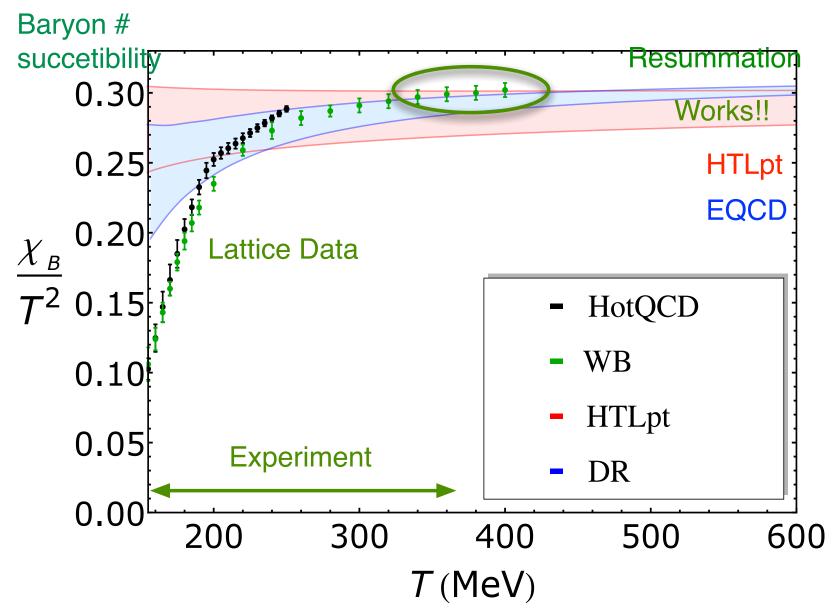
Photon Production at NLO in Hot QCD

Derek Teaney SUNY Stony Brook and RBRC Fellow

 Photons – In collaboration with Jacopo Ghiglieri, Juhee Hong, Aleksi Kurkela, Egang Lu, Guy Moore, arXiv:Almost.Done

Perturbation theory can work for thermodynamic quantities! Let's use it!

• HTLpt from Andersen, Su, Strickland. Dimensional Reduction/EQCD – the Finish Group

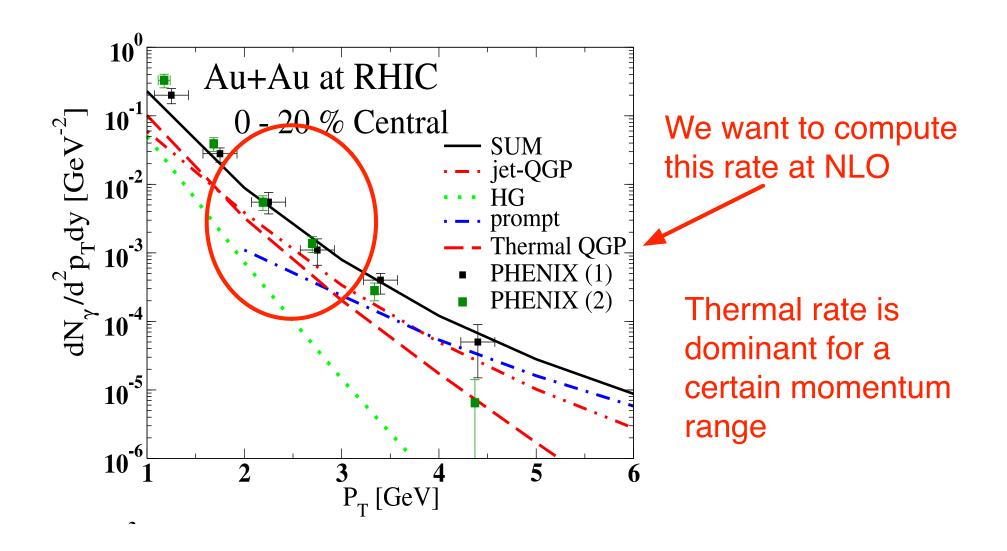


Want to compute transport with similar precision at high T

Motivation

This calculation uses LO order photon production rates (Turb

(Turbide, Rapp, Gale)



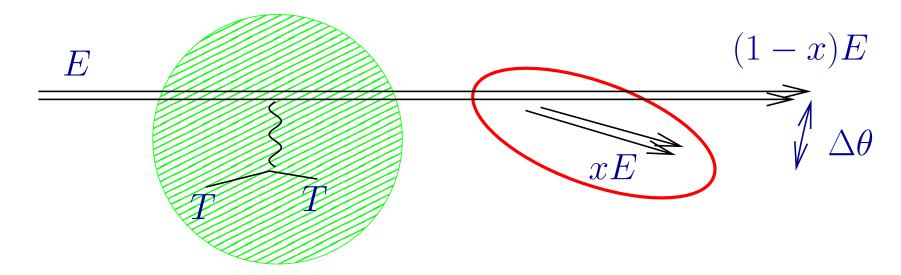
Direct photons are measured, but this is not my real motivation . . .

My real motivations:

- 1. Energy loss.
- 2. The shear viscosity.

My real motivation. Energy loss at sub-asymptotic energies is important:

- 1. Kinematic constraints limit the agreement between energy loss formalisms
 - See the report of the Jet Collaboration: arXiv:1106.1106
- 2. Finite energy leads to large angle emission outside of radiative loss formalism



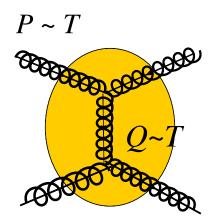
As the bremmed energy gets lower and lower, the angle $\Delta\theta$ gets larger and larger, limiting the agreement

My real motivations:

- √ Energy loss
- 2. The shear viscosity

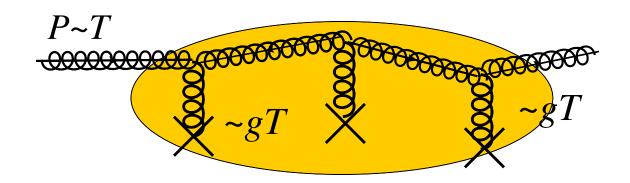
My real motivation. Shear viscosity and the kinetics of weakly coupled QGP

1. Hard Collisions: $2 \leftrightarrow 2$



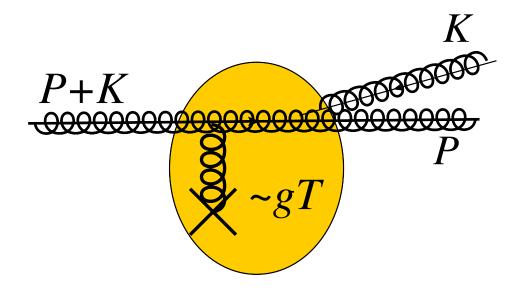
2. Diffusion: collisions with soft random classical field

soft fields have $p \sim gT$ and large occupation numbers $n_B \sim \frac{T}{p} \sim \frac{1}{g}$



3. Brem: $1 \leftrightarrow 2$

random walk induces collinear bremsstrhalung



NLO involves corrections to these processes and the relation between them

But shear viscosity is too hard . . .

My real motivations:

- √ Energy loss
- √ The shear viscosity

Photon production at NLO is a good warm-up calculation.

Lets do it!

The photon emission rate at weak coupling:

The rate is function of the coupling coupling constant and k/T:

$$2k(2\pi)^3\frac{\mathrm{d}\Gamma}{\mathrm{d}^3k}\propto e^2T^2\Big[\underbrace{O(g^2\log)+O(g^2)}_{\text{LO AMY}}+\\\underbrace{O(g^3\log)+O(g^3)}_{\text{From soft }gT\text{ gluons, }n_B\simeq\frac{T}{\omega}\simeq\frac{1}{q}}$$

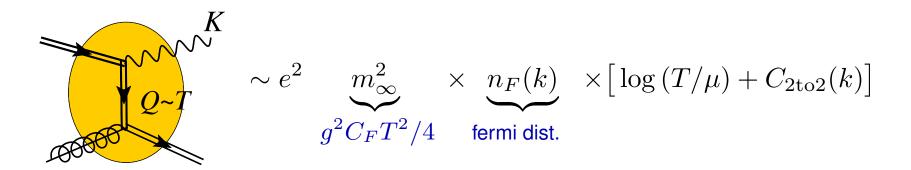
$O(g^3)$ is closely related to open issues in energy loss:

At NLO must include drag, collisions, bremsstrhalung, and kinematic limits

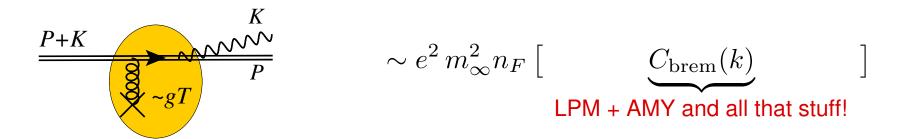
Three rates for photon production at Leading Order

Baier, Kapusta, AMY

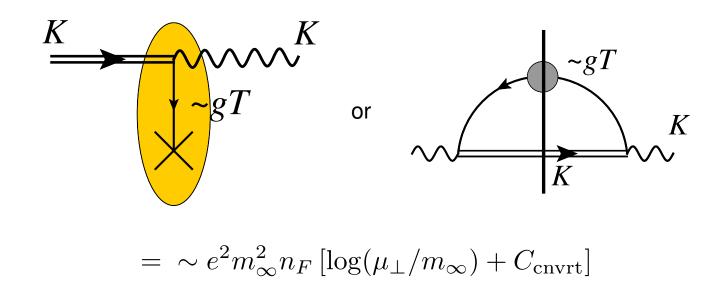
1. Hard Collisions – a $2 \leftrightarrow 2$ processes



2. Collinear Bremsstrhalung – a $1\leftrightarrow 2$ processes



3. Quark Conversions – $1 \leftrightarrow 1$ processes (analogous to drag)

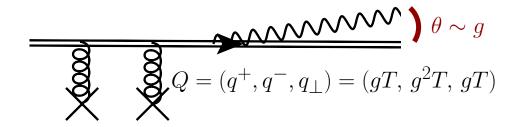


Full LO Rate is independent of scale μ_{\perp} :

$$2k\frac{\mathrm{d}\Gamma}{\mathrm{d}^{3}k} \propto e^{2}m_{\infty}^{2}n_{F} \left[\log\left(T/m_{\infty}\right) + \underbrace{C_{\mathrm{cnvrt}} + C_{\mathrm{brem}}(k) + C_{2\mathrm{to}2}(k)}_{\equiv C_{LO}(k)} \right]$$

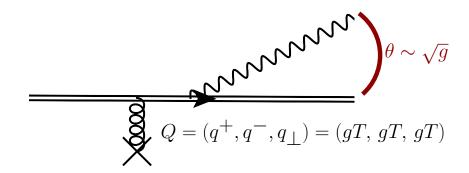
O(g) Corrections to Hard Collisions, Brem, Conversions:

- 1. No corrections to Hard Collisions:
- 2. Corrections to Brem:
 - (a) Small angle brem. Corrections to AMY coll. kernel. (Caron-Huot)

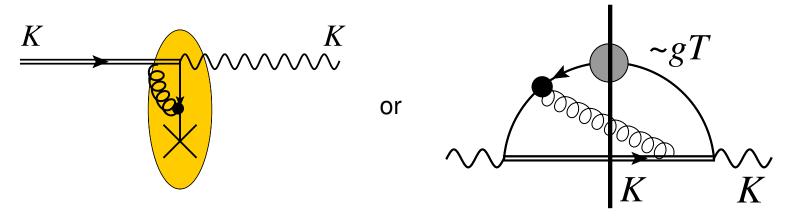


$$C_{LO}[q_\perp] = \frac{Tg^2m_D^2}{q_\perp^2(q_\perp^2+m_D^2)} \to \text{A complicated but analytic formula}$$

(b) Larger angle brem. Include collisions with energy exchange, $q^- \sim gT$.



3. Corrections to Conversions:



• Doable because of HTL sum rules (light cone causality)

Simon Caron-Huot

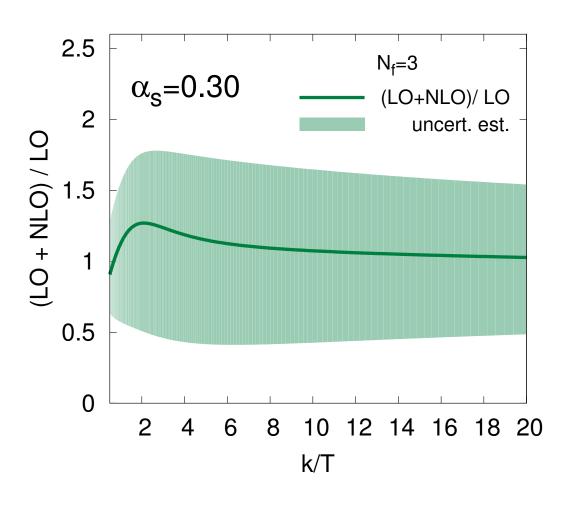
Gives a numerically small and momentum indep. contribution to the NLO rate

Full results depend on all these corrections.

These rates smoothly match onto each other as the kinematics change.

NLO Results: $\Gamma_{LO+NLO} \sim \text{LO} + g^3 \log(1/g) + g^3$

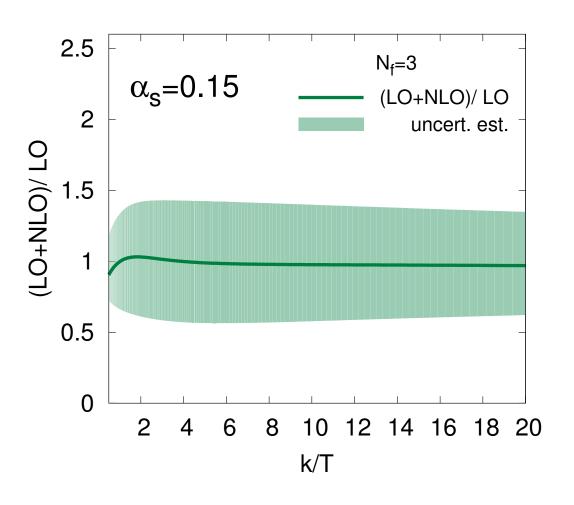
$$2k \frac{\mathrm{d}\Delta\Gamma_{NLO}}{\mathrm{d}^3k} \propto e^2 m_\infty^2 n_F(k) \Big[\underbrace{\frac{\delta m_\infty^2}{m_\infty^2} \log \left(\frac{\sqrt{2Tm_D}}{m_\infty} \right)}_{\mathrm{conversions}} + \underbrace{\frac{\delta m_\infty^2}{m_\infty^2} C_{\mathrm{large}-\theta}(k)}_{\mathrm{large}-\theta} + \underbrace{\frac{g^2 C_A T}{m_D} C_{\mathrm{small}-\theta}(k)}_{\mathrm{small}-\theta} \Big]$$



Corrections are small and k independent

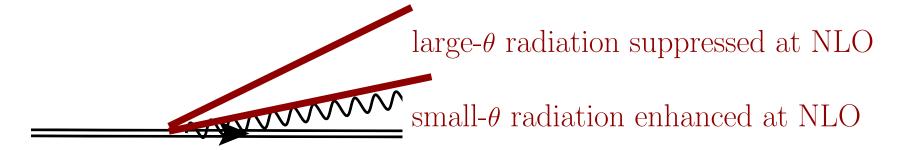
NLO Results: $\Gamma_{LO+NLO} \sim \text{LO} + g^3 \log(1/g) + g^3$

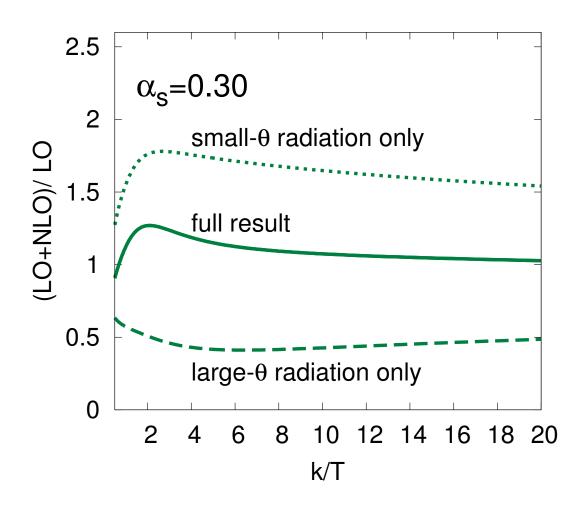
$$2k\frac{\mathrm{d}\Delta\Gamma_{NLO}}{\mathrm{d}^3k}\propto e^2m_\infty^2n_F(k)\Big[\underbrace{\frac{\delta m_\infty^2}{m_\infty^2}\log\left(\frac{\sqrt{2Tm_D}}{m_\infty}\right)}_{\mathrm{conversions}} + \underbrace{\frac{\delta m_\infty^2}{m_\infty^2}C_{\mathrm{large}-\theta}(k)}_{\mathrm{large}-\theta} + \underbrace{\frac{g^2C_AT}{m_D}C_{\mathrm{small}-\theta}(k)}_{\mathrm{small}-\theta}\Big]$$

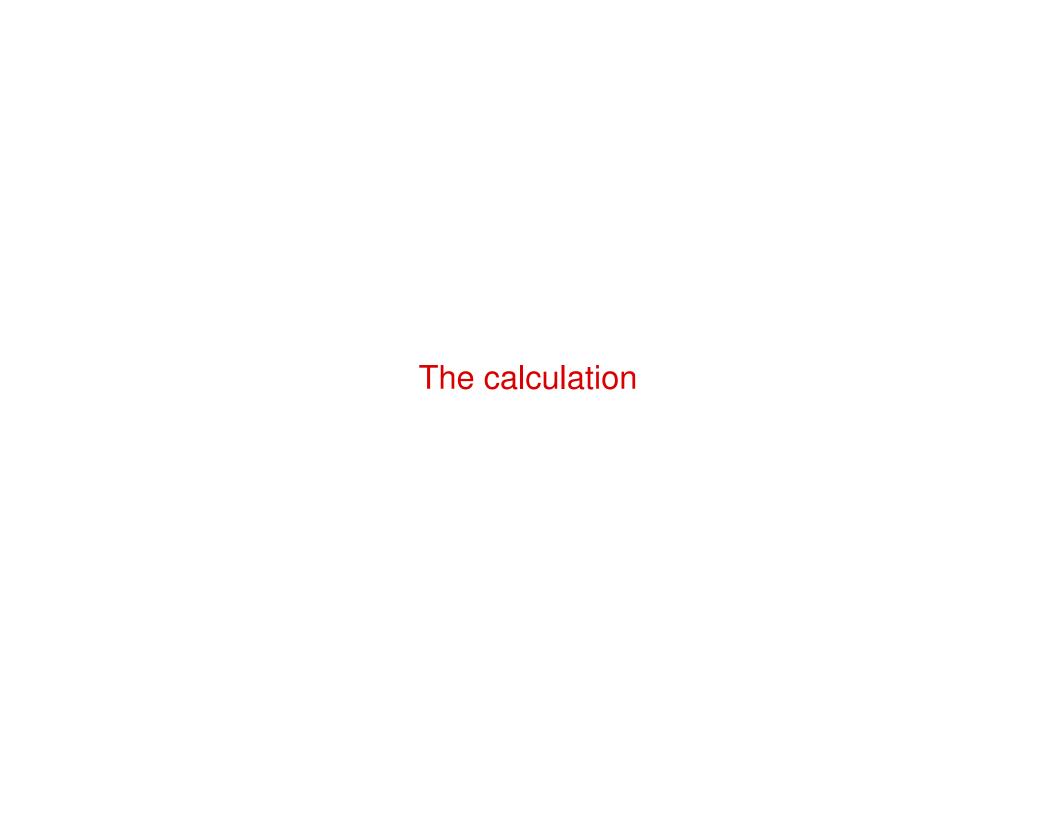


NLO Corrections are small and k independent

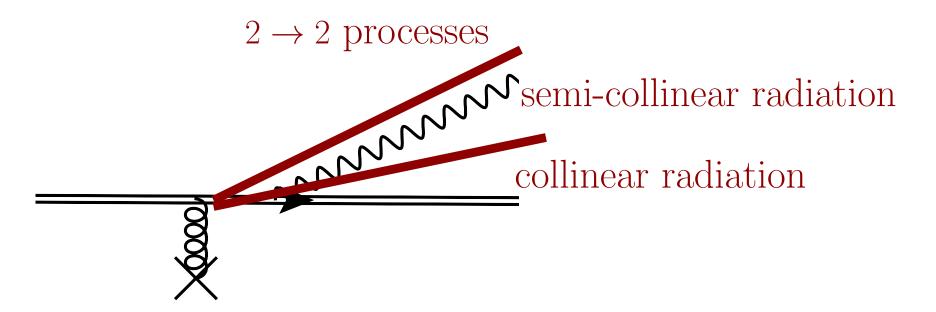
The different contributions at NLO (conversions are not numerically important)







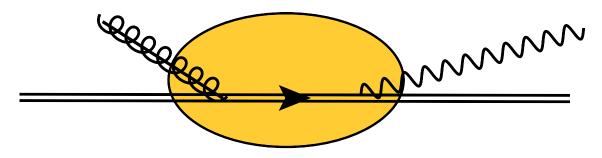
Semi-collinear radiation – a new kinematic window



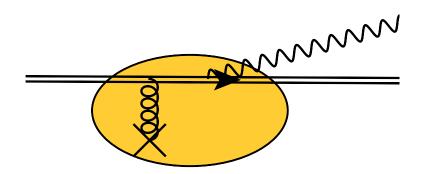
The semi-collinear regime interpolates between brem and collisions

Matching collisions to brem

• When the gluon is hard the $2 \leftrightarrow 2$ collision:

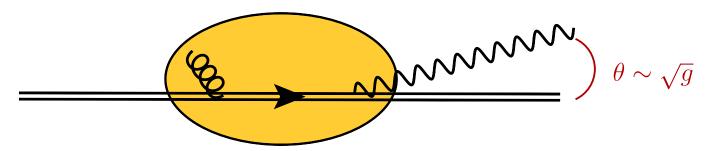


is physically distinct from the wide angle brem

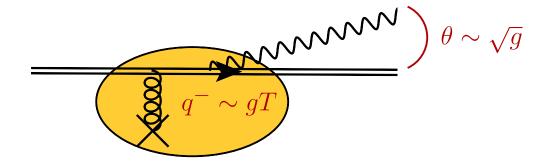


Matching collisions to brem

• When the gluon becomes soft (a plasmon), the $2 \leftrightarrow 2$ collision:



is not physically distinct from the wide angle brem

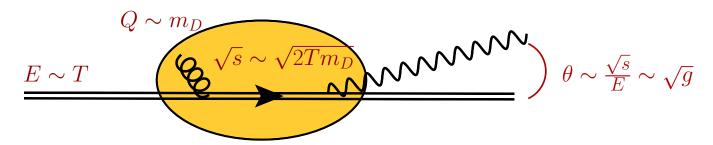


Need both processes

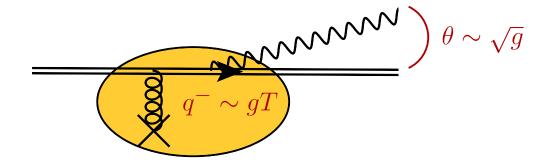
- For harder gluons, $q^- \to T$, this becomes a normal $2 \to 2$ process.
- For softer gluons, $q^- \to g^2 T$, this smoothly matches onto AMY.

Matching collisions to brem

• When the gluon becomes soft (a plasmon), the $2\leftrightarrow 2$ collision:



is not physically distinct from the wide angle brem



Need both processes

- For harder gluons, $q^- \to T$, this becomes a normal $2 \to 2$ process.
- For softer gluons, $q^- \to g^2 T$, this smoothly matches onto AMY.

Brem and collisions at wider angles (but still small!)

Photon emission rate

$$2k \frac{\mathrm{d}\Gamma}{d^3k} \sim \int_{\text{phase-space}} n_{\mathbf{p}} (1 - n_{\mathbf{p+k}}) |\mathcal{M}|^2 (2\pi)^4 \delta^4(P_{\text{tot}})$$

The matrix element is

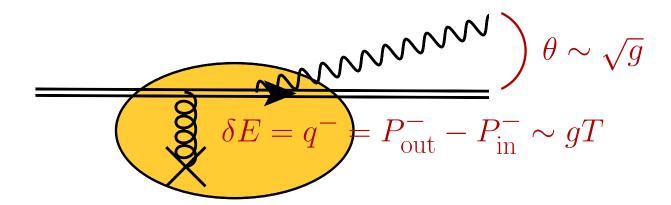
$$P_{\text{in}}^{+} \qquad \qquad P_{\text{out}}^{+} \equiv z P_{\text{in}}^{+}$$

$$q^{-} = \delta E \equiv P_{\text{out}}^{-} - P_{\text{in}}^{-} \sim gT$$

$$|\mathcal{M}|^2 \, (2\pi)^4 \delta^4(P_{\mathrm{tot}}) \propto \int_Q \underbrace{\frac{1+z^2}{z}}_{\mathrm{QCD \; splitting \; fcn}} \, \frac{1}{(q^-)^2} \, \underbrace{\langle F_{i+} \, F_{i+}(Q) \rangle}_{\mathrm{scattering-center}} \, 2\pi \delta(q^- - \delta E)$$

All of the dynamics of the scattering center in a single matrix element $\langle F_{i+}F_{i+}(Q)\rangle$

Finite energy transfer sum-rule



ullet The AMY collision kernel $C[q_{\perp}]$ involves

Aurenche, Gelis, Zakarat

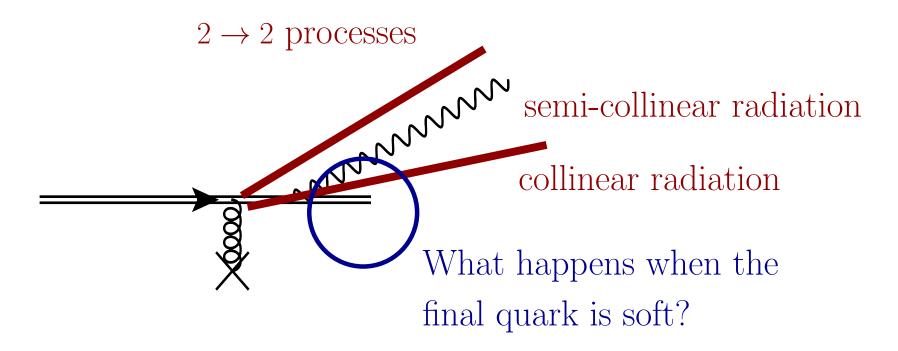
$$q_{\perp}^{2}C[q_{\perp}] = \int_{-\infty}^{\infty} \frac{\mathrm{d}q^{+}}{2\pi} \langle F_{i+}F_{i+}(Q)\rangle|_{q^{-}=0} = \frac{Tm_{D}^{2}}{q_{T}^{2} + m_{D}^{2}}$$

 $\bullet\,$ We need a finite $q^-=\delta E$ generalization of the sum rule

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}q^{+}}{2\pi} \left| \langle F_{i+}F_{i+}(Q) \rangle \right|_{q^{-}=\delta E} = T \left[\frac{2(\delta E)^{2}(\delta E^{2} + q_{\perp}^{2} + m_{D}^{2}) + m_{D}^{2}q_{\perp}^{2}}{(\delta E^{2} + q_{\perp}^{2} + m_{D}^{2})(\delta E^{2} + q_{\perp}^{2})} \right]$$

Wider angle emissions can be included by a "simple" modified collision kernel

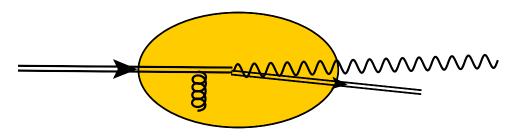
Matching between brem and conversions



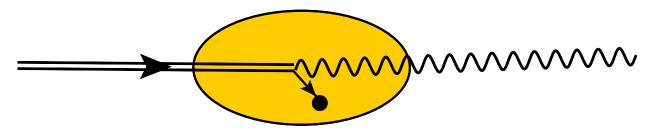
When the quark becomes soft need to worry about conversions.

Matching between brem and conversions

When the final quark line is hard, the brem process :

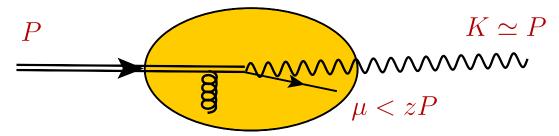


is physically distinct from the conversion process:

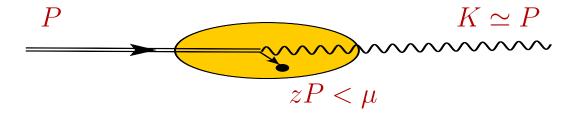


Matching between brem and conversions

• When the final quark line becomes soft, the brem process :



is not physically distinct from the conversion process



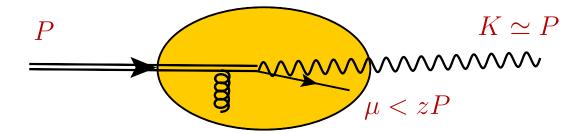
Separately both processes depend on the separation scale, $\mu \sim gT$, but . . .

the μ dep. cancels when both rates are included

• The LO small- θ and large- θ brem rates depend linearly and logarithmically on an infrared separation scale, μ .

The NLO conversion rate will depend on a UV cutoff μ and cancels this dependence

Brem rates with a soft quark



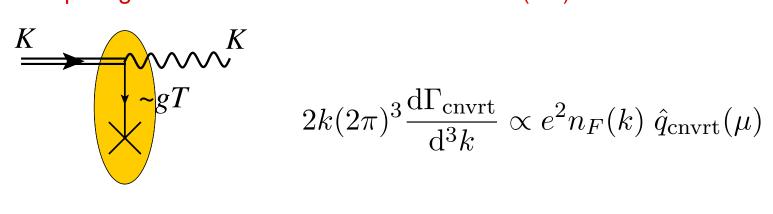
Small angle brem

$$2krac{{
m d}\Gamma}{d^3k}igg|_{zP>\mu}=$$
 Leading Order Rate + Finite $\#g^2\mu$ linear IR dependence μ

Wide angle brem

$$2k\frac{\mathrm{d}\Gamma}{d^3k}\bigg|_{zP>\mu} \propto \underbrace{\frac{\delta m_\infty^2}{4\pi}\log\frac{\sqrt{2Tm_D}}{\mu}}_{\text{Log IR dependence on }\mu} + \text{ Finite}$$

The conversion rate should cancel this dependence on μ



$$2k(2\pi)^3 \frac{\mathrm{d}\Gamma_{\mathrm{cnvrt}}}{\mathrm{d}^3 k} \propto e^2 n_F(k) \; \hat{q}_{\mathrm{cnvrt}}(\mu)$$

• \hat{q}_{cnvrt} is the quark version of \hat{q}

$$\hat{q}_{\text{cnvrt}}(\mu_{\perp}) = \int^{\sim \mu} \frac{\mathrm{d}^2 \mathbf{p}_T}{(2\pi)^2} \underbrace{\int_{-\mu}^{\mu} \frac{\mathrm{d}p^z}{2\pi} \operatorname{Tr} \left[\gamma_+ S^{<}(\omega, \mathbf{p}) \right]_{\omega = p^z}}_{\omega = p^z}$$

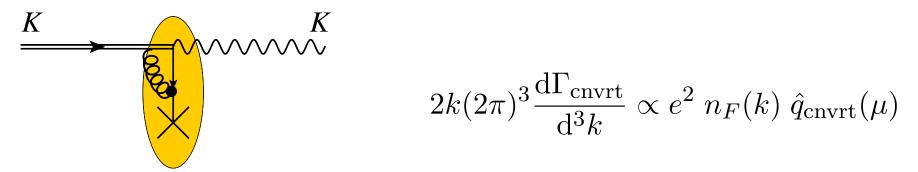
evaluate with sum rule

$$= \int^{\mu} \frac{d^2 \mathbf{p}_T}{(2\pi)^2} \, \frac{m_{\infty}^2}{p_T^2 + m_{\infty}^2}$$

where

$$S_R(X) = \left\langle \psi(X) e^{ig \int_0^X dx^{\mu} A_{\mu}} \bar{\psi}(0) \right\rangle$$

Computing the conversion rate at NLO with sum-rules:



 \bullet At NLO we have only to replace $m_{\infty}^2 \to m_{\infty}^2 + \delta m_{\infty}^2$

$$\hat{q}_{\rm cnvrt} = \underbrace{\int^{\mu} \frac{d^2 \mathbf{p}_{\perp}}{(2\pi)^2} \frac{m_{\infty}^2 + \delta m_{\infty}^2}{p_T^2 + m_{\infty}^2 + \delta m_{\infty}^2}}_{\text{finite + UV logarithmic divergence in } \mu} + \underbrace{\#g^2 \mu}_{\text{linear UV divergence in } \mu}$$

The UV divergences of conversion rate match with the IR divergences of large and small angle brem giving a finite answer

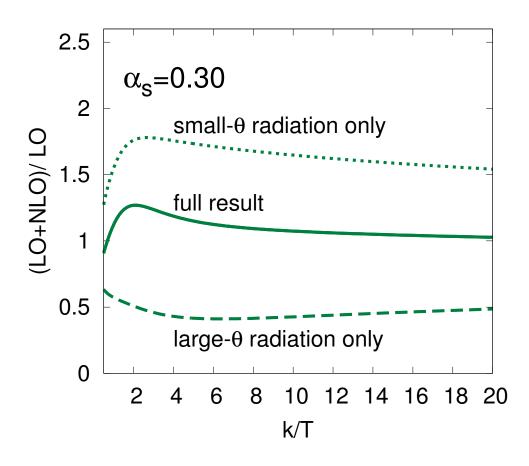
Summary of the matching calculations at NLO

$$2k(2\pi)^3 \frac{\mathrm{d}\Delta\Gamma_{NLO}}{\mathrm{d}^3k} \propto \underbrace{\qquad \text{finite} \ - \ C_1g^2\mu}_{\text{collinear contribution}} \\ + \underbrace{\qquad \text{finite} \ + \ C_2 \frac{\delta m_\infty^2}{4\pi} \log \frac{\sqrt{2Tm_D}}{\mu}}_{\text{semi-collinear contribution}} \\ + \underbrace{\qquad \text{finite} \ + \ C_1g^2\mu \ + \ C_2 \frac{\delta m_\infty^2}{4\pi} \log \frac{\mu}{m_D}}_{\text{conversions}}$$

The μ dependence cancels between the different contributions

Conclusion

The result again



- ullet All of the soft sector buried into a few coefficients, δm_{∞}^2 and $\hat{q}_{
 m cnvrt}$
 - Can we compute these non-perturbatively?

Many things can be computed next (e.g. shear viscosity and e-loss)