

THERMAL RADIATION WORKSHOP (2012) RIKEN BAL Research Center Workshop December 5-7, 2012 at Brookhaven National Laboratory

Results on virtual-photon production at SIS: resume and prospects

Tetyana Galatyuk TU Darmstadt / GSI for the HADES and CBM Collaborations

Highestgateptance Dielectron Spectrometer

The HADES mission

Search (in this region) for new states of matter with rare and penetrating probes

- Stage I (2002 2008)
 - Limited granularity of time-of-flight system → light collision systems
- Stage II (2012 2015)
 - Heavy collision-systems
 - π-induced reactions
- Stage III (2018 ...)
 - Lepton pair excitation function up to 8 GeV/u (medium-heavy systems) and (multi-)strange particle
- + Various aspects of baryon-resonances physics

Dileptons and the phase diagram of matter

Use ρ as a probe for the restoration of χ symmetry

Robert D. Pisarski, PLB 110 (1982),

Dileptons from exotic phases...

wonder if it finally will turn into a bluff..."

S. Lottini and G. Torrieri, **PRL 107**, 152301 (2011) S. Lottini and G. Torrieri, arXiv:1204.3272v1 [nucl-th]

. . .

→ Experimental test

. . .

The experimental challenge...

- Lepton pairs are rare probes (branching ratio O(10⁻⁴))
- at SIS18 energies vector mesons are produced sub-threshold (NN)
- Large combinatorial background from:
 - **e⁺e⁻:** Dalitz decays (π^0) and conversion pairs
 - $\mu^+\mu^-$: weak π , K decays
- Isolate the contribution to the spectrum from the dense stage
 (<u>X Factor</u> = excess yield above hadronic cocktail in 0.2<M_{II}<0.6 GeV/c²)

High Acceptance Di-Electron Spectrometer

- Beams provided by SIS18: π , p, ions
- Full azimuthal coverage
- Hadron and lepton identification
- e⁺e⁻ pair acceptance 0.35
- Mass resolution 2 % (ρ/ω region)
- ~ 80.000 channels
- now: up to 50 kHz event rate (400 Mbyte/s peak data rate)

HADES strategy:

Systematic di-electron and strangeness measurements in NN, AA, pA, π N and π A collisions

NN Reference: e⁺e⁻ in p+p collisions at 1.25 GeV

December 2012 5-7 BNL, Thermal Radiation Workshop,

7

time-like region $q^2 > 0$

Goal

- Understand $\Delta \rightarrow N \gamma^*$ transition
 - Known from $\gamma N \rightarrow \Delta \rightarrow \pi N$

(exact QED calculation, Krivoruchenko et al. PRD 65 (2001) 017502)

- Unknown at q² >0!
- \rightarrow use models fitted to the space-like data
- G. Ramalho and T. Pena arxiv: 1205.2575v1 (2012) Wan and Iachello, int. J. Mod. Phys. A20 (2005) 1846

space-like region $q^2 < 0$

- Excitation of a baryon can be carried by the meson cloud
 - Precise data from Jlab / MAMI / MIT
 - Strong hint for dominant contribution to the G_M(Q²) from the meson cloud (30% at G_M(0))

I.G. Aznauryan, V.D. Burkert Prog. Part. Nucl. Phys. 67, 1 (2012)

NN Reference: exclusive analysis pp →ppe⁺e⁻

- First direct access to the ∆ transition form factor in the time-like region
 - Data agree with QED calculation!
 - Branching ratio $(\Delta^+ \rightarrow pe^+e^-) = 4.2 \times 10^{-5}$

NN Reference: e^+e^- in QF n+p collisions $\sqrt{s} - 2m_N \approx m_\eta$

- Large isospin dependence in dilepton production!
 - Role of the momentum distribution of the neutron inside the deuteron?
 - NN bremsstrahlung?

Ν

Ν

→ Check with One Boson Exchange effective Lagrangian based approach

> Much better agreement with data when including π em form factor \rightarrow Sensitivity to hadronic electromagnetic structure

> > R. Shyam and U. Mosel, PRC 82:062201, 2010

NN Reference: e⁺e⁻ in p+p collisions at 2.2 GeV and 3.5 GeV

- Effect of electromagnetic form factor? \rightarrow Dalitz decays of broad resonances is not well understood theoretically
- Coupling of ρ to baryonic resonances \rightarrow Cross check with hadronic final states needed!

Reconstruction of contributing baryonic resonances: exclusive analysis of pp \rightarrow pn π^+ ans pp \rightarrow pp π^0

 $pp \rightarrow ppe^+e^-$

 14 baryonic resonances are included in the analysis (N*1535 constrained by pp → ppη channel)
 K. Teilab Int.J.Mod.Phys.A26:694-696,2011

11

December 2012

5-7

BNL,

Thermal Radiation Workshop,

 Cross section for resonance production via exclusive analysis of pp → pnπ⁺ and pp → ppπ⁰

Exclusive dilepton production

Exclusive analysis: $pp \rightarrow ppe^+e^-$

$^{\mathrm{e}_{\mathrm{I}}}_{\mathrm{I}} \times \mathrm{dN/dM}_{\mathrm{e}_{\mathrm{I}}}^{\mathrm{e}_{\mathrm{I}}}$ p+p 3.5 GeV elimina ω comp. subtracted 10⁻⁹ $\rho + \Delta + N^*$ + p via N*(1520) 0.2 0.3 0.5 0.6 0.7 0.8 0.4 M^{e⁺e⁻} [GeV/c²]

HADES data preliminary Model: M. Zetenyi and Gy. Wolf Phys. Rev. C 67, 044002 (2003).

- Relative contribution is fixed through exclusive pion production
- ω contribution subtracted, η contribution suppressed by kinematics

Dalitz decays of baryonic resonances – are the dominant source at low beam energies.

Electron pairs from cold nuclear matter

"if you are out to describe the truth, leave elegance to the tailor" (A. Einstein)

HADES: Phys.Lett. B715 (2012) 304-309

 First measurement of lepton pairs with p_{e+e-} < 0.8 GeV/c radiated from cold matter → not measured in this region by CLAS, KEK-E325

T. Galatyuk,

- Mass resolution: $\sigma_{M\omega}$ = 16 MeV/c²
- Clear excess over p+p
 → role of the secondary ρ from N(1520), Δ (1700)...?

Virtual photon emission in A+A collisions

14

Ar+KCl compared to reference after subtraction of contributions from η

- First evidence for radiation from the "medium"!
- Excess yield scales with system size like A_{part}^{1.4}

Quest for heavier systems!

Isolation of excess by a comparison with a measured decay cocktail

15

Excess e⁺e⁻ yield in p+Nb 3.5 GeV

In medium ρ modification? \rightarrow will be answered only after pp reference is understood!

 Full reconstruction of π⁰ and η decays (meson → e⁺e⁻e⁺e⁻)

- HADES η cross section provides constraint on Δ and N* contributions!
- Critical test for theoretical input!

The ρ meson in a hot and/or dense fireballs: from SIS18 to SPS

16

Acc.-corrected $\mu^+\mu^-$ excess spectrum

• Main source: $\pi^+\pi^- \rightarrow \rho \rightarrow e^+e^-$

of the VM to baryons!

N* π π N⁻¹ N-1

Low mass enhancement is due to coupling

Dalitz decays of baryonic resonances – dominant source at SIS18!

Excess e⁺e⁻ yield, Ar+KCI 1.76 GeV/u

Dileptons, baryonic resonances and the phase diagram of matter

Model: Ralf Rapp

STAR: QM2012,

NA60: EPJC 59 (2009) 607,

CERES: Phys. Lett. B 666 (2006) 425,

HADES: Phys.Rev.C84 (2011) 014902

Virtual photon radiation from hot and/or dense QCD matter

Highly interesting results from RHIC, SPS, SIS18 \rightarrow importance of baryons!

Quest: explore the regime of baryon dominated matter

T. Galatyuk,

Thermal Radiation Workshop, BNL, 5-7 December 2012

HADES at SIS100: phase space coverage for e⁺e⁻

The "sweet spot" is at mid-rapidity and low pt!

E_{beam} = 1 GeV/u

- overall acceptance for dielectron pairs Acc ≈ 35%
- with nice mid-rapidity coverage

E_{beam} = 8 GeV/u

- Acc ≈ 20%
- (natural) shift towards backward rapidity

E_{beam} = 11 GeV/u

- ... still HADES → Acc ≈ 20%
- **=** but...

HADES at SIS100: problems, challenges, opportunities

■ Challenge: limited granularity →

- sophisticated tracking algorithm
- Au+Au 1.23 GeV/u successfully measured in May 2012
- Ni+Ni 8 GeV/u ≈ Au+Au at 1.23 GeV/u
- Au+Au 8 GeV/u occupancy increases by factor of 4-5!

\rightarrow CBM kicks in

y – *radial* coordinate in drift chamber

Di-electron reconstruction in CBM

Challenge:

- No electron identification before tracking
- Background due to material budget of the STS
- Sufficient π discrimination (600 π^{+/-}/event, misidentification 10⁻⁴)

Strategy:

- Reduction of background by reconstructing pairs from γ-conversion (~3 γ) and π⁰ Dalitz decay (8 π⁰/event)
- Excellent double-hit resolution in MAPS (<100µm) provides substantial close pair rejection capability

10⁻³

10-4

10-5

Electron identification

- Momentum distribution of conversion pairs are very soft
- High reconstruction efficiency is required for rejection of conversion pairs

π suppression factor of 10⁴ (for p < 1 GeV/c) is in reach with RICH and ToF

Detector R&D

24

RICH

- Conventional design based on commercial products (Germany, Russia, Korea)
 - Float glass mirror (carbon as backup)
 - Multi-anode PMT photo detector

- Test Beam at CERN T9, October 2011
- Mixed electron / pion beam of 2 10 GeV/c

TRD

 Thin gap design based on ALICE TRD (Germany, Russia, Romania)

Detector R&D : Micro-Vertex Detector

Detector module:

- Two thinned (50 μm) sensors mounted to either side of a 200 μm CVD diamond carrierer.
- Total thickness = 0.3% x/X0

Test Beam at CERN T9, 26-30 November 2012
Pion beam of 20, 60, 120 GeV/c

Spatial Resolution

$$\sigma_x = 3.3 \ \mu m$$

$$\sigma_y = 3.7 \ \mu m$$

Low mass electron pairs reconstruction

Dilepton emission rates in theory

27

Thermal emission...

 $\frac{d^{3}N}{dMdydp_{t}} = \int_{t=0}^{\infty} \frac{d^{4}\varepsilon}{d\mathbf{p}} \left[T(\mathbf{x}), \mu_{B}(\mathbf{x}), \vec{v}_{coll}(\mathbf{x}), ... \right] d\mathbf{x}$

R. Rapp, J. Wambach and H. Hees : arXiv:0901.3289

Radiation from dense matter

- 28
- Schematic illustration of ρ meson propagation within "shining" approach.
- Resonance can continuously emit dileptons over its whole lifetime.

Isolate the contribution to the spectrum from the dense stage

Emission density evolution

- First (points) and second (errors) moment of the density profile at a given τ .
- Boltzmann fit to the particle m_⊤ spectra

1.2

π beam experiments with HADES

Physics with πN experiments:

- New precision data are of enormous importance for understanding of baryon resonance physics
- Special interest to sub-threshold production

Challenges:

- Determine π momentum with $\Delta p/p \sim 1-5\%$
- Beam spot of 6x6 cm² at dispersive plane
 → detector with sufficient active area
- Beam intensity ~10⁸ part./s
 - \rightarrow radiation hard detector
 - \rightarrow fast readout electronics

- Strategy:
 - Use 10×10cm² silicon strip detector
 - 2×128 channels double sided
 - Radiation hard
 - Profit from n-xyter developments for CBM
 - ✓ Self-triggered architecture
 - ✓ 128 channels
 - ✓ Average hit per channel rate 160 kHz

HADES explores Quarkyonic matter

Au+Au at 1.23 GeV/u (beam time April – May '2012)

T. Galatyuk,

serial optical links (TRBnet)

Strangeness

December 2012

N 5

BNL,

Thermal Radiation Workshop,

NN excess energy 0.44 GeV only! Strong constraints on production mechanism

100

90

80

70

60

50

40

30

20

10

0

Leptons

33

December 2012

5-7

BNL,

Thermal Radiation Workshop,

10⁴

10³

10²

10

400

RICH cut

RICH + β cut

Leptons used for pairs

After preselection

 $\mu^+ \pi^+$

GSI target lab:

10

6

-4

-6

-8

-10<u>└</u> -60

-50

-40

-30

-20

-10

Z vertex [mm]

X vertex [mm]

B. Kindler et al., NIMP 655, 2011

Encouraging prospects for studying QCD matter in the region of compressed baryonic matter (finite μ_B)

- Explore "unknown" territory of the nuclear matter phase diagram with HADES and CBM :
 - Unique possibility of characterizing properties of baryon dominated matter with rare probes:
 - long-lived states of compressed nuclear matter are produced in heavy-ion collisions at few GeV energy regime
 - this state of matter might be much more exotic than a hadron gas (Quarkyonic metter?)
 - Establish a complete excitation function of dilepton production up to energies of 40 GeV/u:
 - baryon dominated to meson dominated fireballs!
 - from "transport" to "thermal expansion" models!
 - from "no QGP" to "QGP"?

(34)

The results presented is the work of many

... THE HADES AND CBM COLLABORATIONS

Thermal Radiation Workshop, BNL, 5-7 December 2012

BONUS SLIDES

NN Reference : e⁺e⁻ in QF n+p collisions

W. Wilson et al., Phys. Rev. C 57 (1998)

- Large isospin effects in dilepton production!
 - Role of the momentum distribution of the neutron inside the deuteron?
 - NN bremsstrahlung?

Virtual photon emission in A+A collisions

38

Origin of the low-mass pair excess in C+C collisions

Baryonic contributions from NN "reference"

Centrality dependence of spectral shape

 Rapid increase of relative yield reflects the number of ρ 's regenerated in fireball

December 2012

 \sim ι Δ

BNL,

Thermal Radiation Workshop,

Electron pairs from cold nuclear matter

Virtual photon emission in A+A collisions - transport

T. Galatyuk,

No consistent picture yet:

- don't describe (yet) QF n+p data
- "excess" region dominated by Δ but with different contributions
- Treatment of NN, πN bremsstrahlung?
- M_{e+e} >0.6 GeV/c² dominates by ρ with complicated vacuum structure

WORKBENCH

MADAI

Hot and dense matter

Time-evolution of the hot and dense QCD medium in T - μ space from model calculation

an incident beam energy of 25 GeV/u seems to provide the best opportunity for creating and probing QCD matter in the vicinity of the CEP.

H. Petersen et al., arXiv:1202.0076v1 [nucl-th]