

Direct Photon Spectra and Elliptic Flow in 2.76 TeV Pb-Pb Collisions from ALICE

Martin Wilde

on behalf of the ALICE Collaboration

Westfälische Wilhelms-Universität Münster

December 5, 2012

Martin Wilde

Table of Contents

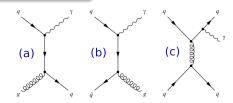
Direct Photon Production and the ALICE Detector

Part I: Direct Photon Spectra

- Analysis Strategy
- Detection of Converted Photons and $\pi^0 s$
- Inclusive Photon Results in pp and Pb-Pb
- Decay Photon Background Calculation
- Direct Photon Results in pp and Pb-Pb

Part II: Direct Photon v_2

- Analysis Strategy
- Inclusive Photon v₂ Analysis
- Decay Photon v₂
- Direct Photon v₂


Direct Photons in pp and Pb-Pb Collisions

Direct Photons - Definition

Photons that are not produced by particle decays

Prompt Photons: In pp and Pb-Pb

- Calculable within NLO pQCD
- Predominant source in pp
- Signal scales with number of binary collisions in Pb-Pb
- Fragmentation photons may be modified by parton energy loss in the medium

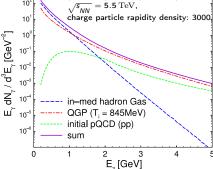
- (a) Quark-gluon Compton scattering
- (b) Quark-Anti-quark annihilation
- (c) Fragmentation photons (bremsstrahlung)

Measurement of direct photons in pp is an ideal test for pQCD

Direct Photons in Pb-Pb Collisions

Additional sources of direct photons in Pb-Pb collisions

Jet-Medium Interactions:

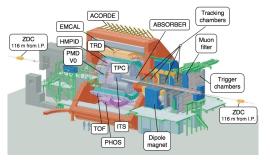

- Scattering of hard partons with thermalized partons
- In medium (photon) bremsstrahlung emitted by quarks

Thermal Photons:

• Scattering of thermalized particles 10⁻⁶ QGP: $q\bar{q} \rightarrow g\gamma$ and $qg \rightarrow q\gamma$ (+NLO) HHG (hot hadronic gas): Hadronic interactions (e.g. $\pi^+\pi^- \rightarrow \gamma\rho_0$)

Martin Wilde

• Exponentially decreasing but dominant at low p_{τ} Photons leave medium unaffected, an ideal probe to study HI collisions



2006 J. Phys. G: Nucl. Part. Phys. 32 1295

The ALICE Detector and Data Sample

Pb-Pb @ sort(s) = 2.76 ATeV

11.12.08-51-12

pp,
$$\sqrt{s} = 7 \,\mathrm{TeV}$$
:

- Data sample: 3.54×10^8 events (min. bias)
- Monte Carlo: Pythia-Perugia0 and Phojet

Pb-Pb,
$$\sqrt{s_{_{NN}}}=2.76\,\mathrm{TeV}$$
:

- Data sample: 17×10^6 min. bias events
- Monte Carlo: Hijing (min. bias plus enriched events with high $p_{\tau} \pi^0 s$)

Photons are measured via their conversion products in ITS and TPC

Westfälische Wilhelms-Universität Münster

Martin Wilde

Part I: Direct Photon Spectra

Martin Wilde

Part I: Direct Photon Spectra

12-5-12 p.6

ILHELMS-UNIVERSITÄT

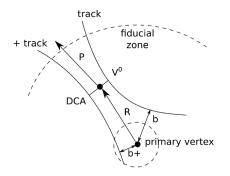
Martin Wilde

$\begin{array}{l} \textbf{Subtraction Method} \\ \gamma_{\mathsf{direct}} = \gamma_{\mathsf{inc}} - \gamma_{\mathsf{decay}} = (1 - \frac{\gamma_{\mathsf{decay}}}{\gamma_{\mathsf{inc}}}) \cdot \gamma_{\mathsf{inc}} \end{array}$

- Inclusive photons: measure all photons that are produced
- Decay photons: calculated from measured particle spectra with photon decay branches ($\pi^0,~\eta,~\ldots)$

$$\frac{\gamma_{\rm inc}}{\pi^0} / \frac{\gamma_{\rm decay}}{\pi^0_{\rm param}} \approx \frac{\gamma_{\rm inc}}{\gamma_{\rm decay}} \qquad {\rm if} > 1 \ {\rm direct \ photon \ signal}$$

 \rightarrow advantage of ratio method: cancellation of uncertainties


• Photons and π^0 s (and η) are measured via conversion method $\pi^0 \to \gamma\gamma$, $\gamma \to e^+e^-$

Photon Reconstruction with ITS and TPC

Secondary Vertex Algorithm - V0 Particles

- Charged tracks with large impact parameter are paired
- Candidates with a small DCA
 → V0 candidate
- Most abundant particle species: K_s^0 , Λ , $\bar{\Lambda}$ or γ
- Photon conversion probability in $|\eta| <$ 0.9 up to R = 180 cm at 8.5%

- Cuts on the decay topology of photons and electron track properties \to Purity at 90% at $2\,{\rm GeV/c}$ for 0-40% Pb-Pb events
- Background is mainly combinatorial Strange particle contribution negligible

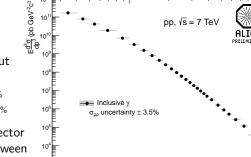
Photon Corrections and Invariant Cross Section for pp

- Raw γ spectrum in pp and Pb-Pb corrected for:
 - purity (\mathcal{P})
 - efficiency (*E*)
 - conversion probability (\mathcal{C})

and secondary photon candidates subtracted

• Inclusive photon cross section in pp: $E \frac{\mathrm{d}^3 \sigma}{\mathrm{d} p^3} = \frac{1}{2\pi} \frac{\sigma_{MB_{OR}}}{N_{events}} \frac{1}{p_T} \frac{\mathcal{P}}{\mathcal{C}\mathcal{E}} \frac{N^{\gamma_{prim}}}{\Delta y \Delta \rho_T}$

Main sources of uncertainty:


- Material budget of the detector ~ 4.5%
- Efficiency estimation by cut variations

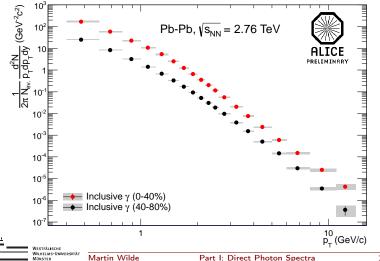
 $\textit{p}_{\mathcal{T}}\,<5\,\mathrm{GeV}:\,pp\sim3\%,\,Pb\text{-}Pb\sim6\%$

$$ho_{ au} > 5\,{
m GeV}$$
: pp \sim 6%, Pb-Pb \sim 15%

e.g. geometrical cuts, detector PID, sharing of tracks between <u>_</u> sec. vertices

Martin Wilde

1


Part I: Direct Photon Spectra

10 p_ (GeV/c)

Inclusive Photon Invariant Yield in Pb-Pb

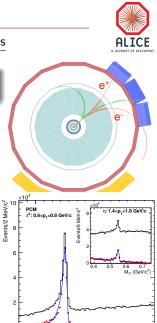
• Two centrality selections: 0-40% and 40-80% (central and peripheral)

π^0 and η Reconstruction via Conversion

Neutral pion and η (pp only) based on converted photons

Measurement based on identical set of photons as used for photon results

- Inv. mass calculated for all photon pairs in an event
- Combinatorial background obtained via mixed event technique
- Raw π^0 spectrum obtained by peak integration
- Efficiency and acceptance estimated with MC simulations


Martin Wilde

Eor more details see.

ILHELMS-UNIVERSITÄT

MÜNCTER

- pp at TeV: Phys. Lett. B 717, 162 (arXiv:1205.5724)
- Pb-Pb and pp at 2.76TeV: published soon, similar method

0.15

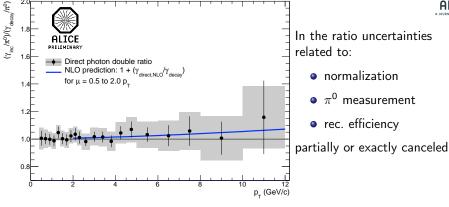
Part I: Direct Photon Spectra

M_{rr} (GeV/c²)

Cocktail Generator

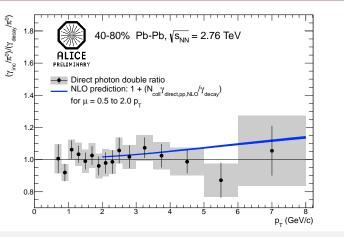
Decay photon spectra are obtained via calculation

- Based on a fit to measured π^0 and η (in pp)
- Other meson spectra obtained via m_{τ} -scaling
- Incorporated mesons: $\pi^{\rm 0}$, $\eta,~\eta^{\prime},~\omega,~\phi$ and $\rho_{\rm 0}$


 $\frac{m_{\tau}\text{-Scaling:}}{\text{Same shape of cross sections,}}$ $f(m_{\tau}), \text{ of various mesons}$ $E\frac{d^{3}\sigma_{m}}{dp^{3}} = C_{m} \cdot f(m_{\tau})$

		_	Meson (C_m)	Mass	Decay Branch	B. Ratio
ο ^μ μ		all decay y	π0	134.98	$\gamma\gamma$	98.789%
^ 10 ³	pp, √s = 7 TeV	$\pi^0 \rightarrow \gamma \gamma \ (e^+e^-\gamma)$			$e^+e^-\gamma$	1.198%
	ALICE		η	547.3	$\gamma\gamma$	39.21%
Εp	ERFORMANCE	$ω \rightarrow π^0 \gamma$ (ηγ) η' $\rightarrow ρ \gamma$ (ωγ, γγ)			$\pi^+\pi^-\gamma$	4.77%
10 1	/08/2012	$\eta \rightarrow p\gamma (\omega\gamma, \gamma\gamma)$ $\phi \rightarrow \eta\gamma (\pi^{0}\gamma, \omega\gamma)$	(0.48)		$e^+e^-\gamma$	4.9 · 10 ^{−3}
, E		$\rho \rightarrow \pi^{+}\pi^{-}\gamma (\pi^{0}\gamma, \eta\gamma)$	ρο	770.0	$\pi^+\pi^-\gamma$	$9.9 \cdot 10^{-3}$
			(1.0)		$\pi^{0}\gamma$	$7.9 \cdot 10^{-4}$
10'1			ω	781.9	$\pi^{0}\gamma$	8.5%
E E			(0.9)		$\eta\gamma$	$6.5 \cdot 10^{-4}$
10 ⁻²			η'	957.8	$\rho^{0}\gamma$	30.2%
10-3	_				$\omega\gamma$	3.01%
		~	(0.25)		$\gamma\gamma$	2.11%
10-4			ϕ	1019.5	$\eta\gamma$	1.3%
10 ⁵			($\pi^{0}\gamma$	1.25 · 10-3
10 0	2 4 6	8 10 12 14 16 p _r (GeV/c)	(0.35)		$\omega\gamma$	< 5%
⊨≐	WESTFÄLISCHE	p _T (Gevic)			Phys. Rev. C (ar	Xiv:1110.3929)
	Minurane Henroetziz	Martin Wilde F	Part I: Direct Pho	ton Spectra	12	2-5-12 p.12

Direct Photons in pp Collisions at 7 TeV



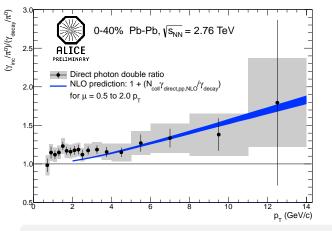
Direct photon signal in pp at 7 TeV is consistent with zero

• The NLO double ratio prediction is plotted as $\mathcal{R}_{NLO} = 1 + \frac{\gamma_{direct,NLO}}{\gamma_{constail}^{decay}}$

Measurement is consistent with the expected direct photon signal

Double Ratio - Pb-Pb 2.76 TeV - peripheral

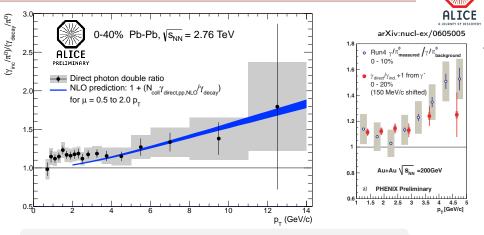
Double ratio for peripheral events shows no excess at any value of p_{τ}


- Measurement is consistent with the expected direct photon signal
- pp NLO predictions scaled with N_{coll}

WILHELMS-UNIVERSITÄT

MÜNSTER

Double Ratio - Pb-Pb 2.76 TeV - central



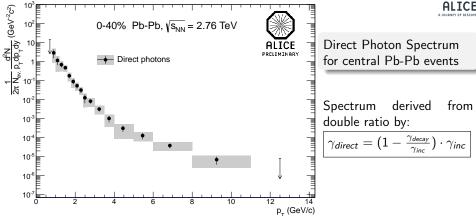
Clear extra yield of 20% for $p_{\tau} < 2 \,\text{GeV/c}$ N_{coll} scaled pp NLO in agreement with high p_{τ} direct photons

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÖRSTER MORSTER

Double Ratio - Pb-Pb 2.76 TeV - central

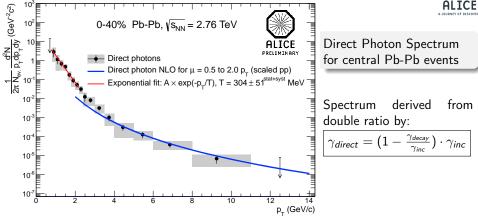
Part I: Direct Photon Spectra

Clear extra yield of 20% for $p_{\tau} < 2 \,\text{GeV/c}$ N_{coll} scaled pp NLO in agreement with high p_{τ} direct photons


• Similar to low p_{τ} direct photon observation by PHENIX

UNIVERSITÄT

Martin Wilde


Results of Pb-Pb Direct Photons at 2.76 TeV

Results of Pb-Pb Direct Photons at 2.76 TeV

• NLO predictions in agreement with spectrum $(p_{\tau} > 4 \, {\rm GeV/c})$

• At low p_{τ} (< 2.2 GeV/c) spectrum fitted with an exponential \rightarrow slope parameter $T = 304 \pm 51^{\text{stat}+\text{syst}} \text{ MeV}$

• Intermediate region: superposition of low and high p_{τ} direct photons

- Statistical analysis of direct photons based on converted photons via double ratio
- With current uncertainties no significant direct photon signal in pp and peripheral Pb-Pb
- Direct photon signal is consistent with expectation from NLO pQCD
- In central Pb-Pb: Low p_τ direct photon signal, exponential in shape
- Similar excess measured at RHIC interpreted as thermal signal

Slope parameter:

- $T_{ALICE} = 304 \pm 51^{\text{stat}+\text{syst}} \text{ MeV} (0-40\%)$
- $T_{PHENIX} = 221 \pm 19^{\text{stat}} \pm 19^{\text{syst}} \text{ MeV} (0-20\%)$

arxiv:0804.4168 PRL 104 (132301) 2010

Part II: Direct Photon v_2

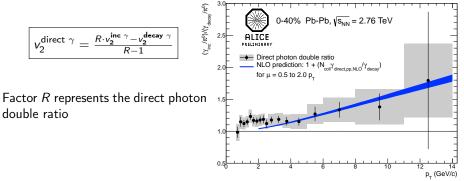
Martin Wilde

Part II: Direct Photon v2

12-5-12 р.19

What can we learn from direct photon v_2 ?

Initial azimuthal asymmetry in coordinate space in non-central A+A \Rightarrow asymmetry in momentum space


$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{1}{2\pi} \left(1 + 2\sum_{n\geq 1} v_n \cos(n(\phi - \Psi_n^{RP})) \right)$$

• v_2 : elliptic flow, collective ideal hydro th. photon v_2 for different QGP formation times τ_0 0.20 _ _ _ _ _ _ _ _ _ _ _ expansion at low p_T **Thermal Photons** Au+Au@200 AGeV • v_2 at high p_T : path length 0.16 $h = 6 \, \text{fm}$ dependence of in-medium parton energy loss 0.12OM $^{2}(\mathbf{p}_{T})$ 1.0 fm/c Thermal Photon v_2 0.08 $0.8 \, \mathrm{fm/c}$ Constrains onset of direct photon 0.6fm/c production 0.04 • Early production \rightarrow small flow • Late production \rightarrow hadron-like 0.00 10 2.03.0 4.05.0 6.0 flow p_T (GeV/c) arXiv:0809.0548 [nucl-th] Martin Wilde Part II: Direct Photon v2 12-5-12 p.20

General Strategy of the v_2 Analysis

Direct photon v_2 obtained via comparison between measured and calculated decay photon v_2

• $R \cdot v_2^{\text{inc } \gamma}$: weighted inclusive photon v_2 due to extra photons compared to background

• $v_2^{\text{decay }\gamma}$: calculated decay photon v_2 from cocktail calculation

ILLUSI MC-LINEVED CITXY

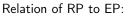
Martin Wilde

Part II: Direct Photon v2

Inclusive Photon v_2 Analysis

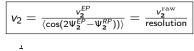
 v_2 given by the reaction plane

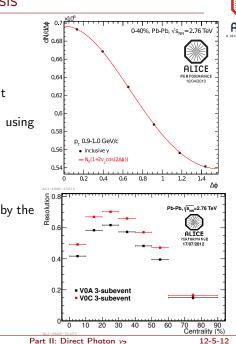
$$v_2 = \langle \cos(2(\phi - \Psi_2^{RP}))
angle$$


Extracted via this formula or by a fit

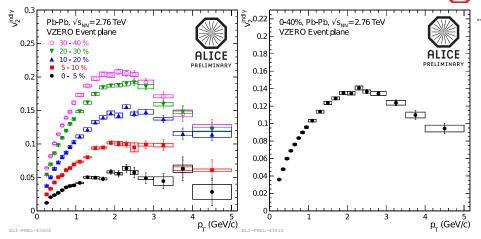
Event Plane angle determined by using the VZERO detector

- VZEROA: $2.8 < \eta < 5.1$
- VZEROC: $-3.7 < \eta < -1.7$


Reaction plane resolution obtained by the three sub-event method


Martin Wilde

WILHELMS-UNIVERSITÄT

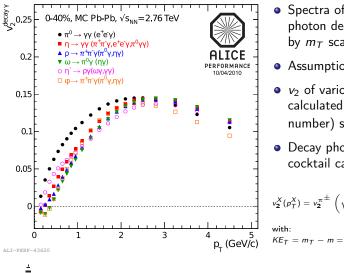

MÜNSTER

p.22

Inclusive Photon v_2 Results 0-40%

- Magnitude of v_2 increases with decreasing centrality
- Similar v_2 to hadrons
- Expected behavior, main contributions are decay photons

WILHELMS-UNIVERSITÄT Martin Wilde


/ESTFÄLISCHE

MÜNSTER

Part II: Direct Photon v2

Cocktail Simulation and Decay Photon v_2

ULUCIASC-HARVEDCITAT

MÜNSTER

Martin Wilde

• Spectra of other mesons with photon decay branches obtained by m_T scaling

• Assumption:
$$v_2^{\pi^0} = v_2^{\pi^{\pm}}$$

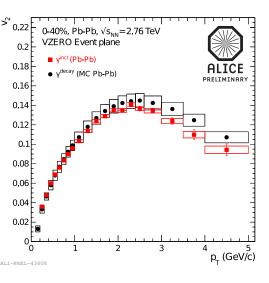
- v_2 of various mesons (X) calculated via KE_T (quark number) scaling from $v_2^{\pi^{\pm}}$
- Decay photon v_2^X obtained by cocktail calculation

$$v_{2}^{X}(p_{T}^{X}) = v_{2}^{\pi^{\pm}} \left(\sqrt{(KE_{T}^{X} + m^{\pi^{\pm}})^{2} - (m^{\pi^{\pm}})^{2}} \right)$$

with:

$$KE_T = m_T - m = \sqrt{p_T^2 + m^2} - m$$

Comparison of Inclusive and Decay v_2



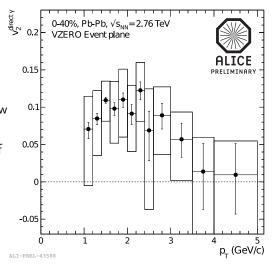
- Above 3 GeV/c inclusive photons significantly smaller than decay photons
- ightarrow Direct photon v_2 contribution with $v_2^{
 m direct} < v_2^{
 m inc}$
- Below 3 GeV/c consistent within uncertainties
- \rightarrow Either contribution of direct photons with similar v_2 or no direct photons

ULUCIASC-HARVEDCITAT

MÜNCTER

Martin Wilde

Direct Photon ν_2 0-40% and Conclusions II

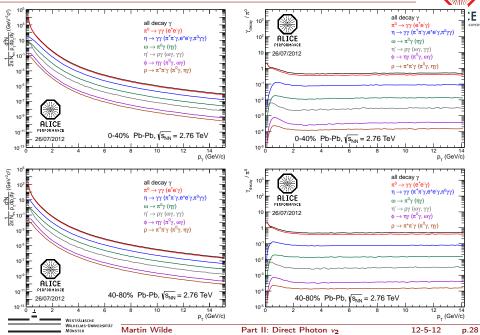


- Significant direct photon v_2 for $p_T < 3 \, {\rm GeV/c}$ measured
- Magnitude of v₂ comparable to hadrons
- Result points to late production times of direct photons after flow is established
- Large inverse slope parameter of low p_T direct photon spectrum favours earlier production times
- Similar direct photon v₂ results seen by PHENIX

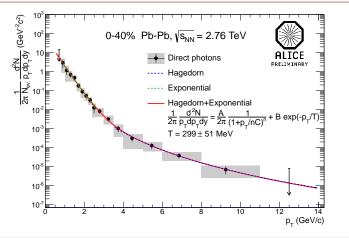
Martin Wilde

ULUCIASC-HARVEDCITAT

MÜNSTER



Backup Slides



Part II: Direct Photon v2

Denominator Ratio: Cocktail Generator Pb-Pb Results

Combined Fit for Direct Photons

Combined fit (Hagedorn + Exponential) gives similar result for the inverse slope parameter T as for the exponential only fit

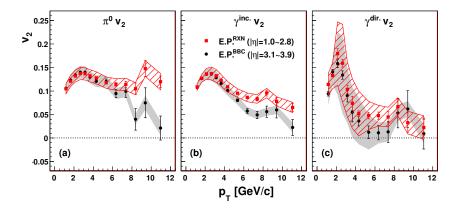
Systematic Cut Studies pp

Out Variations for γ and π⁰:

Cut Name	Std. value	Variation 1	Variation 2	Variation 3
Electron dEdx	-4,5 σ	-4,4 σ	-3,4 σ	-
Pion dEdx	$1,-10\sigma$	$2,1\sigma$	2,0.5 σ	2,0.5 σ
Min. p e ⁺ /e ⁻	0.4 GeV/c	0.4 GeV/c	0.4 GeV/c	0.3 GeV/c
Find. Cls. TPC	0.35	0.6	-	-
Photon χ^2	20	30	10	-
qt	0.05	0.07	0.03	-
min. $p_t e^+/e^-$	50 MeV/c	75 MeV/c	100 MeV/c	-
photon η , $\pi^{0} y$	0.9, 0.8	0.8, 0.7	1.2, 0.9	-
min. R	5 cm - 180 cm	2.8 cm - 180 cm	10 cm - 180 cm	-

- V0s with shared electrons rejected
- Purity for different centralities used
- TOF and α cut not used for pp
- R cut already considered for material budget
- π^{0} yield extraction:
 - Three different integration windows
 - Different Numbers of mixed events for bg, different mixed event bins (n V0s, n tracks)
- Cocktail simulation:
 - Two different fits
 - Variation of the m_t scaling factors (η measured)
- Westfälische Wilhelms-Universität Münster

Martin Wilde


Systematic Cut Studies Pb-Pb

• Cut Variations for γ and $\pi^{\mathbf{0}}$:

Cut Name	Std. value	Variation 1	Variation 2	Variation 3
Electron dEdx	-3,5 σ	-4,5 σ	-2.5,4 <i>σ</i>	-
Pion dEdx	3,-10 σ	$2.5,-10\sigma$	$3.5,-10\sigma$	3,-10 σ
Min. p e^+/e^-	0.4 GeV/c	0.4 GeV/c	0.4 GeV/c	0.3 GeV/c
Find. Cls. TPC	0.6	0.7	0.35	-
Photon χ^2	10	5	20	-
q _t	0.05	0.03	0.07	-
min. $p_t e^+/e^-$	50 MeV/c	75 MeV/c	100 MeV/c	-
photon η , $\pi^{0} y$	0.75, 0.7	0.9, 0.8	0.8, 0.7	-
min. R	5 cm - 180 cm	2.8 cm - 180 cm	10 cm - 180 cm	-
α meson central	0.65	1.00	-	-
α meson peripheral	0.8	1.00	-	-
TOF	-5,-5 <i>o</i>	-3,-5σ	-2,-5 <i>o</i>	-

- V0s with shared electrons rejected
- Purity for different centralities used
- φ π⁰ yield extraction:
 - Three different integration windows
 - Different Numbers of mixed events for bg, different mixed event bins (n V0s, n tracks)
- Cocktail simulation:
 - Two different fits, with and without blast wave
 - Variation of the *m_t* scaling factors

