

Photon tomography of relativistic heavy-ion collisions

Chun Shen The Ohio State University

In collaboration with Jean-Francois Paquet, Gabriel Denicol, Ulrich Heinz, Charles Gale

Aug. 20, 2014 Thermal Photons and Dileptons in Heavy-Ion Collisions BNL

Little Bang

Photons from Heavy-ion Collisions

http://youtu.be/oMFboC7O1DU

Fitted T_{eff} from Experiments

Photon v_n from Experiment

A. Adare et al. [PHENIX Collaboration] Phys. Rev. Lett. 109, 122302 (2012)

at $p_T < 4 \text{ GeV}$

Photon vn from Experiment

- PHENIX measurements show large direct photon v_2 at $p_T < 4 \text{ GeV}$
- ALICE also measured similar large direct photon elliptic flow at LHC

State-of-the-art hydrodynamic modeling

State-of-the-art hydrodynamic modeling

Viscous Photon Emission Rates: General Formalism

Thermal photon emission rates can be calculated by

$$E_q \frac{dR}{d^3 q} = \int \frac{d^3 p_1}{2E_1 (2\pi)^3} \frac{d^3 p_2}{2E_2 (2\pi)^3} \frac{d^3 p_3}{2E_3 (2\pi)^3} \frac{1}{2(2\pi)^3} |\mathcal{M}|^2$$

 $\times f_1(p_1^{\mu}) f_2(p_2^{\mu}) (1 \pm f_3(p_3^{\mu})) (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - q)$ With

$$f(p^{\mu}) = f_0(E) + f_0(E)(1 \pm f_0(E)) \frac{\pi^{\mu\nu} \hat{p}_{\mu} \hat{p}_{\nu}}{2(e+p)} \chi\left(\frac{p}{T}\right)$$

We can expand photon emission rates around the thermal equilibrium:

$$q\frac{dR}{d^3q} = \Gamma_0 + \frac{\pi^{\mu\nu}\hat{q}_{\mu}\hat{q}_{\nu}}{2(e+p)}a_{\alpha\beta}\Gamma^{\alpha\beta},$$

$$a_{\mu\nu} = \frac{3}{2(u\cdot\hat{q})^4}\hat{q}_{\mu}\hat{q}_{\nu} + \frac{1}{(u\cdot\hat{q})^2}u_{\mu}u_{\nu} + \frac{1}{2(u\cdot\hat{q})^2}g_{\mu\nu} - \frac{3}{2(u\cdot\hat{q})^3}(\hat{q}_{\mu}u_{\nu} + \hat{q}_{\nu}u_{\mu}).$$
(6(25))

Viscous Photon Emission Rates: General Formalism

Thermal photon emission rates can be calculated by $E_q \frac{dR}{d^3q} = \int \frac{d^3p_1}{2E_1(2\pi)^3} \frac{d^3p_2}{2E_2(2\pi)^3} \frac{d^3p_3}{2E_3(2\pi)^3} \frac{1}{2(2\pi)^3} |\mathcal{M}|^2$

 $\times f_1(p_1^{\mu}) f_2(p_2^{\mu}) (1 \pm f_3(p_3^{\mu})) (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - q)$ With

 $f(p^{\mu}) = \frac{\pi^{\mu\nu}\hat{p}_{\nu}\hat{p}_{\nu}}{\Gamma_0(q,T)} \chi\left(\frac{p}{T}\right)$ We can expa calculated in fluid local rest frame and the thermal equilibrium: $q\frac{dR}{d^3a} = \Gamma_0 + \frac{\pi^{\mu\nu}\hat{q}_{\mu}\hat{q}_{\nu}}{2(e+n)}a_{\alpha\beta}\Gamma^{\alpha\beta},$

6(25)

Viscous Photon Emission Rates

Viscous Photon Emission Rates

Viscous Photon Emission Rates

Photon spectra and radial flow

Fitted T_{eff} vs. True Temperature

C. Shen, U. Heinz, J.-F. Paquet and C. Gale, Phys. Rev. C 89, 044910 (2014)

- All photons with T < 250 MeV at RHIC and < 300 MeV at LHC carries T_{eff} within the experimental fitted region
- About 50-60% of photons are emitted from T = 165~250 MeV, they are strongly blue shifted by radial flow

$$T_{\rm eff} = T \sqrt{\frac{1+v}{1-v}}$$
10(25)

Fitted T_{eff} vs. Emission Time

• About 25% of thermal photons are emitted in the first 2 fm/c

- After 2 fm/c, thermal photons are significantly blue shifted by radial flow
- Viscous corrections to the slope of photon spectra are stronger during the early part of the evolution

Centrality dependence of photon yield

 Thermal photons from hydrodynamic medium qualitatively reproduce the centrality dependence of the direct excess photon yield at the top RHIC energy

Centrality dependence of photon yield

 Thermal photons from hydrodynamic medium qualitatively reproduce the centrality dependence of the direct excess photon yield at the top RHIC energy

Centrality dependence of photon yield

 Thermal photons from hydrodynamic medium qualitatively reproduce the centrality dependence of the direct excess photon yield at the top RHIC energy

 dN^{γ}/dy vs. $dN^{\rm ch}/d\eta$

less model dependent comparison

13(25)

Photon anisotropic flow

Shear viscous effects on photon elliptic flow

- Shear viscous suppression of photon v₂ is dominated by the viscous corrections to the photon emission rate
- Photon elliptic flow is sensitive to the larger shear stress tensor at early times

Shear viscous effects on photon elliptic flow

- Shear viscous suppression of photon v₂ is dominated by the viscous corrections to the photon emission rate
- Photon elliptic flow is sensitive to the larger shear stress tensor at early times

Fluctuation effects on photon elliptic flow

Fluctuation effects on photon elliptic flow

Initial fluctuations increase photons' elliptic flow

Fluctuation effects on photon elliptic flow

- Initial fluctuations increase photons' elliptic flow
- The additional photon multiplicity weighting biases e-b-e v₂ towards central collisions, resulting in ~10-20% smaller v₂ compared to smooth hydro

16(25)

Event-by-Event Full Viscous Photon vn

The sky falls ...

 Current calculations still underestimate the experimental data by a factor of 3!

arXiv: 1308.2111 18(25)

The sky falls ...

RHIC 0-20%

LHC 0-40%

- Current calculations still underestimate the experimental data by a factor of 3!
- Thermal yield is also missing in the azimuthally integrated photon spectra at low arXiv: 1308.2111 18(25)

Efforts to resolve the photon flow puzzle

- The post freeze-out short-lived resonances give small but positive contributions
- Pre-equilibrium flow helps the fireball to develop the flow anisotropy more quickly and improves the theoretical calculations

19(25)

By cutting hydro medium both in T and τ, we observe a two-wave thermal photon production

early time production — high rates at high temperatures near transition region — growing of space-time volume

- By cutting hydro medium both in T and τ, we observe a two-wave thermal photon production
- Thermal photon v_2 is mostly coming from the transition region, T = 150~ 200 MeV, $\tau = 3 \sim 8$ fm @ RHIC

Thermal photons with p_T = 0.4 ~ 1.0 GeV are mostly produced around transition region, their v₂ also reflect the flow anisotropy in this region.
 T = 150~ 200 MeV @ RHIC

 Thermal photons with p_T = 1.0 ~ 2.0 GeV are produced in two waves, their v₂ reflect the flow anisotropy around the transition region. T = 150~ 200 MeV @ RHIC

 Thermal photons with p_T = 2.0 ~ 3.0 GeV are produced very early, however their v₂ still probes the transition region T = 150~ 200 MeV @ RHIC

- By cutting hydro medium both in T and τ, we observe a two-wave thermal photon production
- Thermal photon v_2 is mostly coming from the transition region, T = 150~ 200 MeV, $\tau = 3 \sim 8$ fm @ RHIC

- By cutting hydro medium both in T and τ, we observe a two-wave thermal photon production
- Thermal photon v_n probes the transition region, T = 150~200 MeV, $\tau = 3 \sim 8$ fm @ RHIC

- By cutting hydro medium both in T and τ, we observe a two-wave thermal photon production
- Thermal photon v_n probes the transition region, T = 150~200 MeV, $\tau = 3 \sim 8$ fm @ RHIC

- By cutting hydro medium both in T and τ, we observe a two-wave thermal photon production
- Thermal photon v_n probes the transition region, T = 150~200 MeV, $\tau = 3 \sim 8$ fm @ RHIC

Photon Emission Rates in the transition region

Photon Emission Rates in the transition region

Photon Emission Rates in the transition region

Bulk viscous corrections to photon emission rates

Thermal photon emission rates can be calculated by

$$E_q \frac{dR}{d^3 q} = \int \frac{d^3 p_1}{2E_1 (2\pi)^3} \frac{d^3 p_2}{2E_2 (2\pi)^3} \frac{d^3 p_3}{2E_3 (2\pi)^3} \frac{1}{2(2\pi)^3} |\mathcal{M}|^2$$

 $\times f_1(p_1^{\mu}) f_2(p_2^{\mu}) (1 \pm f_3(p_3^{\mu})) (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - q)$ With

$$f^{i}(p^{\mu}) = f^{i}_{0}(p \cdot u) + f^{i}_{0}(p \cdot u)(1 \pm f^{i}_{0}(p \cdot u))\frac{\pi^{\mu\nu}p_{\mu}p_{\nu}}{2(e + \mathcal{P})}\chi\left(\frac{p \cdot u}{T}\right) + f^{i}_{0}(p \cdot u)(1 \pm f^{i}_{0}(p \cdot u))\Pi(B^{i}(T) + D^{i}(T)(p \cdot u) + E^{i}(T)(p \cdot u)^{2})$$

We can expand photon emission rates around the thermal equilibrium:

$$q \frac{dR}{d^3 q} = \Gamma_0 + \frac{\pi^{\mu\nu} \hat{q}_{\mu} \hat{q}_{\nu}}{2(e+\mathcal{P})} a_{\alpha\beta} \Gamma^{\alpha\beta}(q,T) + \frac{\Pi}{\mathcal{P}} \Gamma_{\Pi}(q,T)$$
$$a_{\mu\nu} = \frac{3}{2(u\cdot\hat{q})^4} \hat{q}_{\mu} \hat{q}_{\nu} + \frac{1}{(u\cdot\hat{q})^2} u_{\mu} u_{\nu} + \frac{1}{2(u\cdot\hat{q})^2} g_{\mu\nu} - \frac{3}{2(u\cdot\hat{q})^3} (\hat{q}_{\mu} u_{\nu} + \hat{q}_{\nu} u_{\mu})$$

23(25)

Peek of bulk viscous effects on thermal photon observables

Hadronic photons:

J. Noronha-Hostler, G. S. Denicol, J. Noronha, R. P. G. Andrade and F. Grassi, Phys. Rev. C **88**, 044916 (2013)

- Bulk viscosity steepens thermal photon spectrum
- It increases thermal photon pT differential elliptic flow reduces hydrodynamic radial flow

Conclusion

- We study photon spectra and their anisotropic flows V_n from *event-by-event* viscous hydrodynamic medium
- Thermal photon spectra are strongly blue shifted by hydrodynamic radial flow
- Shear viscosity suppresses photon v_n . Dominant suppression comes not from flow, but from the viscous correction to the production rates.
- Uncertainty of the photon emission rates in the transition region plays a crucial role in the theoretical calculations
- The interplay between bulk and shear viscous effects need to be carefully studied

Back up

Photon Rates (QGP 2 to 2 processes only)

Equilibrium rates:

- For small g, results from diagrammatic approach agree well with kinetic approach and AMY
- For g = 2.0, diagrammatic approach gives 25% larger results compared to kinetic approach; difference are due to cut-off dependence.

Photon Rates (QGP 2 to 2 processes only)

Viscous corrections:

For small g, diagrammatic approach agrees with kinetic approach

For g = 2, the deviations at small k/T may originate from different higher order $O(g^2T)$ contributions

Thermal Photon Spectra

- With all available thermal emission sources, our current calculations still underestimate measured direct photon spectra at low p⊤ at both RHIC and LHC energies
- Additional emission sources need to be included to improve the agreement between theory and data

- By cutting hydro medium both in T and tau, we observe a two-wave thermal photon production
- Thermal photon v_2 is mostly coming from the transition region, T = 150~ 200 MeV, $\tau = 3 \sim 8$ fm @ RHIC

- By cutting hydro medium both in T and tau, we observe a two-wave thermal photon production
- Thermal photon v_2 is mostly coming from the transition region, T = 150~ 200 MeV, $\tau = 3 \sim 8$ fm @ RHIC

- By cutting hydro medium both in T and tau, we observe a two-wave thermal photon production
- Thermal photon v_2 is mostly coming from the transition region, T = 150~ 200 MeV, $\tau = 3 \sim 8$ fm @ RHIC

Emission vs. Temperature

- High p_T photons are mostly emitted from high temperature region
- Peak photon production around T = 165-200 MeV due to large hydrodynamic space-time volume