Dielectron measurements with ALICE at the LHC

Outline

Introduction

- ALICE
- dielectron measurements with ALICE
 - pp collisions
 - Pb-Pb collisions
- summary of current status
- future perspectives
 - dielectron performance with ALICE upgrade

Dielectrons

measurement of dielectrons from AA collisions

- electromagnetic probe
 → negligible final state interaction
- information from all phases of the collision
- sensitivity to
 - electromagnetic structure of the hot and dense medium

- in-medium modification of low-mass vector mesons
- thermal radiation
- heavy-flavor hadron decays (at intermediate mass)
- heavy quarkonia suppression/enhancement
- measurement of dielectrons from pp collisions
 - provides necessary baseline for AA studies

A Large Ion Collider Experiment

Inner Tracking System (ITS)

- 2 silicon pixel detector (SPD) layers
 - X/X₀ = 1.14 %
 - R_{inner} = 3.9 cm
 - 9.8M channels, 0.2 m²
- 2 silicon drift detector (SDD) layers
 - 133k channels, 1.3 m²
- 2 silicon strip detector (SSD) layers
 - 2.6M channels, 4.75 m²

Time Projection Chamber (TPC)

20

Time of Flight (TOF)

hadron rejection at low momenta

Transition Radiation Detector (TRD)

8

Research Center 12/7/2012

 TRD modules currently installed: 13

 (7 in 2010, 10 in 2011)
 > currently not used in dielectron analysis due to limited acceptance
 (same is true for EMCal)

R. Averbeck, 🖬 🎫 🔟

Triggers and data sets

• minimum bias pp collisions

- coincidence of beam pick-ups and a signal in either the SPD or one of the V0 scintillator arrays
- efficiency: ~95% of σ_{inel.}
- ~350M events (2010 data set)

Pb-Pb collisions

- minimum bias trigger: coincidence of V0 arrays and Zero Degree Calorimeters
- in addition: centrality triggers defined via total charge measured in V0
- 2010: ~12M MB events
- 2011: ~8M MB, ~27M central, ~32M semicentral events

Dielectrons in pp collisions at $\sqrt{s} = 7$ TeV

Electron candidate selection

electron identification is crucial

- start with high quality tracks
 - $p_T > 0.2 \text{ GeV/c}, |\eta| < 0.8$
 - 'long' tracks in the TPC without 'kinks'
- require associated hit in the first SPD layer (to minimize contribution from photon conversions)
- require electron Time of Flight (within 3σ) to reject K, p
- require electron dE/dx (-1.5 < σ < 3) and reject tracks with pion dE/dx (within 4σ) to reject pions
- how well does this work?

R. Averbeck, **G**

Purity of candidate sample

fit TPC dE/dx in momentum slices → remaining hadron contamination for p < 3 GeV/c: <~ 1%

Contamination from γ conversions

- how to identify photon conversion candidates
 - displaced secondary vertex
 - orientation of the 'pair plane' with respect to the magnetic field direction

 remaining contamination from photon conversions: few percent at low mass (m_{ee} < 0.1 GeV/c²)

Combinatorial background

 pairing of all electrons and positrons gives rise to combinatorial background

- methods to determine this background
 - mixed event subtraction
 - same-event like-sign subtraction
 - same-event track rotation

$$N_{+-}^{\mathsf{CombBkg}} = \underbrace{2 \times \sqrt{N_{++}N_{--}}}_{\mathsf{Like-sign}} * \underbrace{R_{Acc}}^{\mathsf{from mixed events}}$$

• current approach: like-sign subtraction

Raw mass spectra

- large background from uncorrelated pairs
- subtraction of like-sign combinatorial background
 → raw signal of correlated pairs

ALICE

Correction for efficiency

- efficiency correction for detector effects (including Bremsstrahlung in material)
- no acceptance correction into unmeasured region of phase space
- correction based on full MonteCarlo simulations
- efficiency determined for single electron tracks as function of (p_T, η, φ)

Systematic uncertainties

relevant sources

- track selection
- electron ID
- efficiency correction
- normalization
- most important: combinatorial background $\frac{dS}{S} = \frac{dB}{B} \times \frac{B}{S}$
- → currently NO significant measurement close to m_{ee} = 0.5 GeV/c²!

Known hadronic e+e- sources

- calculation of hadronic cocktail
 - based on: measured p_T -differential invariant cross section of π^0
 - contributions from other hadron decays: from data (η, φ, J/ψ) or via m_T scaling
 - contribution from correlated charm decays: from measured charm cross section and PYTHIA decay kinematics
- ALICE data used as input
 - π⁰, η: Phys. Lett. B717 (2012) 162
 - φ: arXiv:1208.5717
 - σ_{cc}: arXiv:1205.4007
 - J/ψ: Phys. Lett. B704 (2011) 442

Cocktail versus data

ALI-PREL-43484

cocktail in reasonable agreement with data

Outlook for Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

Signal extraction

• similar analysis as for pp collisions at \sqrt{s} = 7 TeV (but: $p_T^e > 0.4 \ GeV/c$)

- S/B ratio few 10⁻³ at low mass (0.2 0.4 MeV/c²)
- detailed study of background systematics ongoing

Summary I

- first dielectron continuum measurement with ALICE for pp collisions at $\sqrt{s} = 7$ TeV
- hadronic cocktail calculation agrees within errors with data in the range 0 < m_{ee} < 3.3 GeV/c²
- analysis is difficult for Pb-Pb collisions
 - → requires improved knowledge of background
- unique strength of ALICE at the LHC
 - access to the low mass & low p_T region!
 - how can this be improved further?

ALICE upgrade - LOI

http://cdsweb.cern.ch/record/1475243

Upgrade of the ALICE EXPERIMENT

http://cdsweb.cern.ch/record/1475244

ALICE

Upgrade of the Inner Tracking System

ALICE

ALICE

Dielectron strategy

reduction of central barrel magnetic field from 0.5 T to 0.2 T

- \bullet extend tracking efficiency and electron PID to lower p_{T}
- high rate upgrade of the TPC
 - improve the data taking rate by a factor 100
- upgrade of the ITS
 - reduced material budget
 - improve tracking efficiency at very low p_T
 - improve capability to identify electrons originating from secondary vertices (DCA cut)

Research Center 12/7/2012

R. Averbeck.

Dielectron performance study

- here: focus on 10% most central Pb-Pb collisions $(\langle dN_{ch}/d\eta \rangle = 1750)$ at $\sqrt{s_{NN}} = 5.5$ TeV (peripheral case was studied as well)
- dielectron signal
 - hadronic cocktail
 - open charm decays based on PYTHIA, interpolated total charm production cross sections for pp collisions, and binary collision scaling
 - thermal signal (R. Rapp & J. Wambach, EPJA 6(1999)425)

Research Center 12/7/2012

Dielectron performance study

• background

- PYTHIA pp events superimposed to Pb-Pb <dN_{ch}/dη>
- photon conversions from GEANT3
- kinematic cuts
 - $|\eta_e| < 0.84$, $p_{T,e} > 0.2$ (0.06) GeV/c for global (ITS) tracking
- conversion and Dalitz rejection
 - m_{ee} < 50 MeV/c², opening angle < 100 mrad</p>

Current ITS, no DCA cut

- 2.5 x 10⁷ Pb-Pb collisions at 5.5 TeV
- precision of comb. background measurement: 0.25%
- background precision: 10% (20%) for cocktail (charm)

Current ITS, tight DCA cut

- 2.5 x 10⁷ Pb-Pb collisions at 5.5 TeV
- precision of comb. background measurement: 0.25%
- background precision: 10% (20%) for cocktail (charm)

→ marginal improvement only

Research Center , 12/7/2012

ALICE

New ITS, DCA cut

- 2.5 x 10⁷ Pb-Pb collisions at 5.5 TeV
- precision of comb. background measurement: 0.25%
- background precision: 10% (20%) for cocktail (charm)

→ significantly reduced systematics, but statistics limited

New ITS, DCA cut, high rate

ALTCE

- 2.5 x 10⁹ Pb-Pb collisions at 5.5 TeV
- precision of comb. background measurement: 0.25%
- background precision: 10% (20%) for cocktail (charm)

Summary II

- precision measurement of dielectron poduction^{ALI} in Pb-Pb collisions at the LHC beyond the hadronic cocktail and correlated charm decays: NOT possible with the current ALICE setup! (even with increased kinematic coverage due to a reduced B field)
- current limitations: addressed by ALICE upgrade
- new ITS
 - → improved Signal/Background ratio
 - \rightarrow reduced sys. uncertainty of e⁺e⁻ measurement
- high rate upgrade of the TPC
 → reduced stat. uncertainty of e⁺e⁻ measurement

ALICE upgrade

→ precision low-mass dielectron measurement

