{(\mathrm{eq})}, n_{q}^{(\mathrm{eq})}$: parton densities (in equilibrium) Late quark chemical equilibration implies $r_b < r_a, r_c$ as the chemical equilibration times are $au_i \sim 1/r_i$

Input for numerical analyses

Hydrodynamic parameters (Initial conditions + fluid properties)

- Gluon energy distribution: Kolb, Sollfrank and Heinz, PRC 62, 054909 (2000)
- Quark energy distribution: 0 GeV/fm³
- Initial time: 0.4 fm/c
- Equation of state: Hadron resonance gas (mass below 2 GeV) + Parton gas (N_f = 2)
- Chemical reaction rates: $r_i = c_i T$ where c_i ranges are $0.2 \le c_b \le 2$ ($au_b \sim 0.5-5 \text{ fm}/c$) and $0 \le c_{a,c} \le 3$ ($au_{a,c} \sim 0.3-\infty \text{ fm}/c$)

Photon emission rate

$$E\frac{dR^{\gamma}}{d^{3}p} = \frac{1}{2}\left(1 - \tanh\frac{T - T_{c}}{\Delta T}\right)E\frac{dR_{hadron}^{\gamma}}{d^{3}p} + \frac{1}{2}\left(1 + \tanh\frac{T - T_{c}}{\Delta T}\right)E\frac{dR_{QGP}^{\gamma}}{d^{3}p}$$
Turbide, Rapp and Gale, PRC 69, 014903
Traxler and Thoma, PRC 53, 1348
where $T_{c} = 0.17 \text{ GeV}$ and $\Delta T = 0.017 \text{ GeV}$

Results

Elliptic flow of thermal photons – c_b dependence

Late quark chemical equilibration ($\tau_{\rm chem} \sim 1/c_b T$) leads to enhancement of thermal photon v_2

 $au_{
m chem} \sim 2 \, {
m fm}/c$ is motivated in an early equilibration model (AM and B. Müller, arXiv: 1403.7310) $\langle - \rangle c_b = 0.5$ for $T \sim 0.2 \, {
m GeV}$

Results

Elliptic flow of thermal photons – c_{a.c} dependence

Thermal photon v_2 is moderately enhanced for faster gluon-involved equilibration processes

because quark production in early stages is suppressed due to quicker dampening of gluon overpopulation due to recombination

Results

Transverse momentum spectra of thermal photons

 p_{T} spectra is reduced by late quark chemical equilibration

Effect is limited for the chosen input; *however* more sophisticated photon emission rate and equation of state would be important (Cf. Gelis et al., JPG 30, S1031)

Summary and outlook

- Thermal photon v₂ from chemically non-equilibrated QGP is investigated
 - Late quark production leads to visible enhancement of v_2 , contributing positively to resolution of "photon v_2 puzzle"
 - Evolution of bulk medium from CGC to QGP is a key
 - Late gluon equilibration slightly reduces v₂
 - Net yield of thermal photons is reduced
- Future prospects include:
 - Introduction of dynamical equation of state, more realistic initial conditions, shear and bulk viscosities etc.
 - Estimation of the contribution from prompt photons
 - Other effects in non-equilibrated QGP, e.g., heavy quarks

Prompt photon v_n

Optical effects in QGP medium

AM, arXiv:1408.1410 [nucl-th]

Transparent medium has a non-unity refractive index

A hot QCD medium works as a 4D lens

Geometrical anisotropy (ε_2 , ε_3 , ...) is directly mapped onto thermal and prompt photon flow harmonics (v_2 , v_3 , ...)

Numerical analyses – prompt photon v_n

- \searrow Positive flow harmonics; not large enough w/ the model index $n^2 = 1 a^2 T^2 / \omega^2$ based on HTL
- Critical opalescence near T_c ?
- Semi-transparency at ultra-low momentum (determining plasma frequency of QGP)?

The end

- Thank you for your attention!
- Website: http://tkynt2.phys.s.u-tokyo.ac.jp/~monnai/

Momentum anisotropy

Time evolution of medium "elliptic flow"

Elliptic flow is quickly developed

Effects of initial absence of quarks would be large

Thermal Photons and Dileptons in Heavy-Ion Collisions, 21st August 2014, BNL, USA