Photon Production at NLO in Hot QCD

Derek Teaney
SUNY Stony Brook and RBRC Fellow

STONY BRIMIOK
 STATE UNIVERSITY OF NEW YORK

- Photons - In collaboration with Jacopo Ghiglieri, Juhee Hong, Aleksi Kurkela, Egang Lu, Guy Moore, arXiv:Almost.Done

Perturbation theory can work for thermodynamic quantities! Let's use it!

- HTLpt from Andersen, Su, Strickland. Dimensional Reduction/EQCD - the Finish Group

Baryon \#

Want to compute transport with similar precision at high T

- This calculation uses LO order photon production rates

Direct photons are measured, but this is not my real motivation ...

My real motivations:

1. Energy loss.
2. The shear viscosity.

My real motivation. Energy loss at sub-asymptotic energies is important:

1. Kinematic constraints limit the agreement between energy loss formalisms

- See the report of the Jet Collaboration: arXiv:1106.1106

2. Finite energy leads to large angle emission outside of radiative loss formalism

As the bremmed energy gets lower and lower, the angle $\Delta \theta$ gets larger and larger, limiting the agreement

My real motivations:
\checkmark Energy loss
2. The shear viscosity

My real motivation. Shear viscosity and the kinetics of weakly coupled QGP

1. Hard Collisions: $2 \leftrightarrow 2$

2. Diffusion: collisions with soft random classical field
soft fields have $p \sim g T$ and large occupation numbers $n_{B} \sim \frac{T}{p} \sim \frac{1}{g}$

3. Brem: $1 \leftrightarrow 2$

- random walk induces collinear bremsstrhalung

NLO involves corrections to these processes and the relation between them

But shear viscosity is too hard . . .

My real motivations:

\checkmark Energy loss
\checkmark The shear viscosity
Photon production at NLO is a good warm-up calculation.
Lets do it!

$n \leqslant N^{N}$ Hot QGP
 $N 2 m$

$2 k(2 \pi)^{3} \frac{\mathrm{~d} \Gamma}{\mathrm{~d}^{3} k}=$ Photon emission rate per phase-space

The photon emission rate at weak coupling:

- The rate is function of the coupling coupling constant and k / T :

$$
\begin{aligned}
& 2 k(2 \pi)^{3} \frac{\mathrm{~d} \Gamma}{\mathrm{~d}^{3} k} \propto e^{2} T^{2}[\underbrace{O\left(g^{2} \log \right)+O\left(g^{2}\right)}_{\text {LO AMY }}+ \\
& \underbrace{O\left(g^{3} \log \right)+O\left(g^{3}\right)}_{\text {From soft } g T \text { gluons, } n_{B} \simeq \frac{T}{\omega} \simeq \frac{1}{g}}+\ldots
\end{aligned}
$$

$O\left(g^{3}\right)$ is closely related to open issues in energy loss:

- At NLO must include drag, collisions, bremsstrhalung, and kinematic limits

Three rates for photon production at Leading Order

1. Hard Collisions - a $2 \leftrightarrow 2$ processes

2. Collinear Bremsstrhalung - a $1 \leftrightarrow 2$ processes

$$
\sim e^{2} m_{\infty}^{2} n_{F}[\underbrace{C_{\mathrm{brem}}(k)}_{\text {LPM }+ \text { AMY and all that stuff! }}]
$$

3. Quark Conversions - $1 \leftrightarrow 1$ processes (analogous to drag)

Full LO Rate is independent of scale μ_{\perp} :

$$
2 k \frac{\mathrm{~d} \Gamma}{\mathrm{~d}^{3} k} \propto e^{2} m_{\infty}^{2} n_{F}[\log \left(T / m_{\infty}\right)+\underbrace{C_{\mathrm{cnvrt}}+C_{\mathrm{brem}}(k)+C_{2 \mathrm{to} 2}(k)}_{\equiv C_{L O}(k)}]
$$

$O(g)$ Corrections to Hard Collisions, Brem, Conversions:

1. No corrections to Hard Collisions:
2. Corrections to Brem:
(a) Small angle brem. Corrections to AMY coll. kernel.
(Caron-Huot)

$$
C_{L O}\left[q_{\perp}\right]=\frac{T g^{2} m_{D}^{2}}{q_{\perp}^{2}\left(q_{\perp}^{2}+m_{D}^{2}\right)} \rightarrow \text { A complicated but analytic formula }
$$

(b) Larger angle brem. Include collisions with energy exchange, $q^{-} \sim g T$.

3. Corrections to Conversions:

- Doable because of HTL sum rules (light cone causality)
- Gives a numerically small and momentum indep. contribution to the NLO rate

Full results depend on all these corrections.
These rates smoothly match onto each other as the kinematics change.

NLO Results: $\Gamma_{L O+N L O} \sim \mathrm{LO}+g^{3} \log (1 / g)+g^{3}$
$2 k \frac{\mathrm{~d} \Delta \Gamma_{N L O}}{\mathrm{~d}^{3} k} \propto e^{2} m_{\infty}^{2} n_{F}(k)[\overbrace{\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} \log \left(\frac{\sqrt{2 T m_{D}}}{m_{\infty}}\right)}^{\text {conversions }}+\overbrace{\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} C_{\text {large- }}(k)}^{\text {large- } \theta \text {-brem }}+\overbrace{\frac{g^{2} C_{A} T}{m_{D}} C_{\text {small- }}(k)}^{\text {small- } \theta \text {-brem }}]$

Corrections are small and k independent

NLO Results: $\Gamma_{L O+N L O} \sim \mathrm{LO}+g^{3} \log (1 / g)+g^{3}$

$$
2 k \frac{\mathrm{~d} \Delta \Gamma_{N L O}}{\mathrm{~d}^{3} k} \propto e^{2} m_{\infty}^{2} n_{F}(k)[\overbrace{\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} \log \left(\frac{\sqrt{2 T m_{D}}}{m_{\infty}}\right)}^{\text {conversions }}+\overbrace{\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} C_{\text {large- }}(k)}^{\text {large- } \theta \text {-brem }}+\overbrace{\frac{g^{2} C_{A} T}{m_{D}} C_{\text {small- }}(k)}^{\text {small- } \theta \text {-brem }}]
$$

NLO Corrections are small and k independent

The different contributions at NLO (conversions are not numerically important)
large- θ radiation suppressed at NLO
small- θ radiation enhanced at NLO

The calculation

Semi-collinear radiation - a new kinematic window

The semi-collinear regime interpolates between brem and collisions

Matching collisions to brem

- When the gluon is hard the $2 \leftrightarrow 2$ collision:

is physically distinct from the wide angle brem

Matching collisions to brem

- When the gluon becomes soft (a plasmon), the $2 \leftrightarrow 2$ collision:

is not physically distinct from the wide angle brem

Need both processes

- For harder gluons, $q^{-} \rightarrow T$, this becomes a normal $2 \rightarrow 2$ process.
- For softer gluons, $q^{-} \rightarrow g^{2} T$, this smoothly matches onto AMY.

Matching collisions to brem

- When the gluon becomes soft (a plasmon), the $2 \leftrightarrow 2$ collision:

is not physically distinct from the wide angle brem

Need both processes

- For harder gluons, $q^{-} \rightarrow T$, this becomes a normal $2 \rightarrow 2$ process.
- For softer gluons, $q^{-} \rightarrow g^{2} T$, this smoothly matches onto AMY.

Brem and collisions at wider angles (but still small!)

- Photon emission rate

$$
2 k \frac{\mathrm{~d} \Gamma}{d^{3} k} \sim \int_{\text {phase-space }} n_{\mathbf{p}}\left(1-n_{\mathbf{p}+\mathbf{k}}\right)|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{4}\left(P_{\text {tot }}\right)
$$

- The matrix element is

$$
|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{4}\left(P_{\text {tot }}\right) \propto \int_{Q} \underbrace{\frac{1+z^{2}}{z}}_{\text {QCD splitting fcn }} \frac{1}{\left(q^{-}\right)^{2}} \underbrace{\left\langle F_{i+} F_{i+}(Q)\right\rangle}_{\text {scattering-center }} 2 \pi \delta\left(q^{-}-\delta E\right)
$$

All of the dynamics of the scattering center in a single matrix element $\left\langle F_{i+} F_{i+}(Q)\right\rangle$

Finite energy transfer sum-rule

- The AMY collision kernel $C\left[q_{\perp}\right]$ involves

$$
q_{\perp}^{2} C\left[q_{\perp}\right]=\left.\int_{-\infty}^{\infty} \frac{\mathrm{d} q^{+}}{2 \pi}\left\langle F_{i+} F_{i+}(Q)\right\rangle\right|_{q^{-}=0}=\frac{T m_{D}^{2}}{q_{T}^{2}+m_{D}^{2}}
$$

- We need a finite $q^{-}=\delta E$ generalization of the sum rule

$$
\left.\int_{-\infty}^{\infty} \frac{\mathrm{d} q^{+}}{2 \pi}\left\langle F_{i+} F_{i+}(Q)\right\rangle\right|_{q^{-}=\delta E}=T\left[\frac{2(\delta E)^{2}\left(\delta E^{2}+q_{\perp}^{2}+m_{D}^{2}\right)+m_{D}^{2} q_{\perp}^{2}}{\left(\delta E^{2}+q_{\perp}^{2}+m_{D}^{2}\right)\left(\delta E^{2}+q_{\perp}^{2}\right)}\right]
$$

Wider angle emissions can be included by a "simple" modified collision kernel

Matching between brem and conversions

When the quark becomes soft need to worry about conversions.

Matching between brem and conversions

- When the final quark line is hard, the brem process :

is physically distinct from the conversion process:

Matching between brem and conversions

- When the final quark line becomes soft, the brem process :

is not physically distinct from the conversion process

Separately both processes depend on the separation scale, $\mu \sim g T$, but \ldots
the μ dep. cancels when both rates are included

- The LO small- θ and large- θ brem rates depend linearly and logarithmically on an infrared separation scale, μ.

The NLO conversion rate will depend on a UV cutoff μ and cancels this dependence

Brem rates with a soft quark

- Small angle brem

$$
\left.2 k \frac{\mathrm{~d} \Gamma}{d^{3} k}\right|_{z P>\mu}=\text { Leading Order Rate }+ \text { Finite }-\underbrace{\# g^{2} \mu}_{\text {linear IR dependence } \mu}
$$

- Wide angle brem

$$
\left.2 k \frac{\mathrm{~d} \Gamma}{d^{3} k}\right|_{z P>\mu} \propto \underbrace{\frac{\delta m_{\infty}^{2}}{4 \pi} \log \frac{\sqrt{2 T m_{D}}}{\mu}}_{\text {Log IR dependence on } \mu}+\text { Finite }
$$

The conversion rate should cancel this dependence on μ

Computing the conversion rate with sum-rules (LO):

$$
2 k(2 \pi)^{3} \frac{\mathrm{~d} \Gamma_{\mathrm{cnvrt}}}{\mathrm{~d}^{3} k} \propto e^{2} n_{F}(k) \hat{q}_{\mathrm{cnvrt}}(\mu)
$$

- $\hat{q}_{\text {cnvrt }}$ is the quark version of \hat{q}

$$
\begin{aligned}
\hat{q}_{\mathrm{cnvrt}}\left(\mu_{\perp}\right) & =\int^{\sim \mu} \frac{\mathrm{d}^{2} \mathbf{p}_{T}}{(2 \pi)^{2}} \underbrace{\int_{-\mu}^{\mu} \frac{\mathrm{d} p^{z}}{2 \pi} \operatorname{Tr}\left[\gamma_{+} S^{<}(\omega, \mathbf{p})\right]_{\omega=p^{z}}}_{\text {evaluate with sum rule }} \\
& =\int^{\mu} \frac{d^{2} \mathbf{p}_{T}}{(2 \pi)^{2}} \frac{m_{\infty}^{2}}{p_{T}^{2}+m_{\infty}^{2}}
\end{aligned}
$$

where

$$
S_{R}(X)=\left\langle\psi(X) e^{i g \int_{0}^{X} d x^{\mu} A_{\mu}} \bar{\psi}(0)\right\rangle
$$

Computing the conversion rate at NLO with sum-rules:

$$
2 k(2 \pi)^{3} \frac{\mathrm{~d} \Gamma_{\mathrm{cnvrt}}}{\mathrm{~d}^{3} k} \propto e^{2} n_{F}(k) \hat{q}_{\mathrm{cnvrt}}(\mu)
$$

- At NLO we have only to replace $m_{\infty}^{2} \rightarrow m_{\infty}^{2}+\delta m_{\infty}^{2}$

$$
\hat{q}_{\mathrm{cnvrt}}=\underbrace{\int^{\mu} \frac{d^{2} \mathbf{p}_{\perp}}{(2 \pi)^{2}} \frac{m_{\infty}^{2}+\delta m_{\infty}^{2}}{p_{T}^{2}+m_{\infty}^{2}+\delta m_{\infty}^{2}}}+\underbrace{\# g^{2} \mu}
$$

finite + UV logarithmic divergence in $\mu \quad$ linear UV divergence in μ
The UV divergences of conversion rate match with the IR divergences of large and small angle brem giving a finite answer

Summary of the matching calculations at NLO

$$
2 k(2 \pi)^{3} \frac{\mathrm{~d} \Delta \Gamma_{N L O}}{\mathrm{~d}^{3} k} \propto \underbrace{\text { finite }-C_{1} g^{2} \mu}_{\text {collinear contribution }}
$$

The μ dependence cancels between the different contributions

Conclusion

- The result again

- All of the soft sector buried into a few coefficients, δm_{∞}^{2} and $\hat{q}_{\text {cnvrt }}$
- Can we compute these non-perturbatively ?

Many things can be computed next (e.g. shear viscosity and e-loss)

