Photons in heavy-ion collisions: inclusive and peripheral

Jean-François Paquet (McGill University)

Brookhaven National Laboratory August 22nd, 2014

The (double) direct photon puzzle

Spectra and v₂, direct photons, RHIC 0-20%

Outline

- Inclusive photons
 - How well can inclusive photons be described?
 - Opportunities?
 - Photon v_n definitions

• Centrality dependence of direct photons

Photon sources

Prompt photons

Binary-scaled NLO pQCD (with isospin effect and nuclear pdf)

5

More information on model

IP-Glasma (τ<0.4 fm/c)+MUSIC (τ>0.4 fm/c)

- MUSIC:
 - Event-by-event 2+1D <u>viscous</u> (Israel-Stewart, conformal) hydrodynamics with <u>fluctuating initial conditions</u>
 - Shear viscosity/entropy 0.13 (0.21 at LHC)
 - Lattice + hadron resonance gas equation of state with chemical freeze-out at 150 MeV
 - Cooper-Frye freeze-out at 150 MeV (103 MeV for LHC), + resonance decays 1.4 GeV

More information on model

IP-Glasma (τ<0.4 fm/c)+MUSIC (τ>0.4 fm/c)

- MUSIC:
 - Event-by-event 2+1D <u>viscous</u> (Israel-Stewart, conformal) hydrodynamics with <u>fluctuating initial conditions</u>
 - **Shear viscosity/entropy** 0.13 (0.21 at LHC)
 - Lattice + hadron resonance gas equation of state with chemical freeze-out at 150 MeV
 - Cooper-Frye freeze-out at temperature 150 MeV (103 MeV for LHC), + resonance decays 1.4 GeV

Parameters fitted to the π^0 spectra and charged hadron v_2

Thermal photons

$$E\frac{d^3N^{\gamma,th}}{dp^3} = \int d^4x \left[E\frac{d^3R^{\gamma}}{dp^3}(T(x),u(x),\pi^{\mu\nu}(x)) \right]$$

• Photon production rate

less hot (hadron gas)	Temperature	very hot (QGP)
Effective Lagrangian	Linear interpolation (between 184 and 220 MeV)	Perturbative expansion in α_s
- <mark>Mesons (</mark> Turbide, Gal Rapp. 2004) - <mark>Baryons (</mark> Rapp, priva comm.)	e, te	- AMY LO (Arnold, Moore, Yaffe. 2002)

Thermal photons

$$E\frac{d^3N^{\gamma,th}}{dp^3} = \int d^4x \left[E\frac{d^3R^{\gamma}}{dp^3}(T(x),u(x),\pi^{\mu\nu}(x)) \right]$$

• Photon production rate

less hot (hadron gas)	Temperature	very hot (QGP)
Effective Lagrangian	Linear interpolation (between 184 and 220 MeV)	Perturbative expansion in α_s
 Mesons (Turbide, Gale Rapp. 2004) Baryons (Rapp, privation) 	e, Corrected* for anisotropy of momentum te distribution	- AMY LO (Arnold, Moore, Yaffe. 2002)
(Source) (Source) (Source)	hen, Paquet, Heinz, Gale, to be publis remsstrahlung part is <u>correct</u>	shed soon) (red for AMY)

Decay photons

 Decay photons from hadronic spectra computed after Cooper-Frye and resonances decays

Inclusive photons

Inclusive photons

	Inclusive	Cocktail	Direct
Experiment	Measurement	Simulation based on available hadronic data	Subtraction of inclusive and cocktail
Theory	Addition of cocktail and direct	Computed from hydrodynamics	Computed from hydrodynamics + prompt photons

Inclusive photons: spectra

RHIC, 0-20% and 20-40% centrality

(Many thanks to Profs Axel Drees and Takao Sakaguchi for clarifying how to get the inclusive photon spectra from the available PHENIX data)

Inclusive photons: v_n

RHIC, 0-20% and 20-40% centrality

Inclusive at LHC

Last comment: how to compute v_n?

$$v_n e^{in\Psi_n}(p_T, \eta) \equiv \frac{\int_0^{2\pi} d\phi \frac{dN}{d\phi dp_T d\eta} e^{in\phi}}{\int_0^{2\pi} d\phi \frac{dN}{d\phi dp_T d\eta}}$$

 Photon v_n computed from event-plane method: the <u>photon anisotropy</u> is <u>measured</u> with respect to the <u>hadronic event plane</u>

$$v_n \{ \text{EP} \} \equiv \frac{\left\langle \cos n(\phi_i - \Psi_n^A) \right\rangle_{\text{particles, events}}}{\sqrt{\left\langle \cos n(\Psi_n^A - \Psi_n^B) \right\rangle}},$$

(From Luzum and Petersen, 2013)

(Brackets mean averaging over events)

$$v_n\{EP\} \simeq \frac{\left\langle v_n^{\gamma} v_n^h \cos\left[n\left(\Psi_n^{\gamma} - \Psi_n^h\right)\right]\right\rangle}{\sqrt{\left\langle \left(v_n^h\right)^2\right\rangle}}$$

v_n definitions: why does it matter

Hadron v_n fluctu

v₂^Y{EP}

0

tuations:

$$v_{n}\{EP\} \simeq \frac{\langle v_{n}^{\gamma} v_{n}^{h} \cos[n(\Psi_{n}^{\gamma} - \Psi_{n}^{h})] \rangle}{\sqrt{(v_{n}^{h})^{2}}}$$

$$v_{n}\{EP\} \simeq \frac{\langle v_{n}^{\gamma} v_{n}^{h} \cos[n(\Psi_{n}^{\gamma} - \Psi_{n}^{h})] \rangle}{\sqrt{(v_{n}^{h})^{2}}}$$

v_n definitions: why does it matter

• Photon multiplicity weights in the event-averaging

$$v_{n}\{EP\} \simeq \frac{\langle p_{n}^{\gamma} v_{n}^{h} \cos[n(\Psi_{n}^{\gamma} - \Psi_{n}^{h})] \rangle}{\left| \left((v_{n}^{h})^{2} \right) \right|}$$
All events treated equally vents
$$\langle X \rangle_{\gamma} = \frac{j \in \text{events} \left(\frac{1}{2\pi p_{T}} \frac{d^{2} N_{j}^{\gamma}}{dp_{T} dy} \right) X_{j}}{j \in \text{events} \left(\frac{1}{2\pi p_{T}} \frac{d^{2} N_{j}^{\gamma}}{dp_{T} dy} \right)} \text{ or } \langle X \rangle_{ev} = \frac{1}{N} \sum_{j \in \text{events}} X_{j}$$
18

N or p m ev

\mathbf{v}_{n} definitions: why does it matter

• Photon multiplicity weights in the event-averaging

Effect on v_n on <u>inclusive</u> photons

Similar effect on <u>direct</u> photons

21

Inclusive?

- Inclusive photon spectra <u>agrees with data</u> once hydrodynamics parameters are fitted to hadronic observables
- Using inclusive as an <u>additional constraint</u> on hydrodynamics parameters?
- How the <u>photon V_n is computed is important!</u>

Centrality dependence: closer look

23

Thermal/pQCD vs centrality

Conclusion

- Inclusive photon:
 - Constraint on hydrodynamics parameters
- Photon v_n definition: event-by-event calculation necessary!
- Very interesting peripheral data
 - Constraint on prompt?

Many thanks to...

- Charles Gale, Gabriel Denicol, Gojko
 Vujanovic, Sangyong Jeon, Matt Luzum
- Chun Shen, Ulrich Heinz

without forgetting the participants to this workshop and the earlier "EMMI Rapid Reaction Task Force" for their valuable input before and during these workshops

Inclusive vs cocktail

Cocktail dominates the inclusive photon signal 28

What if there were more direct photons?

• For the spectra, easy to test:

 $R^{\gamma} = \frac{dN^{\gamma,incl}}{dN^{\gamma,cocktail}}$

$$d N_{theory incl.+exp direct}^{\gamma,incl.} = d N^{\gamma,cocktail} R_{experimental}^{\gamma}$$

Theoretical cocktail + experimental direct photons

Visible but small effect on spectra

Prompt photons

- pQCD calculation or fit to proton-proton data
- Binary scaling is assumed to hold in both cases
- Large contribution to direct photons:

3

Pion contribution to inclusive

Peripheral photons as "cold" reference?

