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Elliptic flow from dissipative hydrodynamics

State of the art fits suggest n/s ~ 0.2

Gale, Jeon, Schenke, Tribedy, Venugopalan (2012)
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Still a number of uncertainties (two that will be addressed here)
> Need for kinetics

» Bulk viscosity



Elliptic flow from dissipative hydrodynamics

Spectra computed with Cooper—Frye:
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Expand f = f, + § f with constraint:
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Only moments of § f fixed by hydro;

leaving a need for kinetic models.
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QGP distribution functions

» Photons are completely out of equilibrium (contrast to early universe)

» Photon spectra only appears thermal because quarks / gluons

creating photons are thermal

. . Lo Al
» This is very clear at leading log where Pquark ~ Qphoton



QGP distribution functions

At leading log:

dN.,
d3q
Out of equilbrium:

o = fo (1= XB(0) - 4Dy — X (a) - O

aemanquark(Q’y)T log (# 2T>



QGP photons
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Dusling (2009); Dusling, Lin (2008)

15=0.2 fm/c
Viscous —=—
Viscous (expansion)

Above calculation shows the kinetic § f correction.

See the more sophisticated work by the McGill group.



Why bulk viscosity?

QCD is clearly not scale invariant and ¢ # 0.
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So, do we need to understand bulk viscosity if we want to extract n/s?
Yes, but bulk viscosity is interesting in its own right.
Has implications for cosmology (e.g. relic abundances).



Relaxation Time Approximation

Approximate collision operator by single relaxation time:

of
Clof] ~ —————
Bulk visocisity goes as 2" power of conformal breaking
1 2
C ~1 <3 - Ci) Weinberg (1972)

while distribution function goes as 15 power
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Bulk viscous correction dominated by ¢ f



QGP distribution functions

QCD: Elastic vs. Inelastic

Arnold, Dogan, Moore (2006)

For elastic 2 <> 2 recast as Fokker-Planck
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QGP distribution functions

Result:
1 1 2
5fbulk ~ <3 - C§> 6fshear C ~ 50 ( - C§> n
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where 0f = —f,(0-u)x(p)



Pion Gas:

Pion Gas: Elastic vs. Inelastic

Bulk viscosity governed by chemical non-equilibrium
5 f takes form of zero mode which dominates C~*

of = —fo(xo—x1Ep) (0 u)
0 oT
= fo <1/j + T2Ep>

Lu, Moore (2011); Jeon, Yaffe (1995)



Pion Gas:

Bulk viscosity governed by chemical non-equilibrium
6f =—=fo(9-u) (xo— x1Ep)

Chemical equilibration rate determines g, energy conservation fixed x1
N BF F?
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where F characterizes conformal breaking
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Hadron Resonance Gas: A model

Assume slowest process is chemical relaxation:

0f* = —=fo(9-u) (x5 — x1Ep)

where a =7, K, p, K*,p,n, A, ---

Slowest rate determines (, other rates fix the relative  f:

a T s 2 Mesons
X0 = Xo 2.5 Baryons

Motivated by 11, = 2 and 2pn = Spix: I

Goity (1993); Pratt, Haglin (1999)



Hadron Resonance Gas: A model

Hadron Gas: ( determined by chemical non-equilibration

Bottom line for 0 f:
> Sp~ (0 u)
» temperature shift 07 =~ 0.250 to conserve energy

A new (dynamical) way to look at fugacity factors
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Pion / Proton pr spectra
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Pion / Proton differential vy(pr) spectra
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Bulk viscosity and EM probes

As for shear viscosity, bulk § f modifies photon rates
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Bulk viscosity and EM probes

First shot:
» Using AMY rates with f — f + 6 f and pQCD 6 f

» Using xRF (Steele, Yamagishi, Zahed) with

» 23 enhancement with i, ~ (/s (0 - u)
» T =T -4T

» Results preliminary: Need to
include shear viscosity

» fine-tune initial condition

» worry about pQCD at high g1
[

v
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Viscous photon vs(qr)
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Only including bulk viscosity — no fine-tuning.



Summary
Bulk viscosity is not zero:

» fine structure of spectra improves
» may help with photon v9

» dynamical mechanism for fugacity factors



Backup Slides
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1/(2m qr) dN/dgy [GeV?]

Viscous photon ¢r spectra
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Only including bulk viscosity — no fine-tuning.



Thermal photon production

At leading order in cwp, but all orders in ag

dN a2

d4Q 3 Q4

(Q"Q" — Q%™ W (Q)
where

WlQ) = / dhz QX (Jem(X) Them(0)) 5

Evaluate W, in two different ways
» Vacuum spectral functions

» Kinetic Theory



Thermal photon production

Kinetic theory (all processes I — F +1117):

ZZ/d4x e~ | T (X | F)(F| TS (0)| F)

using By = Ep + Qo and >, |I)(I]| =

e ﬁEI

Z

Wi(Q) = e 5% S / dhz HQX (F|THm (X).J9M (0)|F)
F

McLerran & Toimela, 1985



