Workshop on "Thermal Photons and Dileptons in Heavy-Ion Collisions"

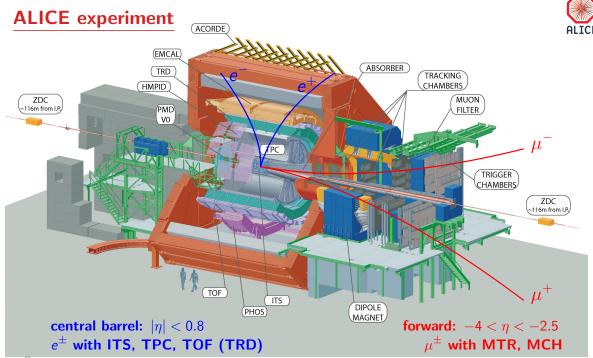
Dilepton and future measurements at ALICE

Hongyan Yang for the ALICE collaboration

20-22 August, 2014



Dileptons in heavy ion collisions

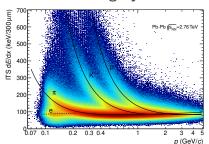

- Penetrating probe of the strongly interacting hot and dense medium
- small or negligible final state effects
- \square ρ broadening per in-medium modification
 - \rightarrow probes chiral aspects of phase transition
- thermal photon radiation via low and intermediate mass dileptons
 - \rightarrow sensitive to the temperature history of the medium
- \Box ϕ , ω production
- ☐ Dileptons within different mass ranges
 - \Box Low mass $M < 1.1 \text{ GeV}/c^2$
 - → conversions, neutral meson (Dalitz) decay
 - \rightarrow direct photons
 - □ Intermediate mass $1.1 < M < 3 \text{ GeV}/c^2$
 - \rightarrow heavy flavour ($c\overline{c}$) semi-leptonic decay
 - \rightarrow QGP thermal radiation
 - \square High mass $M > 3 \text{ GeV}/c^2$
 - → Quarkonium and Drell-Yan process

Thermal photon radiation in heavy ion collisions

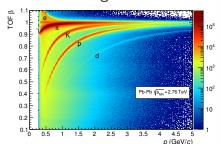
- Thermal radiation from hadron gas and QGP vs c.m.s energy and centrality → accessible with low & intermediate mass dileptons in ALICE \square Spectrum: \rightarrow temperature T**□** Flow (v_2, v_3) → formation time τ_0 \rightarrow Advantages of ALICE: low p_T lepton tracking and PID (mid-rapidity: e, forward: μ) \rightarrow **Current difficulties**: very small S/B ratio mid-rapidity via electrons: large combinatorics from background electrons → not possible with any trigger strategy: abundant low momentum electrons \rightarrow electron from various sources: photon conversions in materials and various hadronic sources → large uncertainties in charm and beauty cross sections measurement forward rapidity via dimuons: large contamination of low momentum muons → with current muon tracking and triggering large combinatorial background in low mass dimuon not accessible with the current muon arm
- Spectrum and flow via external photon conversions method (PCM) in ALICE
 - \rightarrow see talk by F. Bock

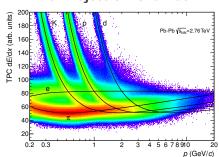
Dileptons with ALICE

pp @ $\sqrt{s}=2.76,7,8$ TeV | p-Pb @ $\sqrt{s_{_{
m NN}}}=5.02$ TeV | Pb-Pb @ $\sqrt{s_{_{
m NN}}}=2.76$ TeV


Dielectrons with ALICE central barrel

Inner Tracking System, Time Projection Chamber and Time Of Flight


Electron identification with ITS, TPC and TOF


☐ Inner Tracking System

Time Of Flight

Time Projection Chamber

Electron selection in pp, p-Pb & Pb-Pb

Syst. ITS		TPC	TOF	h-contam.	
pp	no	e incl.	h rej.	< 1%	
p-Pb	e incl.	e incl.	h rej.	< 10%	
Pb-Pb	e incl.	e incl.	h rej.	< 10%	

- TOF is efficient from p > 0.3 GeV/c
 - → using ITS for electron PID complementarily
- \square ITS, TPC: $p_{\rm T} > 0.2 \; {\rm GeV}/c$; TOF: $p_{\rm T} > 0.4 \; {\rm GeV}/c$

[ALICE Collaboration, arXiv:1402.4476]

ALICE central barrel: dielectron measurement

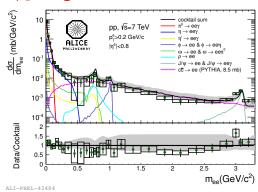
☐ Signal extraction: like sign, unlike sign and event-mixing approach

R-factor (event mixing)	$N_{+-}^{ m ME}/\sqrt{N_{++}^{ m ME}N_{}^{ m ME}}$
Background N^{bkg} (like sign and event mixing)	$R \cdot 2\sqrt{N_{++}^{\text{SE}}N_{}^{\text{SE}}}$
Signal N ^{sig} (unlike sign)	$N_{+-}^{ m SE}-N^{ m bkg}$

	Background	subtracted	signal	contains a	all	correlated	dielectron	pairs
--	-------------------	------------	--------	------------	-----	------------	------------	-------

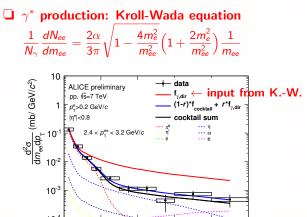
(to be corrected by detector effects)

- remaining photon conversions (small after strict track selection)
- \square neutral meson (Dalitz) decays $\pi^0, \eta, \eta', \rho, \omega, \phi$
- \Box correlated back-to-back $c\bar{c}$, $b\bar{b}$ decays to dielectrons: D, B mesons & quarkonium
- virtual direct photons, Drell-Yan process


☐ Thermal photon extraction:

- efficiency corrected signal distribution, compared with a hadronic cocktail
 - \rightarrow input: measured π^0 $(\eta, \phi, J/\psi)$ or charged pion spectrum, $c\bar{c}$, $b\bar{b}$ cross-sections
 - \rightarrow looking for excess at low mass region (only in pp so far)

Dielectrons in pp collisions at $\sqrt{s} = 7$ TeV vs hadronic cocktail



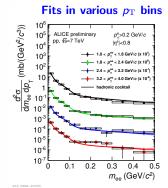
 \square p_{T} integrated dielectron mass continuum consistent with cocktail estimation

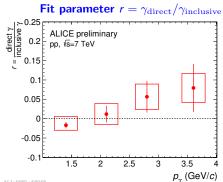
■ Cocktail calculations

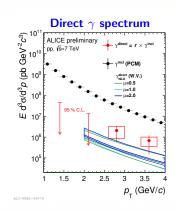
- \rightarrow using parameterisation of π^0 , η , ϕ , J/ψ from ALICE measurements; $(\eta', \omega, \rho \text{ from } m_T \text{ scaling})$;
- $\rightarrow c\bar{c}$ input: cross section = 8.5 mb (PYTHIA)
- ☐ Large systematic uncertainties
 - \rightarrow from input spectra

→ Fit function:

$$f_{total} = (1 - r) \cdot f_{cocktail} + r \cdot f_{\gamma, direct}$$
 (fit parameter $r \propto ratio of direct over inclusive photons)$


 m_{oo} (GeV/ c^2)

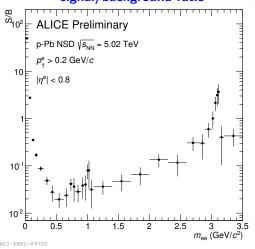

0.1


Thermal direct photon in pp collisions at $\sqrt{s} = 7$ TeV

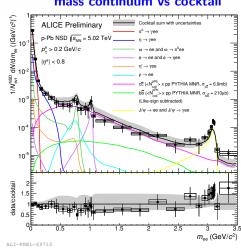
Direct photon extraction

$$oldsymbol{\square}$$
 Assumption: $\frac{\gamma_{
m direct}}{\gamma_{
m inclusive}} = \frac{\gamma_{
m direct}^*}{\gamma_{
m inclusive}^*}$

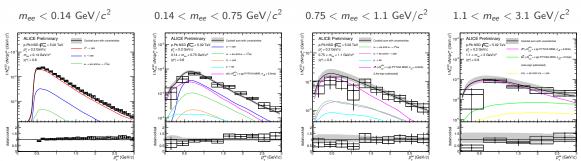
☐ Comparison to pQCD NLO calculations


$$\Rightarrow \gamma_{\text{direct}} = r \times \gamma_{\text{inclusive}}$$
(\gamma_{\text{inclusive}} \text{ measured with PCM})

⇒ consistent within uncertainties


Dielectrons in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

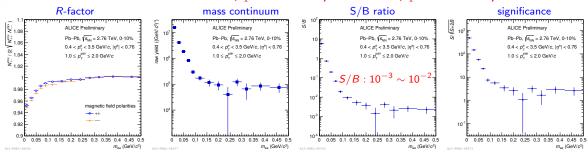
mass continuum vs cocktail


Compared with hadronic cocktails \rightarrow consistency within the uncertainties¹

¹mainly from the input for cocktail estimation

Dielectrons in p-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02 \text{ TeV}$

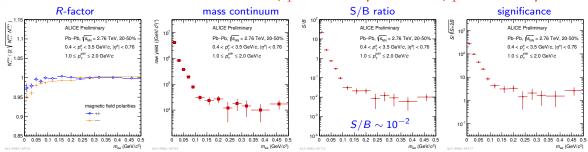
☐ Transverse momentum spectra within various m_{ee} intervals: $p_T^{min} = 0.2$ GeV/c


Compared with hadronic cocktails \rightarrow consistency seen in all mass ranges

With current uncertainty from cocktail estimation: \Rightarrow no conclusion can be drawn

Low mass dielectrons in Pb-Pb collisions at $\sqrt{s_{\text{\tiny NN}}} = 2.76 \text{ TeV}$

1. 0-10% central collisions: $0.4 < p_{\rm T}^e < 3.5$ GeV/c & $1.0 < p_{\rm T}^{\rm ee} < 2.0$ GeV/c

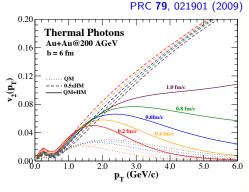


- ☐ Limitations in current uncorrected measurements
 - \square Low dielectron pair efficiency: ~ 10 -20% level
 - → balance between electron purity in e-ID and detector inefficiency
 - **Small** S/B ratio $10^{-3} \sim 10^{-2}$ → reduction of combinatorial background
 - \Box Limited significance \rightarrow interplay between S/B ratio and significance
 - → precise description of background shape (realistic MC helps)
 - Need precise measurement of input to hadronic cocktail calculations
 - \rightarrow neutral mesons and heavy flavour contributions ($c\bar{c}$ and $b\bar{b}$ cross sections)

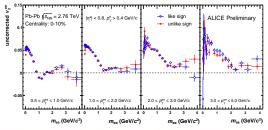
Low mass dielectrons in Pb-Pb collisions at $\sqrt{s_{\text{\tiny NN}}} = 2.76 \text{ TeV}$

20-50% semi-central collisions: $0.4 < p_{\rm T}^e < 3.5 \text{ GeV}/c \& 1.0 < p_{\rm T}^{ee} < 2.0 \text{ GeV}/c$

- ☐ Limitations in current uncorrected measurements
 - \square Low dielectron pair efficiency: ~ 10 -20% level
 - → balance between electron purity in e-ID and detector inefficiency
 - **Small** S/B ratio $10^{-3} \sim 10^{-2}$ → reduction of combinatorial background
 - \Box Limited significance \rightarrow interplay between S/B ratio and significance
 - → precise description of background shape (realistic MC helps)
 - Need precise measurement of input to hadronic cocktail calculations
 - \rightarrow neutral mesons and heavy flavour contributions ($c\bar{c}$ and $b\bar{b}$ cross sections)


Dielectrons flow in Pb-Pb collisions at $\sqrt{s_{_{\mathrm{NN}}}} = 2.76$ TeV

☐ System evolution history: early or late thermalisation?

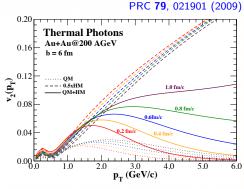

$$E\frac{d^3N}{dp} = \frac{1}{2\pi} \frac{d^2N}{p_{\mathrm{T}} dp_{\mathrm{T}} dy} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(n\Delta\varphi) \right]$$

R. Chatterjee et. al., PRL96, 202302 (2006)

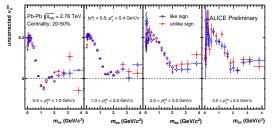
(formation time τ_0 of the QGP)

- **☐** Status of ALICE measurement
 - Possible for dielectron flow study
 - ightarrow low momentum electron ID
 - ightarrow event plane: VZERO (large η gap)
 - \square Non-trivial with small S/B ratio
- □ 0-10% central collisions

 \square Small S/B ratio leads to huge uncertainties in background extracted dielectron v_2


Dielectrons flow in Pb-Pb collisions at $\sqrt{s_{_{\mathrm{NN}}}} = 2.76$ TeV

☐ System evolution history: early or late thermalisation?

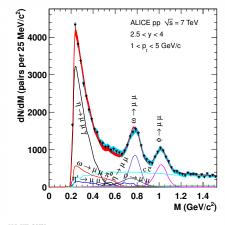

$$E\frac{d^3N}{dp} = \frac{1}{2\pi} \frac{d^2N}{p_{\rm T} dp_{\rm T} dy} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(n\Delta\varphi) \right]$$

R. Chatterjee et. al., PRL**96**, 202302 (2006)

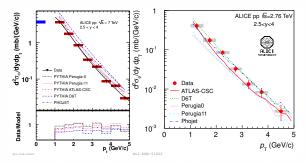
(formation time τ_0 of the QGP)

- ☐ Status of ALICE measurement
 - Possible for dielectron flow study
 - ightarrow low momentum electron ID
 - ightarrow event plane: VZERO (large η gap)
 - \square Non-trivial with small S/B ratio
- □ 20-50% semi-central collisions

 \square Small S/B ratio leads to huge uncertainties in background extracted dielectron v_2

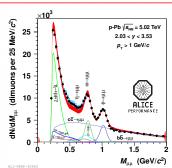

Dimuons with ALICE muon arm

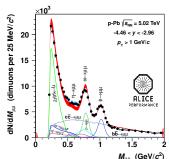
Muon Tracking Chambers and Muon Trigger


Low mass dimuons in pp collisions at $\sqrt{s} = 7$ TeV

☐ Low Mass Dimuon Spectrum: good agreement between signal and MC sources

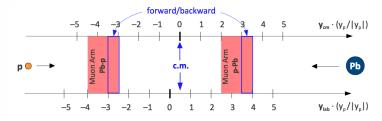
- $lue{}$ p_{T} differential cross sections of ω and ϕ \rightarrow accessible
- ϕ meson \to PYTHIA tunes Perugia0 and Perugia11 underestimate the data by about a factor of 2 both at 2.76 and 7 TeV




[ALICE Collaboration, Phys. Lett. $\mathsf{B710}$ (2012) 557]

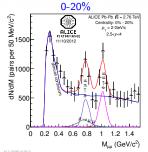
☐ Thermal photon radiation not accessible

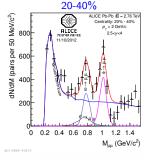
Dimuons in p-Pb collisions at $\sqrt{s_{min}} = 5.02$ TeV

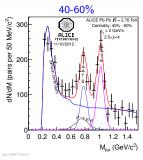


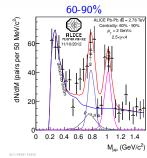
Hadronic cocktail fits

- Asymmetric systems: p-Pb and Pb-p
 - $\rightarrow p_T^{\mu\mu} \geq 1 \text{ GeV}/c$
 - → Fair agreement reached between data and hadronic cocktail + open HF
- Systematical uncertainties on signal extraction: 7%




- \square ω and ϕ production: accessible
- ☐ Thermal photon radiation: not accessible


Low mass dimuons in Pb-Pb collisions at $\sqrt{s_{min}} = 2.76$ TeV



Invariant mass continuum vs hadronic cocktail fits

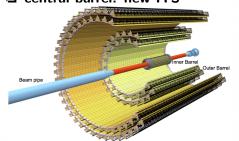
☐ Extraction of vector mesons possible

- $ightharpoonup p_{\mathrm{T}}^{\mu\mu} \geq 2 \; \mathrm{GeV}/c$
- Large statistical uncertainties: not allowing precise measurement of the underlying continuum
 - \square statistical uncertainty ~ 10 40%
- ☐ Thermal photon radiation: not possible

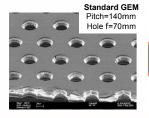
Future measurements with ALICE

RUN2 after ALICE readout upgrade | RUN3 after ALICE major upgrade

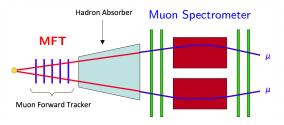
With RUN2: higher statistics and better detector performance


- Sources of improvements expected
 - \Box Higher \sqrt{s} with higher luminosity and data rate
 - → faster TPC: higher data taking rate (upgraded electronics)
 - Rare trigger under consideration
 - → High multiplicity trigger
 - \rightarrow TRD and EMCAL trigger
 - constrain better the contribution from heavy flavour electrons
 - Detector completion
 - \rightarrow SPD (ITS first 2 layers) recovery from failed cooling in RUN1
 - ☐ larger acceptance for electron tracking & identification
 - better conversion rejection probability
 - \rightarrow Completed installation of TRD
 - larger acceptance in electron tracking and identification
 - $lue{}$ improves TPC-TOF mis-matching \rightarrow reduces hadron contamination
- ⇒ signal, S/B ratio improvements expected

With RUN3 after major upgrades- after 2019

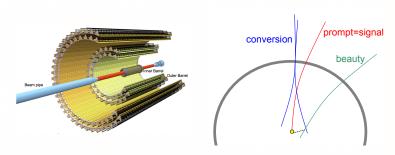


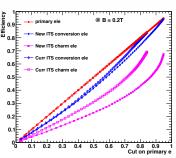
☐ Precision measurements of low mass lepton pairs emitted from the QGP



☐ central barrel: GEM-TPC

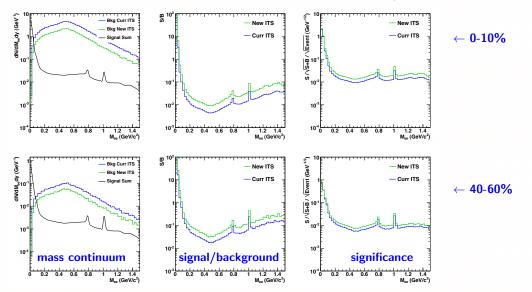
 \beth muon arm: MFT + MUON


ALICE major upgrade for RUN3


- ☐ ITS: high impact parameter resolution
- ☐ GEM-TPC: better electron tracking and data taking rate
- ☐ MFT: displaced muons, removal of background muons

With upgraded ITS

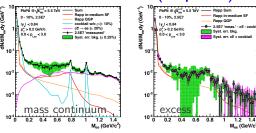
- ☐ Gains from the upgraded ITS vs current ITS
 - $lue{}$ tracking based conversion rejection possible o via topology cut
 - □ better impact parameter (DCA) resolution
 - \rightarrow separation of heavy flavour electrons and prompt signals
 - $\rightarrow \times 2$ gain in rejection of electrons from beauty-decay
 - $lue{}$ lower material budget o higher tracking efficiency at low p_{T}



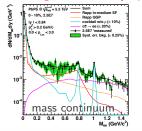
[ITS upgrade Letter of Intent (LoI) and Technical Design Report (TDR) JPG 41 (2014) 087002]

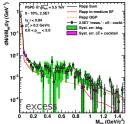
With upgraded ITS: much better S/B and significance

 \Box Comparison current ITS & new ITS: Pb-Pb collisions at $\sqrt{s_{_{\mathrm{NN}}}} = 5.5 \text{ TeV}$

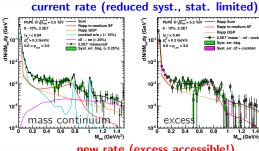


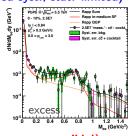
ALICE simulation Pb-Pb at $\sqrt{s_{_{\rm NN}}} = 5.5$ TeV: comparison

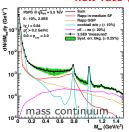


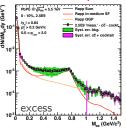


loose DCA cut (not possible)

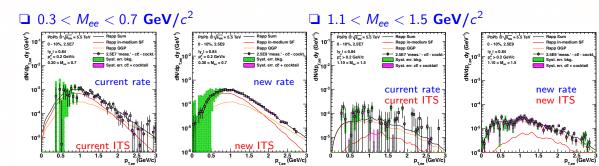



tight DCA cut (improvement marginal)



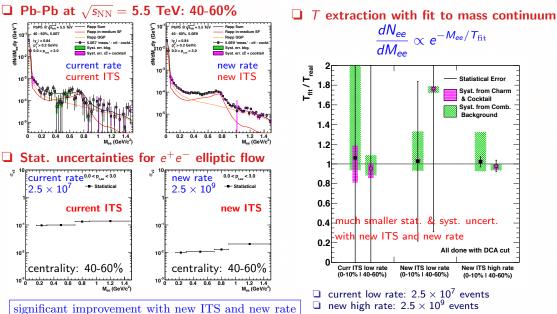

☐ New ITS, tight DCA cut

new rate (excess accessible!)



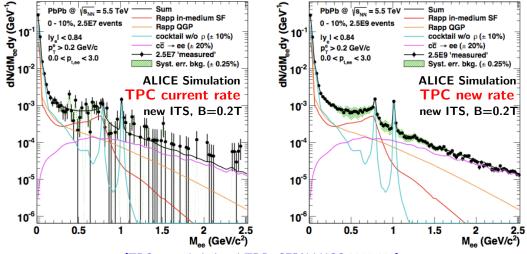
 \square Quantitative access to the excess \rightarrow with new ITS + high rate + tight DCA cut

ALICE simulation: $p_{\rm T}$ spectrum in Pb-Pb at $\sqrt{s_{_{\rm NN}}}=5.5$ TeV


☐ Dielectron excess with tight DCA cut

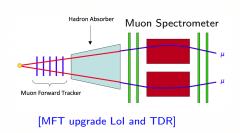
- With new ITS and new rate
 - much smaller stat. and syst. uncertainties
 - → dielectron excess accessible in low and intermediate mass

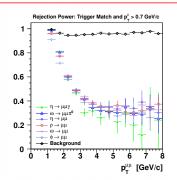
ALICE simulation: T and v_2 extraction in Pb-Pb at 5.5 TeV

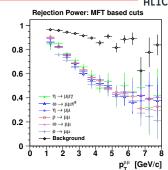


ALICE simulation: with upgraded ITS + TPC

Comparison with current TPC rate vs new TPC rate with new ITS

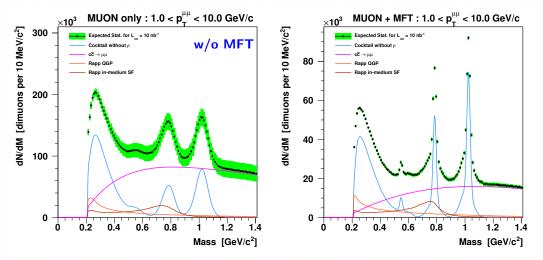



[TPC upgrade Lol and TDR: CERN-LHCC-2013-020]


Comparison of Poisson-sampled spectrum to expected hadronic and medium-induced sources

With upgraded muon arm: Muon Forward Tracker (MFT)

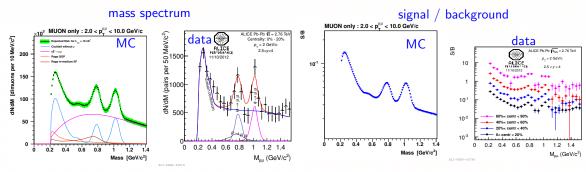
□ With MFT


- precisely measure the displacement of muons
 - ightarrow reduces muons from charm and beauty semi-muonic decays
- ☐ precise measurement of dimuon opening angles
 - → precise determination of 2-body decays of light resonances
- ☐ better rejection of background muon contributions to the comb. background
- better mass resolution: matching between MUON tracks and MFT clusters

\Rightarrow expect enhancement of S/B ratio without losing significance

Low mass dimuons w/o and with MFT

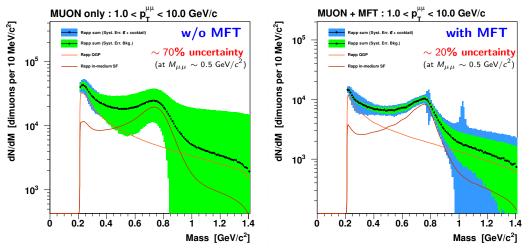
\Box expected low mass dimuon spectrum, Pb-Pb collisions at $\sqrt{s_{NN}} = 5.5$ TeV



 \rightarrow after comb. background subtraction and normalised to $L_{int}=10~nb^{-1}$

Low mass dimuons w/o MFT

□ Pb-Pb at 5.5 TeV (MC) vs Pb-Pb at 2.76 TeV (data)



- \square same minimum dimuon momentum: $p_{\mathrm{T}}^{\mu\mu} > 2~\mathrm{GeV}/c$
- ☐ MC and data: after comb. background subtraction
- \square MC: Pb-Pb at 5.5 TeV, normalised to $L_{int} = 10 \text{ nb}^{-1}$
- data: LHC11h Pb-Pb at 2.76 TeV
- \Box Much improved stat. + syst. uncertainties and improved S/B ratio

Low mass dimuons w/o and with MFT

lacksquare Mass continuum excess in 0-10% central Pb-Pb collisions at $\sqrt{s_{_{
m NN}}}=5.5$ TeV

- $lue{}$ same minimum dimuon momentum: $p_{
 m T}^{\mu\mu}>1~{
 m GeV}/c$
- \square after comb. background subtraction, normalised to $L_{int}=10~nb^{-1}$
- $lue{}$ after subtraction of hadronic cocktail and heavy flavour $(c\bar{c})$ contribution

Summary

- **□** ALICE with existing data
 - results from pp and p-Pb collisions: in agreement with hadronic cocktail
 - ightarrow large uncertainties does not allow conclusion ightarrow lack of accuracy
 - $lue{}$ too small S/B in current Pb-Pb data
 - → challenging task for thermal photon extraction (work in progress)
- □ ALICE in RUN2
 - higher rate possible: upgrade in TPC electronics
 - complete geometrical acceptance of TRD and current ITS (repair)
 - ☐ rare trigger implementation (in consideration)
 - ⇒ possible improvement in S/B
- □ ALICE with major upgrades (ITS, TPC and MFT) for RUN3
 - ☐ thermal photon radiation from QGP with low mass dileptons as major physics goal of the ALICE upgrade program
 - ⇒ accessing the excess with accuracy in measuring:

STAY TUNED!

