Connections between dilepton data and chiral symmetry restoration

Paul Hohler Texas A&M University

Thermal Radiation Workshop Brookhaven National Lab December 6, 2012

Chiral symmetry restoration

- Observing chiral symmetry restoration experimentally may be the most important outstanding problem in heavy-ion physics.
- Ideally, one would measure a chiral order parameter, such as the quark condensate.

Wuppental-Budapest Collaboration

However, the chiral condensate is not directly measureable.

Need a probe: chiral partners

- Chiral partners
 - Hadronic states which transform into one another through chiral transformations (s wave pion).
 - Iso-vector vector and axial-vector states (p and a₁)
 $a_1 \leftrightarrow \rho + \pi$
 - The relative differences between chiral partners are sensitive to chiral order parameters.
- Determine the in-medium properties of ρ and a₁ mesons.
 - Vector: Thermal dileptons in heavy ion collisions $\rho \rightarrow \gamma \rightarrow e^+ e^-$
 - Axial-vector: Background too large

$$a_1 \to \gamma \pi$$

Couple the a₁ spectral function to the rho spectral function and quark condensate within one framework.

> Then measure the rho spectral function and infer the a_1 spectral function and probe chiral symmetry restoration.

Techniques to connect vector and axial-vector channels

- Sum Rules
 - Relate spectral functions to operator product expansion (OPE)
- Hadronic effective field theories
 - $-\rho$, a1, and π are dynamical degrees of freedom.
 - Couple in-medium resonances

Outline for systematic study

- 1. Vacuum
- 2. Rigorous low temperature predictions
- 3. Extend to higher temperatures
- 4. Effective field theory

Sum rules

- Weinberg type sum rules:
 - Moments of the difference between vector and axial-vector SFs
 - Directly related to chiral symmetry breaking.

$$\int ds (\rho_V - \rho_A) s^n = f_n$$

$$f_{-2} = \frac{1}{3} f_{\pi}^2 \langle r_{\pi}^2 \rangle - F_A, f_{-1} = f_{\pi}^2, f_0 = -m_q \langle \bar{q}q \rangle, f_1 = -2\pi \alpha_s \langle \mathcal{O}_4^{\chi SB} \rangle$$

Weinberg, 1967; Das, Mathur, and Okubo, 1967; Kapusta and Shuryak 1994

• QCD sum rules (with Borel transform):

- Constrains vector or axial-vector SFs individually.

Shiffman, Vainshtein, Zakharov, 1979

$$\frac{1}{M^2} \int ds \frac{\rho_V(s)}{s} e^{-s/M^2} = \frac{1}{8\pi^2} \left(1 + \frac{\alpha_s}{\pi} \right) + \frac{m_q \langle \bar{q}q \rangle}{M^4} + \frac{1}{24M^4} \langle \frac{\alpha_s}{\pi} G_{\mu\nu}^2 \rangle - \frac{56\pi\alpha_s}{81M^6} \langle \mathcal{O}_4^V \rangle$$

$$\frac{1}{M^2} \int ds \frac{\bar{\rho}_A(s)}{s} e^{-s/M^2} = \frac{1}{8\pi^2} \left(1 + \frac{\alpha_s}{\pi} \right) + \frac{m_q \langle \bar{q}q \rangle}{M^4} + \frac{1}{24M^4} \langle \frac{\alpha_s}{\pi} G_{\mu\nu}^2 \rangle + \frac{88\pi\alpha_s}{81M^6} \langle \mathcal{O}_4^A \rangle$$

Step 1: Vacuum

- Consider a phenomenological model of the spectral functions for both the vector and axial-vector mesons.
 - Constrain the parameters by the ALEPH data (τ decay) and the Weinberg sum rules (0-2).
- Key and novel features:
 - Rho: microscopic calculation Rapp and Wambach (1999)
 - Identical continuum in both channels
 - Smooth continuum pushes "threshold" to energies higher than previous considered
 - Include the ρ' resonance.
- Agreement with Weinberg sum rules <u>requires</u> an excited axial vector resonance state.

Spectral functions in vacuum

Data from ALEPH (Barate et al. 1998)

Some parameters of interest

	Mass (GeV)	Width (GeV)	
ρ΄	1.56	0.32	
al	1.24	0.61	
a1'	1.80	0.2	

How well are the sum rules satisfied?

Weinberg-type sum rules

WSR 0	WSR 1	WSR 2	WSR 3
1.28%	~0%	~0%	-96%

QCD sum rules

Chose the values for κ and the gluon condensate so that sum rules are satisfied.

$$\langle \mathcal{O}_4^V \rangle_0 = \langle \mathcal{O}_4^A \rangle_0 = \kappa \langle \bar{q}q \rangle_0^2 \qquad \kappa = 2.1^{+.3}_{-.2} \qquad \langle \frac{\alpha_s}{\pi} G^2 \rangle = .022 \pm .002 \text{GeV}^4$$

In-medium

- Condensates develop a temperature dependence and new non-scalar operators become available for the OPE.
 - Input needed for analysis
- The sum rules then translate these changes of the condensates into modifications of the spectral function.

$$\frac{1}{M^2} \int ds \frac{\rho_V(s)}{s} e^{-s/M^2} = \frac{1}{8\pi^2} \left(1 + \frac{\alpha_s}{\pi} \right) + \frac{m_q \langle \bar{q}q \rangle}{M^4} + \frac{1}{24M^4} \langle \frac{\alpha_s}{\pi} G_{\mu\nu}^2 \rangle - \frac{56\pi\alpha_s}{81M^6} \langle \mathcal{O}_4^V \rangle$$
$$\frac{1}{M^2} \int ds \frac{\bar{\rho}_A(s)}{s} e^{-s/M^2} = \frac{1}{8\pi^2} \left(1 + \frac{\alpha_s}{\pi} \right) + \frac{m_q \langle \bar{q}q \rangle}{M^4} + \frac{1}{24M^4} \langle \frac{\alpha_s}{\pi} G_{\mu\nu}^2 \rangle + \frac{88\pi\alpha_s}{81M^6} \langle \mathcal{O}_4^A \rangle$$

Reduction of condensates produces a need for more lower energy spectral strength.

Step 2: Rigorous low temperature prediction

• At low temperatures, in-medium effects are dominated by interaction with thermal pions.

$$\rho_V(T) = \rho_V(T=0)(1-\epsilon) + \rho_A(T=0)\epsilon \qquad \text{Dey, Eletsky, loffe, 1990} \\ \rho_A(T) = \rho_A(T=0)(1-\epsilon) + \rho_V(T=0)\epsilon \qquad \epsilon = \frac{2}{f_\pi^2} \int \frac{d^3p}{(2\pi)^3 E_p} n_B(E_p)$$

• Temperature dependence of condensates also govern by pions.

$$\langle \bar{q}q \rangle(T) = \langle \bar{q}q \rangle(0) \left(1 - \frac{3}{4}\epsilon\right)$$

Hatsuda, Koike, Lee, 1993; Steele, Yamagishi, Zahed, 1996; Chanfrey, Delorme, Erison, 1998; Krippa 1998; Marco, Hoffman, Weise, 2002; Kwon, Sasaki, Weise, 2010;Etc.

How does one implement chiral mixing with different continuum thresholds?

What effect does a finite pion mass have on analysis?

With smooth continuum, no ambiguity in mixing.

Holt, PMH, Rapp, 2012

FlatteningTrend to one-another

How high in T can analysis be taken?

• $m_{\pi} = 0$

Marco, Hoffman, Weise, 2002

- Both WSR and QCDSR are exactly satisfied to order $\boldsymbol{\epsilon}$
- Low temperature prescription persists to high (all) temperatures.
- $m_{\pi} \neq 0$
 - WSR is still satisfied
 - Numerical evaluation is need for QCDSR

T (MeV)	0	100	120	140	160
3	0	.06	.1	.16	.23
dV (%)	.24	.32	.48	.85	1.43
dA (%)	.56	.65	.78	1.05	1.6

QCDSRs self-limiting

Need additional physics beyond $T^{\sim}m_{\pi}$

Step 3: Beyond low temperatures

- Low temperature study revealed a need for more resonances
 - Model the temperature dependence of condensates on a modified Hadron Resonance Gas

• All established resonances with mass less than 2 GeV included.

"modified HRG" = HRG + T¹⁰ term

Reduction in condensates induce changes in SFs

- Vector Channel
 - ρ spectral function.
 Rapp and Wambach, 1999
 - Provides a handle to base the rest of the study.
 - THESE SFS ARE CONSISTENT WITH DILEPTON MEASUREMENTS.
 - Spectral strength is allowed to vary slightly (deviations to VMD)

$-\rho'$ spectral function

- Adjust mass, width, spectral strength
- Continuum has no temperature dependence.
- QCDSR determine temperature dependence

p peak develops a low energy shoulder and a reduction in strength

 ρ^\prime peak is reduced and flattens out.

Correction to VMD needed range from <1% to 6%.

QCDSR are satisfied with deviations ranging from 0.44% to 0.75%.

- Axial-Vector Channel
 - a1' peak:
 - Adjust the mass, width, and spectral strength.
 - a1 peak:
 - Adjust mass, width, and spectral strength
 - Additional width component at low energies. (Needed for axial-vector "conductivity" and broadening below threshhold.)
 - Additional low energy peak "a-sobar"
 - Pion pole:
 - Assume that pion does not develop a width.
 - Temperature dependence of pion mass is chosen from XPT.
 - Temperature dependence of f_{π} taken from quark condensate and GOR.

Step 4: Hadronic effective field theory

Massive Yang-Mills

Gomm, Kaymakcalan, and Schecter, 1984; Ko and Rudaz, 1994, etc.

- Vector and axial-vector SFs and quark condensate can all be calculated simultaneously within this framework.
- Pions are implemented by a non-linear sigma model
- Gauge theory with two local chiral gauge symmetries.
 - Perserves chiral symmetry

 $SU_L(2) \times SU_R(2)$

- Vector and axial-vector mesons are represented by the corresponding gauge bosons.
- Gauge symmetry is broken by an explicit mass term for the mesons.
- Lagrangian has 4 free parameters: m0, g, σ , and ξ .
 - Will use m_{ρ} , m_{a} , $g_{\rho\pi\pi1}$, $g_{\rho\pi\pi3}$

Vector self energy diagrams

Axial-vector self energy diagrams

Calculate 1-loop diagrams and then resum.

Vacuum Spectral functions

Data from ALEPH (Barate et al. 1998)

Summary

- Explored the connection between vector and axial-vector SFs in order to probe chiral symmetry restoration.
- Vacuum
 - Spectral functions were constructed which agreed with SRs
 - Sum rules indicate a need for excited axial-vector state
- Low temperatures
 - SF constructed in a rigorous low temperature prescription
 - QCDSR along with finite pion mass indicate that analysis is limited in T
- Beyond low temperatures
 - Rho SF used from microscopic model which agrees with dilepton data
 - Constructed axial-vector SF from sum rule analysis
 - SF exhibit a shift of spectral strength to lower energies
 - SRs give precise SFs but there remains some ambiguity
- Hadronic effective theory
 - Constructed vacuum fits
 - More work is need for in-medium study.