Dimuon Production In PbPb Collisions at 20-160 AGeV at the CERN SPS: Mapping the QCD Phase Diagram in the Transition Region with a New NA60-like Experiment

Gianluca Usai – University of Cagliari and INFN

TPD 2014 - Thermal Photons and Dileptons in Heavy Ion Collisions RIKEN BNL Research Center Workshop - 22/08/2014

NA60+: prime physics goal

Systematic measurement of EM radiation over the full energy range from SIS-100/300 to top SPS: ≈20 AGeV to 160 AGeV

RHIC:

 good coverage, but much lower statistics than fixed target experiments

FAIR (CBM):

- SIS-100 (>2020) limited coverage
- SIS-300 better coverage but unclear timeline (>2025)

SPS:

- Wide coverage of phase diagram
- Existing facility
- Competitive high-intensity beams
- Other experimental program (NA61) already ongoing

Comparison of ion beams

SPS				SIS100/300
Energy rang [AGeV]	ge: 11	l – 158		< 11 – 35 (45)
	beam intensity [Hz]	target thickness [λ _i]	interaction rate [Hz]	interaction rate [Hz]
NA60 (2003)	2.5×10 ⁶	20%	5×10 ⁵	
new injection scheme	10 ⁸ 10 ⁸	10% 1%	10 ⁷ 10 ⁶	10 ⁵ - 10 ⁷
LHC AA			5×10 ⁴	

- Luminosity at the SPS comparable to that of SIS100/300
- No losses of beam quality at lower energies except for emittance growth
- > RP: seems not a problem in EHN1
- ➤ Pb beams presently scheduled for the SPS in 2016-2017, 2019-2021

Dileptons in the LMR (M<1 GeV): ρ spectral function

High energy: 160 AGeV In-In

Low energy: only one low-statistics measurement in Pb-Au at 40 AGeV

- \triangleright Broadening of ρ spectral function driven by the total baryon density
 - should get maximal at low energy
 - commonly linked to chiral symmetry restoration though in model dependent way
- \rightarrow Measurement of ρ spectral function with utmost precision
 - Possible surprises? Critical point?

Dileptons in the IMR: chiral symmetry restoration

- Lower energy: decrease of QGP, DY and open charm
- improved sensitivity to excess from hadronic radiation

- Physics processes in IMR
 - Drell-Yan (power law ~ Mn)
 - Thermal radiation
 - QGP
 - Hadron gas

Chiral symmetry restoration

 hadronic radiation for M<1.5 GeV dominated by 4π processes via a₁π →μμ (chiral mixing)

Hees - EM probes Trento workshop - 2013

Dileptons in the IMR: source temperature

- Physics processes in IMR
 - Drell-Yan (power law ~ Mn)
 - Thermal radiation
 - QGP
 - Hadron gas
- > Thermal spectrum for M>1.5 GeV (flat spectral function) $\sim M^{3/2} \exp(-M/T)$:
 - → fit gives average T of emitting source (M Lorentz invariant, i.e. no blueshift)
- > Full SPS energy: NA60 In-In
 - o Fit to range
 - 1.1-2.0 GeV: T=205±12 MeV
 - 1.1-2.4 GeV: T=230±10 MeV
 - $T > T_c \rightarrow$ deconfinement at full SPS energy
- Decrease of T for decreasing energy expected plateau around onset of deconfinement?
- → Requires systematic measurement of T vs beam energy with precision on the MeV level to assess the slope of T decrease and the possible flattening

Partonic radiation and onset of deconfinement

 \triangleright Disentangling QGP vs hadronic radiation \rightarrow m_T spectra in different mass bins

 m_{τ} spectra (left): fit with

$$\frac{1}{m_T} \frac{dN}{dm_T} \approx \exp(-m_T \, / \, T_{eff})$$

Collective motion (radial flow)

$$T_{eff} \approx T + M \left\langle \mathbf{v}_R^2 \right\rangle$$

- ► Hadronic radiation: T_{eff} rise consistent with radial flow of a hadronic source: $\pi^+\pi^- \to \rho \to \mu^+\mu^-$ in LMR; 4π in IMR (the latter negligible at 160 AGeV)
- QGP radiation: T_{eff} almost flat, consistent with an early source with low flow (dominant at 160 AGeV)
- T_{eff} vs M sensitive to QGP vs hadronic yield for decreasing collision energy, increase of HG radiation/decrease of QGP → progressive reduction/disappearance of drop
- > Systematic precision measurement from SPS energies down to SIS100 energies

Charmonium production in AA: top to low SPS energies

- Anomalous suppression relevant for PbPb collisions, but almost no suppression for the lighter InIn system at 158 AGeV
- Identify thresholds for charmonium suppression via SPS energy scan
- Topmost SPS energy: detailed study of χ_c by detecting the decay photon (originally part of NA60 program)

Running conditions foreseen

- Energy scan
 - tentatively: 20-(30)-40-(60)-80-(120)-160 AGeV
- Objectives for total sample of reconstructed pairs
 - isolation of hadronic spectrum up to M≈2 GeV
 - measurements of T and T_{eff} vs M with an accuracy on the MeV level
 - \rightarrow > 10⁷ rec pairs from thermal radiation at each energy
 - → statistics increase by a factor ≈100 over NA60 at each energy
- Ion beams
 - Consistent use of Pb ions for all energies
- Proton beams
 - Needed for reference measurements (Drell-Yan and charmonium)

NA60+ detector concept

Two-spectrometer concept: already proven to be very successful by NA60

- ➤ Hybrid silicon pixel detectors (High luminosity of dimuon experiments must be maintained)
- > Tracking and trigger stations: GEMs and/or MWPCs
- > Track matching in coordinate and momentum space
 - improved dimuon mass resolution
 - distinguish prompt from decay dimuons

Measuring dimuons at 20<E_{lab}<160 GeV

- angular coverage down to η≈1.8 at20 AGeV (ϑ~0.3 rad)
- ➤ 5 silicon pixel stations at 7<z<40 cm
- Pixel plane:
 - 400 μm silicon + 1 mm carbon substrate
 - silicon material budget ≈ 1% X₀
 - $10-15 \, \mu m$ spatial resolution

The vertex spectrometer

The muon spectrometer

Performance studies: Pb-Pb 0-5% central collisions

- Signal
- O Hadron cocktail generator derived from NA60 Genesis using statistical model (Becattini et al.); $dN_{ch}/d\eta$ =270
- Thermal radiation generator based on theoretical calculation in PbPb at 40 GeV (R. Rapp)
- Drell-Yan and open charm estimated with Pythia

- > Fast simulation tool and reconstruction tool
- Apparatus defined in terms of geometry and material for each layer
- Multiple scattering generated in gaussian approximation (Geant code)
- Energy loss simulated with Bethe-Bloch neglecting energy fluctuations
- Reconstruction based on Kalman filter with embedding on full event in pixel detector
- Fake match: one or more wrong hits associated to track

Combinatorial background

- Full hadronic shower development in absorber
- Punch-through of primary and secondary hadrons (p, K, π)
- Muons from secondary hadrons

Background generation

- Parametric π and K event generator (built-in decayer for π and K)
- Apparatus geometry defined in consistent way with fast simulation tool
- Hits in detector planes recorded in external file for reconstruction

Triggering on dimuons and expected sample size

- > Triggering scheme under investigation:
 - tracklet reconstruction in trigger stations after muon wall + fast track reconstruction in muon stations
- \triangleright Beam intensity: L \approx 2.5·10⁶/s, λ_i =0.15 (past NA60 conditions)
 - → minimum bias trigger rate (essentially bkg rate) ≈ 15-20 kHz
- NA60+ improvements over NA60:
 - O Higher trigger rate capability (limited to < ≈ 4 kHz in NA60)
 - Significantly larger acceptance, in particular for M<0.5 GeV: > 10
 - o Pb-Pb vs In-In
- > 15-20 days of beam time in Pb-Pb at 40 GeV
- \rightarrow $\approx 10^7$ reconstructed pairs from thermal radiation in central collisions

Pb-Pb 0-5% central collisions: data sample

- > Subtraction of:
- Combinatorial background
- Fake matches
- Precision of combinatorial background subtraction:0.5%
- ➤ 2.10⁷ reconstructed signal pairs
- Mass resolution: 10-15 MeV at the ω position
- ➤ lower field toroid: increase of S/B by just 30-40%
 - → measurement still very precise

NA60 vs NA60+

Minimum bias collisions: progress in statistics over NA60 by a factor ≈ 100

Pb-Pb 0-5% central collisions: LMR (M<1 GeV)

- Thermal radiation yield dominated by in-medium $\rho+\omega$
- Precise isolation of excess à la NA60

Pb-Pb 0-5% central collisions: full mass spectrum

- ➤ Thermal radiation yield up to 2.5-3 GeV
- QGP yield still significant at 40 GeV
- Drell-Yan gets stronger than QGP above 2.5 GeV
- Open charm yield negligible

Inclusive excess mass spectrum: NA60+ (40 AGeV PbPb) vs NA60 (160 AGeV InIn)

- ➤ All known sources subtracted; mass spectra integrated over p_T
 - Mass spectra fully corrected for acceptance

Inclusive excess mass spectrum: hadronic radiation

Mass Spectrum fully corrected for acceptance

- Performance for study of hadronic radiation in IMR. Scenario with
 - Negligible QGP radiation
 - Hadronic radiation for Pb-Pb central collisions at 20/40 GeV
 - Same background level as Pb-Pb 40 GeV

- Stand-alone study of excess up to M ≈ 2 GeV
- \rightarrow Best sensitivity to ρ -a₁ chiral mixing

Pb-Pb 0-5% central collisions: performance of T_{eff} measurement from m_⊤ spectra

- Thermal radiation in Pb-Pb at 40 GeV (Rapp)
- o hadronic radiation: T_{eff} increases monotonically from LMR to IMR up to highest masses
- QGP radiation: T_{eff} variation almost negligible
- > Experimental measurement
- T_{eff} can be extracted in several mass intervals up to ≈ 2.5 GeV
- Strong sensitivity to distinguish even a small contribution of QGP down to the onset

NA60+: charmonium measurements in Pb-Pb at low energy

- Kinematic cuts and reconstruction efficiency:
 - 0<y<1; $\cos\theta_{CS}$ <0.5; ε_{rec} ≈ 10%
- \rightarrow J/ ψ suppression: assume a factor 3 as at 160 AGeV (pessimistic ansatz)
- Energy scan down to E_{lab}≈60 AGeV
- → Measurement with comparable statistics as at topmost SPS energy (N _{J/ψ}≈10⁴) possible within the proposed frame

Magnets and muon system

- Dipoles: investigating re-use of PT7 or MEP48
- ➤ MEP48
 - Gap width 410 mm, diameter 1000 mm
 - B=1.47 T @ 200 Amp, 200 V
 - B~2.5 T reducing the gap size to 200 mm

- Toroid magnet options
 - new magnet with field integral similar to ACM to cover all energies
 - re-use of ACM down to 60 AGeV and new low-field magnet at 20-40 AGeV
 - ongoing discussion with CERN experts
- Muon tracking stations
 - Option of complete construction with GEMs considered (≈ 140 m²)

Options for the pixel telescope

- Baseline option investigated: detector based on hybrid pixels
 - Pitch 40-50 μm
 - pixel station material budget ≈ 1% X₀
- Exploration of existing technologies or new developments for LHC upgrades (past example in NA60: ATLAS pixels)
- ➤ Monolithic pixels?

2 Planes with different geometry using ATLAS pixel modules built and operated in NA60 2004 proton run

Summary

- ➤ Systematic measurement of EM radiation over the full energy range from
 ≈ 20 AGeV to 160 AGeV
- Charmonium also part of the program from ≈ 60 AGeV to 160 AGeV
- NA60+ at the CERN SPS: unique opportunity for dilepton measurements of utmost precision over the widest possible energy range
 - Progress in statistics of a factor ≈ 100 over NA60 within reach
 - New horizon for quantitative understanding of dilepton production (chiral symmetry restoration, onset of deconfinement)
- ➤ NA60+: two-spectrometer detector concept as NA60
 - Relatively low cost experiment at a running machine: 10-15 Meuro
 - Collaboration would require 50-100 people
- > Ongoing work:
 - Submission of an expression of interest to SPSC
 - Preparation of document to serve as a basis for a letter of intent

Dileptons in LMR: measurement in fireball lifetime

NA60 precision measurement of excess yield (ρ -clock): provided the most precise constraint in the fireball lifetime (6.5±0.5 fm/c) in heavy ion collisions to date!

Crucial in corroborating extended lifetime due to soft mixed phase around CP: if increased τ_{FB} observed with identical final state hadron spectra (in terms of flow) \rightarrow lifetime extension in a soft phase

Nice example of complementary measurements with NA61