THERMAL RADIATION WORKSHOP (2012)

RIKEN BNL Research Center Workshop December 5-7, 2012 at Brookhaven National Laboratory

Viscosity and thermal photon production

Kevin Dusling North Carolina State University

December $7^{\rm th}$, 2012

Contents

- Reminder on shear viscosity and photons
- Bulk viscosity and hadronic observables
- Bulk viscosity and electromagnetic observables

Elliptic flow from dissipative hydrodynamics

State of the art fits suggest $\eta/s \sim 0.2$

Still a number of uncertainties (two that will be addressed here)

- Need for kinetics
- Bulk viscosity

Elliptic flow from dissipative hydrodynamics

Spectra computed with Cooper-Frye:

$$E_{\mathbf{p}}\frac{dN}{d^3p} = \frac{1}{(2\pi)^3} \int_{\sigma} f(E_{\mathbf{p}}) \ p^{\mu} d\sigma_{\mu}$$

Expand $f = f_o + \delta f$ with constraint:

$$\delta T^{\mu\nu} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3 E_{\mathbf{p}}} \ p^{\mu} p^{\nu} \delta f(E_{\mathbf{p}})$$

Only moments of δf fixed by hydro; leaving a need for kinetic models.

QGP distribution functions

- Photons are completely out of equilibrium (contrast to early universe)
- Photon spectra only appears thermal because quarks / gluons creating photons are thermal
- \blacktriangleright This is very clear at leading log where $P^{\mu}_{\rm quark}\approx Q^{\mu}_{\rm photon}$

QGP distribution functions

At leading log:

$$E\frac{dN_{\gamma}}{d^3q} \sim \alpha_{\rm em} \alpha_S f_{\rm quark}(Q_{\gamma}) T^2 \log\left(\#\frac{E_{\gamma}}{g^2 T}\right)$$

Out of equilbrium:

$$f_{\text{quark}} = f_0 \left(1 - \chi_{\text{quark}}^{\text{shear}}(q) \cdot q^i q^j \partial_{\langle i} u_{j \rangle} - \chi_{\text{quark}}^{\text{bulk}}(q) \cdot \partial_i u^i \right)$$

QGP photons

Above calculation shows the kinetic δf correction.

See the more sophisticated work by the McGill group.

Why bulk viscosity?

QCD is clearly not scale invariant and $\zeta \neq 0$.

So, do we need to understand bulk viscosity if we want to extract η/s ? Yes, but bulk viscosity is interesting in its own right. Has implications for cosmology (*e.g.* relic abundances).

Relaxation Time Approximation

Approximate collision operator by single relaxation time:

$$\mathcal{C}[\delta f] \simeq -\frac{\delta f}{\tau_R(E_\mathbf{p})}$$

Bulk visocisity goes as $2^{\rm nd}$ power of conformal breaking

$$\zeta \sim \eta \left(\frac{1}{3} - c_s^2\right)^2$$

Weinberg (1972)

while distribution function goes as $1^{\rm st}$ power

$$\frac{\delta f}{f_o} \sim p_T^2 \left(\frac{1}{3} - c_s^2\right) \left(\partial \cdot u\right)$$

Bulk viscous correction dominated by δf

QGP distribution functions

QCD: Elastic vs. Inelastic

Arnold, Dogan, Moore (2006)

For elastic $2 \leftrightarrow 2$ recast as Fokker-Planck

$$(\partial \cdot u) \left(\frac{p^2}{3} - c_s^2 E_{\mathbf{p}} \frac{\partial \left(\beta E_{\mathbf{p}}\right)}{\partial \beta} \right) = \frac{T\mu_A}{n_{\mathbf{p}}} \frac{\partial}{\partial p^i} \left(n_{\mathbf{p}} \frac{\partial}{\partial p^i} \left[\frac{\delta f_{\mathbf{p}}}{n_{\mathbf{p}}} \right] \right) + \cdots$$

Drag coefficient:

$$\mu_A = \frac{g^2 C_A m_D^2}{8\pi} \ln\left(\frac{T}{m_D}\right)$$

QGP distribution functions

Result:

where $\delta f = -f_o \left(\partial \cdot u\right) \chi(p)$

Pion Gas:

Pion Gas: Elastic vs. Inelastic

Bulk viscosity governed by chemical non-equilibrium δf takes form of zero mode which dominates \mathcal{C}^{-1}

$$\delta f = -f_o \left(\chi_0 - \chi_1 E_{\mathbf{p}} \right) \left(\partial \cdot u \right)$$
$$= f_o \left(\frac{\delta \mu}{T} + \frac{\delta T}{T^2} E_{\mathbf{p}} \right)$$

Lu, Moore (2011); Jeon, Yaffe (1995)

Pion Gas:

Bulk viscosity governed by chemical non-equilibrium

$$\delta f = -f_o \left(\partial \cdot u\right) \left(\chi_0 - \chi_1 E_{\mathbf{p}}\right)$$

Chemical equilibration rate determines χ_0 , energy conservation fixed χ_1

$$\chi_0 = \frac{\beta \mathcal{F}}{4\Gamma_{2\pi \to 4\pi}}, \qquad \zeta = \frac{\mathcal{F}^2}{4\Gamma_{2\pi \to 4\pi}}$$

where \mathcal{F} characterizes conformal breaking

$$\mathcal{F} \equiv \int \frac{d^3 \mathbf{p}}{(2\pi)^3 E_{\mathbf{p}}} \left(\frac{p^2}{3} - c_s^2 E_{\mathbf{p}}^2\right) f_o$$

Hadron Resonance Gas: A model

Assume slowest process is chemical relaxation:

$$\delta f^{a} = -f_{o}\left(\partial \cdot u\right)\left(\chi_{0}^{a} - \chi_{1}E_{\mathbf{p}}\right)$$

where $a = \pi, K, \rho, K^*, p, n, \Delta, \cdots$

Slowest rate determines ζ , other rates fix the relative δf^a :

$$\chi_0^a \simeq \chi_0^\pi \times \begin{cases} 2 & \text{Mesons} \\ 2.5 & \text{Baryons} \end{cases}$$

Motivated by $\mu_{\rho} = 2\mu_{\pi}$ and $2\mu_N = 5\mu_{\pi}$:

Goity (1993); Pratt, Haglin (1999)

Hadron Resonance Gas: A model

Hadron Gas: ζ determined by chemical non-equilibration

Bottom line for δf :

- $\blacktriangleright \ \delta \mu \sim \tfrac{\zeta}{s} \left(\partial \cdot u \right)$
- \blacktriangleright temperature shift $\delta T \approx 0.25 \delta \mu$ to conserve energy

A new (dynamical) way to look at fugacity factors

Pion / Proton p_T spectra

Data: PHENIX nucl-ex/0307022. LHC: Bozek & Wyskiel arxiv:1203.6513

Pion / Proton differential $v_2(p_T)$ spectra

Data: STAR, nucl-ex/0409033.

Bulk viscosity and EM probes

As for shear viscosity, bulk δf modifies photon rates

Bulk viscosity and EM probes

First shot:

- \blacktriangleright Using AMY rates with $f \rightarrow f + \delta f$ and pQCD δf
- Using χRF (Steele, Yamagishi, Zahed) with
 - z_{π}^{3} enhancement with $\mu_{\pi} \sim \zeta/s \left(\partial \cdot u \right)$
 - $\blacktriangleright \ T \to T \delta T$
- Results preliminary: Need to
 - include shear viscosity
 - fine-tune initial condition
 - worry about pQCD at high q_T
 - • •

Ideal photon $v_2(q_T)$

Viscous photon $v_2(q_T)$

Only including bulk viscosity - no fine-tuning.

Summary

Bulk viscosity is not zero:

- fine structure of spectra improves
- may help with photon v_2
- dynamical mechanism for fugacity factors

Backup Slides

Ideal photon q_T spectra

Viscous photon q_T spectra

Only including bulk viscosity – no fine-tuning.

Thermal photon production

At leading order in $\alpha_{\rm em}$ but all orders in $\alpha_{\rm s}$

$$\frac{dN}{d^4Q} = \frac{\alpha_{\rm em}^2}{6\pi^3} \frac{1}{Q^4} \left(Q^{\mu} Q^{\nu} - Q^2 g^{\mu\nu} \right) W_{\mu\nu}(Q)$$

where

$$W_{\mu\nu}(Q) \equiv \int d^4x \; e^{-iQ \cdot X} \langle J^{\rm em}_{\mu}(X) J^{\dagger,\rm em}_{\nu}(0) \rangle_{\beta}$$

Evaluate $W_{\mu\nu}$ in two different ways

- Vacuum spectral functions
- Kinetic Theory

Thermal photon production

Kinetic theory (all processes $I \rightarrow F + l^+ l^-$):

$$\begin{split} W_{\mu\nu}(Q) &= \sum_{F} \sum_{I} \int d^{4}x \; e^{-iQ\cdot X} \langle I | J_{\mu}^{\rm em}(X) | F \rangle \langle F | J_{\nu}^{\dagger,\rm em}(0) | F \rangle \frac{e^{-\beta E_{I}}}{\mathcal{Z}} \\ \text{using} \; E_{I} &= E_{F} + Q_{0} \; \text{and} \; \sum_{I} |I\rangle \langle I| = 1 \\ W_{\mu\nu}(Q) &= e^{-\beta Q_{0}} \sum_{F} \int d^{4}x \; e^{+iQ\cdot X} \langle F | J_{\mu}^{\dagger,\rm em}(X) J_{\nu}^{\rm em}(0) | F \rangle \frac{e^{-\beta E_{F}}}{\mathcal{Z}} \end{split}$$

McLerran & Toimela, 1985